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Abstract—The finite-difference time-domain 
(FDTD) method has established itself among the 
most popular methods for the numerical solution 
of Maxwell equations. Reasons for its popularity 
include its versatility, matrix-free characteristic, 
ease for parallelization, and low computational 
complexity. In recent years, the finite-element 
time-domain (FETD) has also become another 
very popular algorithm for solving time-domain 
Maxwell equations due to its geometrical 
flexibility and the steady growth in hardware 
computing power. In this review, we succinctly 
recollect some of the milestones in the 
development of FDTD and FETD over the last 25 
years, and briefly discuss some challenges for the 
future development of these two algorithms.  
 
Index terms— finite-difference time-domain, 
finite-element time-domain, Maxwell equations.  

 
 

I. INTRODUCTION 
 

In its basic form as introduced by Yee [1] and 
pioneered by Taflove [2], the finite-difference 
time-domain (FDTD) method is a conceptually 
very simple algorithm for solving Maxwell 
equations. FDTD basically relies on the 
approximation of the space-derivatives in the 
(Ampere’s and Faraday’s) first-order curl 
equations by central-differences on a staggered 
Cartesian (rectangular or hexahedral) grid and on a 
time-discretization following a “leap-frog” update. 
This leads to an algorithm that is second-order 
accurate in both space and time, i.e., which 
converges with the second power both on the 
spatial cell size Δs and the time-step size Δt. The 
conceptual simplicity of FDTD should not belittle 

its power.  Because FDTD is a matrix-free 
algorithm (i.e., it requires no linear algebra), its 
memory requirements scale only linearly with the 
number of unknowns. This, added to the fact that 
FDTD is massively parallelizable, makes it well 
suited for next-generation petascale machines and 
beyond.  

Another popular algorithm for solving 
Maxwell equations is the finite-element time-
domain (FETD) method. There are two basic 
popular approaches for constructing FETD 
methods for Maxwell equations. The first one is 
based on the discretization of the second-order 
vector Helmholtz wave equation for either the 
electric or magnetic field (after elimination of the 
other field) through an expansion of the unknown 
field in terms of vector basis functions [3], [4].  
The second FETD approach is based on the 
discretization of the first-order coupled Maxwell 
curl equations (i.e., Faraday’s and Ampere’s laws) 
by expanding the electric and magnetic fields in 
terms of mixed elements—most often edge 
elements for the electric field and face elements 
for the magnetic flux density [5]. Because of their 
efficiency and versatility, FDTD and FETD have 
enjoyed widespread use by the computational 
electromagnetics (CEM) community.  

Figure 1 purports to show the steady growth in 
the popularity of FDTD, as exemplified by the 
yearly number of papers in the 1986-2007 period 
obtained from a search under title/topic fields 
“finite-difference time-domain” or “FDTD” in the 
ISI Web of Science™ database, as of earlier 2009 
(this plot is not intended to indicate the total 
number of FDTD-related papers, which is much 
higher). 
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Fig. 1. Evolution on the popularity of FDTD exemplified by the yearly number of papers (1986-2007 
period) obtained by a search under title/topic fields “finite-difference time-domain” or “FDTD” in the ISI 
Web of Science™ database, as of earlier 2009.  
 

In this summary review, we recollect some of 
milestones in the development and applications of 
FDTD and FETD for Maxwell’s equations during 
the last 25 years, and discuss some its future 
challenges. The list of references included here is 
relatively brief and by no means representative of 
the full extension of the volume of research efforts 
in this 25-year period.  

A good source of references on FDTD is the 
book by Taflove and Hagness [2]. On FETD, a 
good reference source is the book by Jin [4].  A 
quite comprehensive list of catalogued references 
on FDTD in the period up to 1995 is available in 
[6]. A recent review on FDTD and FETD 
algorithms for complex (i.e., dispersive, 
anisotropic, inhomogeneous, nonlinear) media can 
be found in [7]. 

 
II.   25 YEARS OF PROGRESS IN FDTD: A 

BIRD’S EYE VIEW 
 

Despite its introduction by Yee 18 years 
earlier (1966), FDTD was still a relatively 
incipient method 25 years ago (1984). This can 
be explained by the fact FDTD is a volumetric 
method and  the  computer memory  resources  
for solving practical engineering problems were 
well beyond the reach of the average user at that 
time. The numerical method of choice in those 
years was the (frequency-domain) method of 

moments. Early pioneers in FDTD algorithmic 
developments in the 1970s were Taflove [8], 
Holland [9], and Kunz [10] in the U.S. The 
acronym “FDTD” was actually not present in the 
1966 Yee’s paper, and was coined by Taflove only 
in 1980 [11]. In Europe, Weiland independently 
developed a twin discretization methodology 
dubbed finite-integration-technique (FIT) [12].  
The latter is based on the integral representation of 
Maxwell equations akin to a finite volume 
approach that, in a Cartesian grid, reduces to a set 
of equations identical to FDTD. We will not delve 
here into the FIT method and its extensions. 

