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Abstract ─ In this paper, a hybrid Integral 
Equation-Domain Decomposition Method-
Multilevel Fast Multipole Algorithm (IE-DDM-
MLFMA) with Gauss-Seidel iterative technique is 
proposed to calculate the scattering from perfectly 
electric conducting Body of Translation (BoT). The 
BoT can be partitioned into translational non-
overlapping sub-domains. A hybrid local/global 
MLFMA framework is adopted to realize efficient 
matrix-vector multiplication in sub-domains and 
between sub-domains by utilizing the feature of 
translational invariance of BoT. To reduce the 
number of interactions between sub-domains, 
Gaussian-Seidel iterative technique is applied. 
Numerical examples are presented to demonstrate 
the efficiency of the present method. 

Index Terms ─ Body of translation, Gauss-Seidel 
iteration, multilevel fast multipole algorithm, non-
overlapping domain decomposition method. 

I. INTRODUCTION 
In practical electronic information area, some 

important conducting objects have gained intensive 
interests and attention of researchers in 
electromagnetic community, which are Bodies of 
Translation (BoT). In practice, high speed trains, 
aircraft wings and fuselages can often be 
approximated as bodies of translation. Some 
numerical methods including the method of 
moment have been developed to solve the BoT. 
Medgyesi-Mitschg and Putnam developed a 
general systematic approach based on the method 
of moment for BoT in 1983. The functional 
variation of the surface currents along the axis of 
translation of the BoT is represented by a total-
domain Fourier expansion and a piecewise 

continuous function along the generating curve [1]. 
To solve electromagnetic problems for large 

BoT, Davis used the rectangular basis functions to 
segment the body of translation into a set of 
identical cells along the translation of the body. The 
impedance matrix can be evaluated efficiently by 
converting all surface integrals over the basis
functions into line integrals [2]. Medgyesi-Mitschg 
and Putnam also expand the method of moment for 
analysis of wire antenna attached on the BoT by 
incorporating a special junction basis function set 
for the antenna attachment points [3]. Although the 
above methods can accurately solve the BoT 
problems, they can be only applicable for moderate 
problems due to large computational complexity of 
method of moment. As a well-known fast algorithm 
used for integral equation, Multilevel Fast 
Multipole Algorithm (MLFMA) [4] has only 
computational complexity of O(NlogN). Although 
MLFMA is a general fast algorithm for accelerating 
matrix vector multiplication in iterative solution of 
matrix equation for objects with arbitrary geometry, 
for very large BoT problems, the MLFMA is still 
time consuming and requires large memory storage. 
Thus, it is still necessary to seek novel numerical 
methods to solve larger BoT problems more 
efficiently. 

In order to realize efficient solution of 
conducting structures with large sizes, the Multi-
Region Iterative Multilevel Fast Multipole 
Algorithm (MRI-MLFMA) combined the 
Generalized Forward/Backward (GFB) technique 
was developed by us [5]. Although it has better 
performance than traditional MLFMA, the buffer 
zones are required to ensure the continuity of 
current across the interfaces between multi-regions, 
and the property of matrix can’t be improved in 
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essence. Recently, a novel Integral Equation based 
non-overlapped Domain Decomposition Method 
(IE-DDM) [6] is introduced by Peng, et al. In this 
paper, in order to realize efficient solution of 
scattering from the Perfect Electric Conductor 
(PEC) BoT with large electric size, a hybrid scheme 
named IE-DDM-MLFMA with Gaussian-Seidel 
iterative technique is developed. The computational 
BoT is partitioned into several same closed sub-
domains, so Combined Field Integral Equation 
(CFIE) can be used in each sub-domain. In addition, 
Gauss-Seidel iterative technique is used to update 
the unknown current in each sub-domain in real 
time. A hybrid local/global MLFMA framework is 
adopted to realize efficient matrix-vector 
multiplication in sub-domains and between sub-
domains by utilizing translation invariant feature of 
BoT. 

