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Abstract ─ This paper proposes a convex 

optimization based method to suppress sidelobe in 

adaptive beamforming at subarray level. Usually 

phase shift rather than amplitude tapering is 

implemented at element level to maximize signal 

to noise ratio. Nevertheless, sidelobe control can 

be realized at subarray level. The proposed 

approach is realized by adding a constraint 

minimizing the difference between weights at 

subarray level and element-level Chebyshev 

synthesis into the optimal conditions. Compared 

with penalty function method, simulations show 

that for a uniform linear array, the proposed 

method can suppress sidelobe level considerably, 

especially the lobes close to mainlobe. 

Furthermore, it is able to produce better shaped 

main lobe, which is extremely close to the 

referenced pattern. 

 
Index Terms - Adaptive beamforming, convex 

optimization, sidelobe control, and subarray level.  

 
I.  INTRODUCTION 

Adaptive beamforming is a significant realm 

in phase array radar. To reduce the complexity of 

hardware and alleviate computational load, 

subarray partition is usually considered [1, 2]. In 

addition, low sidelobe is often required to 

guarantee the performance against non-stationary 

cluster or reverberation [3, 4]. Many pattern 

synthesizing methods were developed to generate 

low sidelobe [5-7]. However, element tapering 

reduces the global gain of antennas, which results 

in signal-to-noise (SNR) loss. Thus, forming 

adaptive pattern with low sidelobes digitally at 

subarray level is a feasible solution. 

One of the most used algorithms is minimized 

variance distort response (MVDR). Its apparent 

disadvantage is high sidelobes when sample 

matrix is used instead of the true covariance 

matrix [4]. Much relevant work has been done in 

recent years to deal with sidelobe controlling. 

Carlson proposed the diagonal sample matrix 

inversion (LSMI) [8] to solve the problem by 

adding an appropriate number to the covariance 

matrix. It was proved to be simple and effective, 

but there is no close solution for the optimal 

number. Penalty function method has to select a 

loading value k
2
 to determine the adaptive weights. 

As the value of k
2
 increases, the property of 

sidelobe suppression improves but interference 

cancelling degrades [3]. Second order cone (SOC) 

[9] is the method using optimization to control 

sidelobe. Although the method in [9] can get 

desired low sidelobe exactly, sidelobe region and 

sampling density should be defined beforehand. A 

small number of samplings may result in 

unexpected high sidelobe jittering, while a large 

number of samplings will lead to intensive 

computation. Furthermore, inappropriate sidelobe 

region definition may cause high sidelobe close to 

the main lobe in [9]. Sparse constraint is utilized to 

suppress the sidelobe level in [10]. However, it 

may fail to null mainlobe interference when its 

mainlobe region is set relative broad to enhance 

robustness of the beamformer against steering 

vector error. More recently, iterative algorithms 

based on evolutionary has been exploited in 

pattern synthesis [11, 12]. Despite their advantages, 

they have the drawback of complicated feeding 

network and high computational burden [13]. 

This paper proposes a new alternative convex 

optimization based approach to suppress sidelobe 

in adaptive beamforming at subarray level. It saves 
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the trouble of definition of threshold, sidelobe 

region, and sampling density. We construct the 

formula by imposing interferences cancelling on 

optimization conditions while setting object to 

minimize the difference between element level 

equivalent weights and Chebyshev tapering. 

Simulation results indicate that the convex 

optimization based approach can suppress sidelobe 

effectively, which simultaneously tune out 

inferences from sidelobe or mainlobe. The validity 

and feasibility of the proposed algorithm are 

verified with Matlab simulation. 

 

II. SIGNAL MODEL 
A uniform linear array (ULA) with N isotropic 

elements is considered in this paper. Interval 

between elements is half of the carrier wavelength, 

i.e., d = λ/2. The array is divided into L non-

overlapped subarrays. When K far field narrow 

band signals from θ1, θ2,...., θK 
are imposed on the 

array, the received data at element level 
ele

x
v

is [14], 

( ) ( ) ( )
ele

x m As m N m= +
v v

                (1) 

where 1( ) [ ( ),..., ( )]T

K
s m s m s m=
v

, represents  the 

K incident signals at the m
th
 snapshot. (.)

T

 denotes 

the transposition operator. 

