
Truncation Error Analysis of a Pre-Asymptotic Higher-Order Finite 
Difference Scheme for Maxwell’s Equations

Yu Shao and Shumin Wang 

Department of Electrical and Computer Engineering 
Auburn University, Auburn, AL 36830, USA 
yzs0016@auburn.edu, james.wang@ieee.org

Abstract ─ Pre-asymptotic higher-order methods 
are useful to the mitigation of numerical 
dispersion error in large-scale Finite-Difference 
Time-Domain (FDTD) simulations. Its truncation 
error is shown in this study to be 2 2( ) ( )O Ot s: � :
in general. In the limiting case where the Courant-
Friedrichs-Levy number approaches to zero, it 
becomes 2 4( ) ( )O Ot s: � : .

Index Terms ─ FDTD, higher-order, pre-
asymptotic, truncation error. 

I. INTRODUCTION 
Numerical dispersion error is a major 

concern in large-scale finite-difference 

simulations of wave propagation and scattering 

problems [1]. For its mitigation, various 

techniques based on higher-order finite-

difference schemes and non-canonical grids have 

been proposed in past decades [2]-[6]. However, 

the inherent frequency dependency and angle 

dependency (anisotropy) of their dispersion 

properties may not be desired in practical 

applications, such as those involving high-

permittivity biological bodies at high frequency. 

For instance, their dispersion errors decrease at 

lower frequency, where the electrical size of 

certain geometry is smaller and the significance 

of dispersion error diminishes. It is preferred to 

have less dispersion error at higher frequency 

rather than lower frequency.

Pre-asymptotic higher-order methods were 

devised to solve the above problems by 

“engineering” the dispersion properties of finite-

difference schemes for certain applications [7]-

[11]. They start from defining an error functional 

related to the dispersion property of a given 

stencil; e.g., the conventional (2,4) stencil [2]. 
The coefficients of the underlining finite-
different scheme are then determined by 
minimizing this error functional. The criteria can 
be either minimum dispersion error in a certain 
angular span or in a certain frequency range. In 
the former case, one obtains angularly optimized 
finite-difference schemes [7]-[9]. In the latter 
case, one obtains so-called Dispersion-Relation-
Preserving (DRP) schemes [10]-[11].

An important question arising from the 
development of pre-asymptotic methods is their
truncation error properties. Although they are 
based on a stencil which is supposed to have a 
higher-order truncation error, the finite-
difference coefficients have been modified for 
desired numerical dispersion properties. Thus, it 
is unclear whether the original truncation error 
properties can be retained. 

In order to answer the above question, the 
truncation error of the Three-Dimensional (3D) 
DRP scheme, which is based on the (2,4) stencil, 
is analyzed in this study [11]. This analysis can 
be adapted to other pre-asymptotic schemes. 

II. 3D DRP EQUATIONS 
Details of the DRP method can be found in 

[11]. It is briefly repeated here for convenience. 
The FDTD discretization of 3D Maxwell’s 

equations in a Cartesian grid by using a (2,4) 
stencil can be written as: 
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where superscripts indicate time steps. The finite-
difference operator SS is defined as: 
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where 1sC  and 2sC , s = x, y, z are coefficients to 
be determined, and sS �  and sS ��  are “grid 

displacement” operators [6] defined by: 
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and similarly for the other components. In the 
above, subscripts indicate spatial locations. By 
applying standard Fourier analysis, we obtain: 
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Considering the H update for the TEz wave 
propagating along the (θ, ϕ) direction, its 
wavenumber components read kx = ksinθcosϕ,  
ky = ksinθsinϕ, kz = kcosθ. We have: 
 sin<� 	xE E , cos<�yE E , 0,�zE  (8) 

cos cosx + <� 	H H , cos siny + <� 	H H , sin .z +�H H  (9) 
The following two independent equations can be 
obtained by substituting (8) and (9) into (7): 
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The other polarization gives similar equations for 
the E-field update. 

1zC  and 2zC  can be determined from Eqs. 

(10) and (11). In a regular Cartesian grid, the 
remaining coefficients can be likewise 
determined because they obey identical equations 
with respect to the elevation angles of the 
associated axes. By enforcing E=ηH, and 

denoting the Courant-Friedrichs-Levy (CFL) [1] 
number as 3 /s pv t s= � : : , Eq. (10) can be written 
as: 
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where /sq s 5� :  denotes the wavelength to grid-
cell size ratio, and Δs stands for either Δx, Δy, or 
Δz. 

An error functional can be defined as the 
difference between the left- and the right-hand 
sides of Eq. (12). Expanding it in a series of 
spherical harmonics lmY (θ, ϕ) yields: 
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where lI (α) = 0 for l even. For odd l, lI (α) can be 
obtained via integration by parts as: 
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The first two terms are given by: 
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By enforcing the two leading terms in Eq. 
(12) to be zero and solving for 1sC  and 2sC , one 
obtains: 
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where the denominator in Eqs. (15) and (16) 
writes as: 
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In order to implement these coefficients in time 
domain, 1sC?  and 2sC?  can be expanded in a Taylor 
series around qs = 0. By retaining the lowest order 
terms and substituting the second order time 
derivative by the spatial derivative operator 2 2

pv �  

(from Helmholtz’s equation in the continuum), 

one obtains: 
 (2) 2 2 2 (2) (2) 2 2

1 11 12
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The final finite-difference scheme is obtained by 
substituting these coefficients in Eq. (2). 

III. TRUNCTION ERROR 
Let us consider the Hz update of the DRP 

scheme in a uniform grid, which is written as: 
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Plugging Eqs. (17) and (18) into Eq. (19), one 
obtains: 
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Note that, the difference between the above 
update and a conventional (2,4) scheme involves 
the spatial derivative terms. The time derivative 
is treated similarly in both approaches, which 
results in a temporal truncation error of 2( )t:O .
So the spatial truncation error will be focused in 
the following. 

Let us consider the spatial derivative term 
involving Ex only because the Ey term is treated 
the same as Ex in Eq. (20). One has: 
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By expanding 
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and the other terms similarly, it was found that: 
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The remaining term in (21) that needs to be 
considered is: 
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The 2�  operators in Eq. (24) are approximated 
by centered difference; i.e., 
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By using Taylor expansion, it is found that: 
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By using the following expressions: 
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one can obtain: 
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Together with Eq. (23), Eq. (21) is written as: 
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Therefore, the truncation error of the DRP 

scheme is generally 2 2( ) ( )O Ot s: � : . In the 
limiting case where the CFL number s=  goes to 
zero, the truncation error recovers to 

2 4( ) ( )t s: � :O O  (from Eq. (32)). 
 

IV. CONCLUSIONS 
The truncation error of the DRP scheme was 

investigated in this study. It serves to reinforce 
the basic trade-off of pre-asymptotic higher-order 
finite-difference schemes, which trade low 
numerical dispersion error at a pre-assigned 
frequency window or angular range for larger 
numerical dispersion errors outside the range of 
interest; in particular, at sufficiently low 
frequencies where the cumulative numerical 
dispersion error decreases due to the smaller 
electrical size. Although higher-order truncation 
error is not preserved in general, this approach is 
more relevant to improving the accuracy of 
practical large-scale simulations of hyperbolic 
problems, in which the frequency is often limited 
in a prescribed band. 
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