The rest of paper includes the following parts. 
Section II gives a brief introduction on integral 
equation based domain decomposition method, 
followed by Section III for the extension of IE-
DDM for the BoT. Section IV presents some typical 
numerical results, and finally, the conclusions are 
given in Section V.

II. INTEGRAL EQUATION BASED 
DOMAIN DECOMPOSITION METHOD 

A. Equation formatting boundary value 
statement 

Considering electromagnetic scattering by a 
PEC target occupying a finite domain illustrated in 
Fig. 1. The scattered electric and magnetic fields in 
free space can be obtained from the Stratton-Chu 
representation formula [7,8] as: 
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k extK�� �� ���H J r J r r  (2) 
where 0� is the free space intrinsic impedance and 

0k is the free space wave number. J is electric 
current on the surface �� . The Electric Field 
Integral Operator (EFIO) and Magnetic Field 
Integral Operator (MFIO) are denoted by L and K
as follows:
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function in free space.
Here, the following tangential trace and twisted 

tangential trace operators will be used [9,10]:
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So Eq. (1), (2) can be rewritten: 
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where K stands for the principle value of K .
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Fig. 1. EM wave scatting by PEC. 

B. Decomposed combined field integral 
equations 

The current integral equation based on domain 
decomposition method begins by partitioning the 
original problem domain into N non-overlapping 
sub-domains: 

1,
,i

i N�
� � �

1
,i

N1
� ,i j� � �!,j� �!j 1 .i j N" # "  (7) 

Denote the boundary of i� as i�� , the touching 
face ij$ is defined as ij i j$ � �� �� j�� . Obviously,

;ij ji$ � $ however, here we still make an artificial 
distinction in order to the possibility of differing 
triangulations on either side of the touching face.

ij$ is used when i� is the “master” sub-domain 
and ji$ if the converse is true. Moreover, the 
boundary i�� contains two parts

, /i i ij i i ij�� ��� $ �� ��� $� $ �� ��� $/ij i,$ij ,$ . The reason we do 
so is due to the fact that the touching face meshes 
on ij$ and ji$ are allowed to be non-matching 
grids (non-conformal). For the sake of simplicity 
and without loss of generality, here we consider 
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only the case of 2,N �  as shown in Fig. 2. 
Subsequently, the well-known Combined Field 
Integral Equation (CFIE) governing the electric and 
magnetic fields on the PEC surface 1��  and 2�� , 
is written as follows, respectively: 
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where 
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�  is the factor of CFIE. 
Taking the sub-domain 1�  for example, note 

that the incident field on the 1��  can be written as 
follows: 
 1 1 2 1( ) ( ) ( )     ,INC inc s� � ���e r e r e r  r  (9) 
 1 1 2 1( ) ( ) ( )      .INC inc s� � ���j r j r j r r  (10) 

The first term in Eq. (9-10) stands for the 
primary incident field, the second term stands for 
the scattering field excited by the sources on the

2�� . Straightforwardly, the combining of (8), (9) 
and (10) results in the CFIE solver for the 
decomposed problem. 
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Fig. 2. Non-overlapping IE-DDM scheme: 2 sub-
domains. 
 
C. Transmission conditions 

The decomposed problem will not be 
equivalent to the original entire domain problem 
unless proper transmission conditions are observed 
for every sub-domain touching face ij$ . Obviously, 
the transmission condition 1 2

� 	� 	J J  should be 
satisfied on the touching faces. So the following 
Robin transmission condition on 12$ , 21$  are used 
[10]: 
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To expand the surface current in each sub-

domain, traditional RWG basis function [11] is 
used. To assure the current continuity across corner 
edges, a corner edge based RWG basis function is 
defined for corner edge current. It not only avoids 
the introducing of half RWG basis function, but 
keeps exactly the same formulation of the CFIE 
matrix with the one of single sub-domain. A 
demonstrative figure is shown in Fig. 3. 

Considering the coefficient vector 
,

Te c t
i i i i% &� ' (x x x x  stands for the coefficients of 

the RWG basis function for current on exterior 
surface, on the corner edge and on the touching face 
respectively. 
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Fig. 3. Three kinds of RWG basis functions for 
expanding the current on exterior surface, on the 
corner edge and on the touching face in the IE-
DDM. 
 