1 2( ) [ ( ), ( ),..., ( )]T

N
N m n m n m n m= is the 

Gaussian sensor noise with zero mean and 

variance σ n
2. A is an array manifold vector and 

1 2[ ( ), ( ),..., ( )]
K

A a a aθ θ θ=
v v v

. ( )
i

a θ
v

is the steering 

vector and 1 2( ) [ ... ]Njj j T

i
a e e e

ϕϕ ϕ

θ =
v

.
n

ϕ is the 

phase difference of the
thn sensor relative to the 

origin from θi. Thus
n

ϕ is defined as, 

2 sin
i

n n
x

π θ
ϕ

λ

= ⋅                   (2) 

where xn 
is the coordinate of n

th
 sensor. It is 

assumed that the array is symmetric to the origin 

and N is oven. Thus, 

1

2
n

N
x n d

+ 
= − 
 

, 1, 2,...,n N= . 

The element to subarray transformation matrix 

is given by [2], 

dd w
T D D T

θ
= ⋅ ⋅v ,                    (3) 

where θd is the direction of the desired signal. w
v

is 

an N×1 vector, denoting element amplitude 

tapering. T is an N×L matrix, containing zeros and 

ones, which are determined by the division of 

subarrays. Both Dθd and 
w

D v are diagonal matrices, 

i.e., { }1 2
( ), ( ),..., ( )

d d d N d
D diag a a a

θ
θ θ θ= ,

{ }1 2
, ,...,

w N
D diag w w w=v .When no amplitude 

tapering is imposed at element level, i.e., 1
i

w = ,

w
D I=v , where I represents identity matrix.  

We denote the weights vector at subarray level 

by 
sub

w
v

.Then the pattern with subarray partition is 

given by, 

( ) ( )( )
H

d sub
f T w aθ θ= ⋅ ⋅

v v
                (4) 

where ( )
H

⋅ is the Hermitian transposition operator. 

The received data at subarray level,
sub

x
v

, as 

shown in Fig. 1, can be obtained by [2], 
H

sub d ele
x T x= ⋅
v v

.                       (5) 

d d

1 2 3 N

sind θ
θ

1 2 L

elex
v

subx
v

1w
2w

Lw
subw
v

∑

 
 

Fig. 1. A functional block diagram of an adaptive 

ULA with subarray partition. 

 

The covariance matrix is defined as, 

{ }
H

sub sub sub
R E x x= ⋅

v v
 

{ }

{ }

( )
H H

d ele ele d

H H

d ele ele d

H

d ele d

E T x x T

T E x x T

T R T

= ⋅ ⋅

= ⋅

=

v v

v v
.           (6) 
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In practice, it is difficult to get the theoretical 

value of 
ele

R , generally its approximate estimation 

is used instead [15],  

1

1ˆ ( ) ( )
sapN

H

ele ele ele

msap

R x m x m
N

=

= ⋅∑
v v

,        (7) 

where
sap

N  is the sampling rate, and 2
sap

N N=  in 

this paper [16].  

 

III. CONVEX OPTIMIZATION BASED 

ADAPTIVE BEAMFORMING WITH 

SIDELOBE CONTROL  

A subarray level adaptive beamformer is 

achieved by grouping the array elements into 

subarrays on which conventional beamforming is 

performed and applying an adaptive beamforming 

algorithm to the subarray outputs as shown in Fig. 

1. Signals in each subarray channel are multiplied 

by a complex weight. The number of adaptive 

coefficients is therefore the number of subarrays 

L instead of the total number of elements N, 
which reduces the computational load manifestly 

in
sub

w
v

 calculation. 

In many practical applications, to get higher 

SNR, antenna is preferred to be used without 

attenuation. This may invalidate sidelobe 

suppression contributed by element amplitude 

tapering. Nevertheless, we may try to minimize 

the difference between
ref

w
v

 and 
sub

T w⋅
v

with 

constraint of interference nulling. Here,
ref

w
v

is the 

optimal element tapering for quiescent low 

sidelobe pattern synthesis. 
sub

T w⋅
v

can be regarded 

as the equivalent element amplitude tapering with 

subarray partition. 

Chebyshev tapering is often desirable in linear 

array since it gives smallest possible beamwidth 

for a given low, uniform sidelobe level [13, 17]. 