Based on Galerkin testing, we yield the matrix 
equation of IE-DDM as follows: 
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It is worth to note that two triangles of RWG 
basis function related to corner edges locate on 
different surfaces; i.e., exterior surface and 
touching face. So, different boundary conditions are 
used in corresponding triangle for this special RWG 
basis function. The matrix blocks iA forms the 
usual Combined Field Integral Equation (CFIE) 
matrix for sub-domain .i� The sub-matrix iB
denotes the self-impedance matrix of each sub-
domain, the sub-matrix ijC denotes mutual 
impedance matrix between two sub-domains, while 
the sub-matrix ijD is sparse motar matrix.

III. GAUSS-SEIDEL ITERATION 
TECHNIQUE 

For solution of Eq. (13), two iterative processes 
are needed: the inner iterative process and the outer 
iterative process. For the inner iterative process, 
GMRES iterative technique is used. For the outer
iterative process, Gauss-Seidel iterative technique 
is used instead of Jacobi iteration technique in this 
paper; which updates the currents on each sub-
domain in real time. The Gauss-Seidel iteration 
procedure is given as follows: 
Step 1: Initialization 

The currents in all N sub-domains are 
initialized to 0, starting the outer iteration, 1k � . 
Step 2: Iterative solution of sub-domains 

For 1,2,...,i N� (N is the number of sub-
domains): 

a) The Eq. (13) is solved via GMRES iterative 
solver in each sub-domain; 

b) Updating the current in sub-domain in real 
time once it has been solved. 

Step 3: Error computation and convergence 
evaluation 

Computing the maximal relative residual error, 
error _ max( ),k for N  sub-domains. If the error 
achieves the desired threshold, the outer iteration 
process is over. Otherwise, 1;k k� � return to Step 
2, continue the iteration process. 

The maximal relative residual error of current 
at the k-th outer iteration is defined as: 

1

error _ max( ) max .
k k
i i

ki
i

k
		

�
I I

I
 (14) 

k
iI denotes the currents on the i-th sub-domain at 

the k-th outer iteration. denotes the 2-norm of 
the complex vector. 

IV. HYBRID LOCAL/GLOBAL MLFMA 
FRAMEWORK 

For the problem of BoT, the computational 
original domain can be partitioned into several 
same sub-domains, as shown in Fig. 4. Because for 
each sub-domain, the self-coupling is the same, the 
self-impedance matrix in each sub-domain can be 
implemented only once. Here, hybrid local/global 
MLFMA framework is developed: local MLFMA 
is used to reduce the time of matrix filling and 
matrix-vector multiplication in each sub-domain, 
global MLFMA is used to accelerate the 
computation of coupling between sub-domains. 

Fig. 4. Hybrid local/global MLFMA framework for 
BoT: each sub-domain is same. 

From Eq. (13), we can see that there are three 
kinds of matrix blocks A, B, C. For matrix A, we 
can implement the matrix-vector multiplication of 

;x�A by local MLFMA, it is the same with 
traditional MLFMA because matrix A is exactly the 
same with traditional impedance matrix of sub-
domain divided. For matrix B, C are for specific 
sources and observation points, different from 
traditional case in which the sources distribution is 
identical with the observation points distribution. 

To implement the MLFMA, the object is 
enclosed by a large cube which is partitioned into 
eight children cubes, every sub-cube is then 
recursively subdivided into smaller cubes until the 
edge length of the finest cube is about 0.3 
wavelength. Further non-empty cubes are recorded 
using tree-structured data at all levels. 

The representation of matrix-vector 
multiplication using MLFMA is often written as: 

.t
nearA x A x U T V x� � � � � � �  (15) 

The matrix nearA  represents the interaction 
matrix from nearby region which is computed by 
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the MoM. , , tV T U  is aggregation, translation, 
disaggregation matrix respectively; they represent 
three processes of interaction between non-nearby 
regions. The details can be referred to references 
[4,12]. 
 