Therefore, we set
cheby

w
v

 as reference element 

tapering. To form adaptive beam with sidelobe 

restriction at subarray level, the following 

optimization problem is proposed, 

( ) ( )

2

min

. .: 0

1, 2,...,

sub cheby

H

sub k

T w w

s t T w a

k K L

θ

⋅ −

⋅ =

= <

v v

v v
           (8) 

where • denotesthe Euclid norm.
k

θ represents 

the direction of the 
thk interference. 

sub
w
v

 is the 

optimization variables. Interferences are assumed 

incoherent with each other. However, in general, 

we have no prior information of interferences, i.e.,

k
θ is unknown. Nevertheless, in the situation of 

strong interferences and small signal, the optimal 

weight vector tends to be orthogonal to the 

interference subspace [15]. Thus we can modify 

equation (8) as, 
2

min

. . 0

sub ref

H

sub

T w w

s t w J

⋅ −

⋅ =

v v

v
                    (9) 

where J  denotes the interference subspace (ISS) 

at subarray level, which can be obtained from ˆ
subR . 

Rank the eigenvalues of ˆ
subR in descending order 

as 1 1K K L
λ λ λ λ

+
≥ ≥ > ≥ ≥L L . Eigenvectors, 

1u
v

, 2 , ,
K

u u
v v

L , corresponding to the first K  large 

eigenvalues, span the ISS. To determine the 

dimension of ISS, we use the Akaike information 

criterion (AIC) [18], 

( )

( ) ( )

( ){ }

1

1

1

2 2

2ln
1

ˆ min , 0,1,..., 1

sapL

L k
i

i k

L

i

i k

L k N k L k

AIC k

L k

K AIC k k L

λ

λ

−

= +

= +

− + −
 
 
 = −

 
 

− 

= = −

∏

∑
 (10) 

where L is the number of eigenvalues. K̂ is the 

estimation of the dimension of ISS. The standard 

form of convex optimization problems is given in 

[19], 

( )

( )

0min

. . 0, 1,...,

, 1,...,

i

T

i i

f x

s t f x i m

a x b i p

≤ =

= =

           (11) 

where 0 ,...,
m

f f are convex functions. When the 

objective functions as well as the inequality 

constraint functions are convex, and the equality 

constraint functions ( )
T

i i i
h x a x b= − are affine, 

equation (11) is a convex problem [19]. Extending 

the objective function in equation (9) yields, 
2

2Re

sub ref

H H H H

sub sub ref sub ref ref

T w w

w T Tw w Tw w w

⋅ −

 = − + 

v v

v v v v v v
(12) 
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It is obvious the objective function is quadratic. 

In addition, equality constraint in equation (9) is 

apparently affine. Thus equation (9) belongs to 

convex optimization. Several public solvers are 

available to solve convex optimization such as 

CVX, SeDuMi, YALMIP, etc. YALMIP is used in 

our simulation, since the toolbox makes the 

development of optimization problems in general 

and avoid simmediate use of other solvers error-

prone, even when parameterized matrices and 

variables are complex [20]. 

To facilitate the use of YALMIP toolbox, we 

modify the problem expression slightly. A new 

scalar non-negative variable t is introduced. It is 

obviously that
2

arg min
sub

sub sub cheby
w

w T w w= ⋅ −
v

v v v
is 

equivalent to the following expression, 

2

min . .
sub

sub ref
w

t s t T w w t⋅ − ≤
v

v v

 
.        (13) 

Therefore equation (9) can be converted into the 

following form [9],  

( )

min

. .: 0

0

H

sub

N N sub ref

H

sub ref

t

s t w J

I T w w

T w w t

×

=

⋅ − 
  ≥

⋅ −  

v

v v

v v

 (14) 

when t reaches its minimum, we get the optimal

sub
w
v

. When the YALMIP toolbox is installed in 

Matlab properly, optimization can be realized with 

following commands. It is assumed that the reader 

is familiar with Matlab. 

 
t = sdpvar(1); 

% real part of wsub 

wsub_r=sdpvar(subN,1,'full'); 

% imaginary part of wsub 

wsub_i=sdpvar(subN,1,'full'); 

wsub = wsub_r+j.*wsub_i; 

% equality constraint 

cond=set((wsub)'*J==0); 

M = [eye(eleN),(T*wsub-w_ref);… 

(T*wsub-w_ref)',t];   

%combine equality constraint and 

inequality constraint 

cond = cond+set(M>= 0); 

obj = t; 

solvesdp(cond,obj); 

 

The number of iterations grows with problem 

size as ( )O N [21]. In our simulations, the 

algorithm converged after 8~10 iterations. 

 

IV. SIMULATION RESULTS 

For all simulations in this paper, a uniform 

linear array (ULA) consisting of 96 elements with 

λ/2 spacing is used. ULA is utilized because of its 

merit of simplest geometry and excellent 

directivity [22]. In our simulations, the array is 

divided into 16 symmetrical subarrays as [8, 7, 6, 

7, 5, 6, 5, 4, 4, 5, 6, 5, 7, 6, 7, 8], so that grating 

lobes are suppressed. An element-level Chebyshev 

tapering with -40 dB sidelobe magnitude is set as 

referenced weights for the proposed method. We 

compare our method with penalty function [17], 

where subarray-level Chebyshev tapering with the 

same sidelobe level is chosen. Its scalar weighting 

factor k = 20. We assume that there is no look 

direction gain constraint. Thus the formula for 

penalty function we chose is given as equation (14) 

in [17], 

( )
1

2 2

pen sub cheb
w k R k I w

−

= +
v v

            (15) 

where I is a 16 order identity matrix.
cheb

w
v

is a 

16×1 vector. Signal of interest is neglected since it 

is usually possible to form the interference 

covariance matrix with signal absent in radar 

applications [23]. Interference to noise ratio (INR) 

is 30 dB.  

 

A. Performance of beam pattern control 

In this section, θd = 5
o
. We compare penalty 

function method with the proposed algorithm in 

two scenarios: Two sidelobe interferences from 

[11
o
, −9

o 
] and one mainlobe interference from 

6.5
o
. In the first example, two sidelobe 

interferences in direction of 11
o
 and −9

o
 are 

imposed. Patterns are plotted in Fig. 2. Both 

adaptive patterns are able to achieve high 

interference inhibition gain, lower than -70 dB. 

However, it is observed that the proposed method 

performs outweighs penalty function in 

maintaining low sidelobe, especially lobes close to 

mainlobe. The first sidelobe level can be as low as 

-41dB. Additionally, the proposed method 

produces a better shaped mainlobe, of which the 

width is the same as reference pattern. 
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Fig. 2. Normalized pattern with two sidelobe 

interferences from 11
o
 and −9

o
. 

 

Figure 3 illustrates adaptive patterns in 

presence of a mainlobe interference from 6.5
o
, 1.5

o

 
away from the desired signal. Both the two 

algorithms can prohibit interference effectively. 

However, the proposed method dose better in 

suppressing sidelobes near the mainlobe. 

 
 

Fig. 3. Normalized pattern with one mainlobe 

interference from 6.5
o
. 

 

B. SINR comparison 
Figure 4 depicts the output SINR versus 

scanning angle θ. Interference comes from −3
o
. 

The SINR is calculated via [10], 

( )
( ) ( )

2 H H

s

Houput

sub

w a a w
SINR

w R w

σ θ θ

θ =

v v v v

v v     (16) 

where w
v

denotes adaptive weights at subarray 

level. ( )a θ
v

is subarray-level steering vector. 2

s
σ is 

the power of desired signal and
2 1
s

σ = in this 

simulation. According to linearly constrained 

minimum variance (LCMV) criterion, the 

optimum adaptive weights at subarray level we 

use to calculate optimal SINR are given as follows 

[24, 25], 
1 ( )

opt sub d sub
w R aµ θ

−

=
v v

                  (17) 

where µ is a positive constant and does not affect 

the calculation of SINR.  

 
 

Fig. 4. SINR comparison of the three methods. 

 

It can be seen from Table 1 that the proposed 

method has higher SINR compared with penalty 

function while performing better in sidelobe 

controlling. Both adaptive subarray tapering suffer 

a small SINR loss. This is the price paid to get 

much lower sidelobe. 

 

Table 1: SINR comparison [dB]. 

Methods SINR SINR Loss 

Optimal 20.25 -- 

Penalty Function 18.53 -1.72 

Proposed method 18.88 -1.37 

 

V. DISCUSSIONS AND CONCLUSION 

A. Discussions 

Compared with quiescent Chebyshev tapering 

pattern, the other two adaptive patterns have 

evident sidelobe jitter. This is caused mainly by 

subarray number and size. More subarrays allow 

optimized weights closer to reference tapering. 

Equally division will lead to grating lobe. How to 

choose a suitable subarray partition is complicated 
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and usually needs compromise. Further study is 

under gone. Meanwhile, the proposed method 

suffers a small SINR loss, which is the cost of 

proposed method. Thus, a tradeoff should be 

considered in practical situations. 

 

B. Conclusion 

In this paper, a convex optimization based 

method is proposed to form adaptive sum beam 

with sidelobe control at subarray level. Compared 

with penalty function method, the proposed 

method has the merits of considerably reducing 

sidelobe adjacent to mainlobe, and producing 

better shaped mainlobe. Moreover, our 

optimization problem is formulated without 

parameters predetermining. The aforementioned 

merits of the proposed method have been verified 

by computer simulations.  
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