V. NUMERICAL RESULTS 
This section validates the accuracy and 

demonstrates the efficiency through some 
numerical examples. To validate the accuracy of 
IE-DDM code developed here, two examples A1-
A2 are given first. The examples B1-B3 are used to 
show the ability of the present method for the BoT. 
 
A1. EM scattering from a PEC sphere 

Bistatic RCS of a PEC sphere of radius R=3 m 
excited by a +  polarized plane wave incident from 
-z direction is computed. The frequency is f=300 
MHz. The sphere is partitioned into two closed 
hemispheres. The conventional MLFMA and MIE 
method are used for comparisons. The number of 
unknowns by the MLFMA and IE-DDM-MLFMA 
is 49,531 and 55,401 respectively. 

The RCS results by the MIE method and IE-
DDM-MLFMA are shown in Fig. 5. A good 
agreement between the result by the IE-DDM-
MLFMA and the one by MIE method is confirmed. 
Figure 6 shows the current distribution using the 
conventional MLFMA and IE-DDM-MLFMA 
respectively. They agree well with each other. In 
addition, the electric currents across the touching 
face between two neighbouring sub-domains are 
normal continuous. 
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Fig. 5. Bistatic RCS of PEC sphere. 
 

 
 (a) 
 

    
 (b) (c) 
 
Fig. 6. (a) Current distribution of PEC sphere using 
conventional MLFMA, and (b), (c) current 
distribution of 2 sub-domains using IE-DDM-
MLFMA. 
 
A2. Simplified helicopter model 

The second example we consider is a simplified 
helicopter model with length of 4.5 m. The entire 
model is divided into 8 closed-surface regions and 
different color denotes different regions, as 
depicted in Fig. 7. The frequency of the incident 
plane wave � �90 , 0i i+ ,� - � -  is 3.0 GHz. Each 
region is meshed independently according to its 
geometry complexity. Due to the non-conformal 
feature of the IE-DDM, each sub-region can be 
meshed with good quality, which results in 461,667 
totally. The bistatic RCS results with horizontal 
polarization in the z x	  plane are plotted in Fig. 8 
(a), together with the MLFMA solutions. It is found 
that good agreements are obtained. In addition, IE-
DDM converges to relative residual error of -210  
with 7 outer iterations. 

The bistatic RCS results by the MLFMA and 
the IE-DDM-MLFMA are shown in Fig. 8 (a), a 
very good agreement is achieved. The current 
distribution of Helicopter is also given in Fig. 8 (b). 

The above two examples have validated the 
ability of the IE-DDM-MLFMA. In the following 
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parts, the examples B1-B3 are used to demonstrate 
the performance of the present method for BoT. 

Fig. 7. Geometry model of simplified helicopter: 8 
sub-domains. 

(a) 

(b) 

Fig. 8. (a) RCS of the helicopter model, and (b) 
current distribution of helicopter at 3 GHz.

B1. EM scattering from a PEC cylinder 
A PEC cylinder of radius R=0.5 m and height 

H=1 m is excited by a plane wave incident from -z

direction. The frequency is f=0.3 GHz. The cylinder 
is partitioned into two closed same sub-domains. 
The number of unknowns by the CFIE and IE-
DDM is 1,928 and 2,352 respectively. A 
comparison of bistatic RCS computed using the IE-
DDM solver and conventional CFIE is shown in Fig. 
9 (a), a very good agreement is observed. A 
comparison of convergence using IE-DDM with 
Jacobi iteration and with Gauss-Seidel iteration is 
also shown in Fig. 9 (b). Obviously, Gauss-Seidel 
iteration has better convergence than Jacobi 
iteration due to it updating the currents in each sub-
domain in real time. 
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Fig. 9. (a) Bistatic RCS for PEC cylinder, and (b) 
the convergence history with Jacobi iteration and 
Gauss-Seidel iteration. 

B2. Large PEC square cylinder 
The scattering of a large PEC square cylinder is 

investigated. The frequency is 300 MHz. It is 
divided into 4 same sub-domains along long axial 
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direction. The number of unknowns by the 
MLFMA and IE-DDM-MLFMA is 386,400, 
393,600 respectively. The incident wave, is 
polarized in the +  direction, with the incident 
angles 90i+ �  and 0 .i, �  The bistatic RCS at

[0 ,180 ]s+ � 180 ]  and 0s, �  is shown in Fig. 10. In 
addition, the computational statistics on the 
MLFMA and IE-DDM-MLFMA is also listed in 
Table 1. The filling time for impedance matrix by 
the MLFMA and IE-DDM-BoT is 4,669, 1,290 
seconds respectively. For this large PEC square 
cylinder, only 5 outer iterations are required to 
achieve the convergence threshold of 0.01. The 
total solution time by the MLFMA is 10,127 
seconds, but the one by IE-DDM-BoT is only 5,941 
seconds. 
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Fig. 10. Bistatic RCS for PEC square cylinder: four 
same sub-domains divided. 
 

 
Table 1: The computational statistics using IE-DDM-MLFMA and MLFMA for large PEC square cylinder 

 
Although the IE-DDM-BoT requires more 

unknowns compared with the MLFMA, it reduces 
total CPU time and storage requirement greatly, as 
shown in Table 1. This is because only a few outer 
iterations are required by the IE-DDM-BoT, and 
hybrid local/global MLFMA framework can attain 
efficient matrix-vector multiplication in sub-
domains and between sub-domains based on the 
feature of translational invariance of BoT. 
 
B3. Stability investigation of IE-DDM in case of 
many sub-domains 

Here, we use IE-DDM-MLFMA with 10, 20, 
30 same sub-domains to solve three PEC circular 
cylinders with length of 10 m, 20 m, 30 m 
respectively, in order to investigate the stability of 
the IE-DDM-MLFMA when dividing many sub-
domains. The size of sub-domain is fixed as length 
of 1.0 m, radius of 1.0 m. The frequency is 300 
MHz. The number of unknowns by the IE-DDM-
MLFMA with 10, 20, 30 sub-domains is 40,122, 
83,664, and 119,814 respectively. Bistatic RCS in 
horizontal polarization is computed. The 
convergence history of IE-DDM-MLFMA for 
cylinders with 10, 20, 30 sub-domains is shown in 

Fig. 11. From Fig. 11, it is shown that the IE-DDM-
MLFMA has a good convergence even for the case 
of 30 sub-domains. 
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Fig. 11. The convergence history of IE-DDM-
MLFMA for PEC cylinders, 10, 20, 30 same sub-
domains divided. 
 

The result of PEC cylinder with length of 20 m 
and radius of 1 m when dividing 20 sub-domains is 
shown in Fig. 12. Bistatic RCS in horizontal 
polarization is computed. A good agreement 

Methods Unknowns Time For Filling 
Zmn(near) (s) 

Total Solution 
Time (s) 

Memory (MB) Niter 

MLFMA 386,400 4,669 10,127 2,032 29 

IE-DDM-BoT 393,600 1,290 5,941 1,130 5 
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between the results by the IE-DDM-MLFMA and 
the one by the MLFMA is also achieved, from Fig. 
12. This example shows the present method using 
many sub-domains can still attain stable and 
accurate solution of large BoT. 
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Fig. 12. Bistatic RCS for cylinder by IE-DDM-
MLFMA, 20 same sub-domains divided. 

VI. CONCLUSIONS 
In this paper, hybrid IE-DDM-MLFMA with 

Gaussian-Seidel iterative technique is proposed for 
fast solution of PEC BoT. By updating the current 
in sub-domains in real time, fast convergence of
outer iterations is realized. 

A hybrid local/global MLFMA framework is 
developed for efficient implementation of fast 
matrix-vector multiplication in and between sub-
domains. By utilizing the feature of translational 
invariance of BoT, the self-impedance matrix in 
each sub-domain is calculated only once. 
Compared with the traditional MLFMA, the main 
advantage of the present method is a reduction in 
storage requirements and solving time. Numerical 
results prove the present method is very efficient for 
scattering from PEC BoT. 
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