The early 1980s witnessed a surge in the 
development of absorbing boundary conditions 
(ABCs) for FDTD, including Mur and Liao ABCs 
that allowed for accurate simulations of open-
space problems [13-16]. At that time, the first 
electromagnetic scattering FDTD models 
computing radar cross-section structures were 
developed [17,18].  The late 1980s were the 
period when FDTD applications to waveguides 
[19], microstrip circuits [20], and biological media 
[21] became feasible under (then) milder 
computational resources. This was facilitated not 
only by the continual growth of computational 
power, but also by concurrent algorithmic 
developments such as contour-path conformal 
modeling techniques [22-26] to reduce staircasing 
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Fig. 2. Diagram illustrating various (non-inclusive) extensions of the “FDTD family” of methods 
developed towards improving geometrical versatility and/or computational efficiency of the standard 
FDTD. A negative correlation (trade-off) is apparent between these two objectives. The radii of the 
circles are approximately proportional to the number of entries for GoogleTM searches of each extension 
name in conjunction with the “FDTD” acronym. The radii serve as a rough indicator of the relative 
“historical popularity” of each approach. 

error and increase geometrical flexibility, and by 
lumped equivalent circuit models to model sub-
cell features and sources [27]. These techniques 
later played an important role in improving the 
suitability of commercial FDTD packages to RF, 
microwave, and antenna problems.  

It was in the early 1990s that FDTD 
applications to the modeling of realistic circuits, 
antennas, and radiation problems [28-33] and of 
optical devices [34-36] began to appear very 
frequently in the literature. Also around that time, 
the extension of FDTD to frequency-dispersive 
media by means of recursive convolution 
approaches and later by auxiliary differential 
equation techniques [37, 38] provided further 
impetus for FDTD applications to complex media 
problems [7]. Also in the 1990s, new FDTD 
schemes were introduced for the efficient analysis 
of periodic structures [39-42]. 

With the increase of the electric size of the 
problems being tackled, the challenge of grid 
(numerical) dispersion error came to the 
forefront in the late 1980s and early 1990s. As a 
result, a series of high-order FDTD algorithms 
were developed to mitigate grid dispersion based 
on the use of a larger number of terms in the 
Fourier expansion to approximate the spatial 

(and time) derivatives leading to enlarged finite-
difference stencils [2]. This effort remains an area 
of active research interest to this day, with the 
development of ever more sophisticated higher 
order FDTD algorithms that include pre-
asymptotic higher-order algorithms providing 
optimized (tailored) numerical dispersion curves 
in a particular frequency band and/or grid size 
[43,44]. Of note also is the development of 
pseudo-spectral time-domain (PSTD) methods 
with low dispersion error even for discretization 
scales near the Nyquist limit [45]. 

The introduction of the perfectly matched 
layer (PML) by Berenger in the mid 1990s [46-50] 
provided a major improvement on the dynamical 
range of open-domain FDTD simulations, which 
under mild computational costs could then reach 
80 dB.  It also allowed for the use of better use of 
FDTD in open domains with dispersive media 
such as in earth media [51].  

The development of unconditionally stable 
algorithms for FDTD in the late 1990s and early 
years of the present decade— starting with 
alternating-direction-implicit (ADI) schemes 
[52,53] and later with split-step schemes such as 
the locally-one-dimensional (LOD) scheme [54]—
represented another major milestone in the 
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Fig. 3. Diagram illustrating the range of applicability of various FDTD-related algorithms vs. problem 
size and discretization scale.  L denotes the domain size, λ is the central wavelength, and a is the spatial 
step (cell size). Indicative values are not provided as they would be implementation- and machine-
dependent. 

 
progress of FDTD  because it lifted the Courant 
stability limit. Under these FDTD extensions, the 
time step is not bounded anymore by the stability 
criterion, but by accuracy considerations only. 
This has allowed the more efficient use of FDTD 
in problems that necessitate the use of highly 
refined grids (say, with an excess of 500 grid 
points per wavelength). The main challenges for 
unconditionally stable FDTD schemes are the 
introduction of new error mechanisms (more 
prominently, splitting errors) and the ever present 
numerical dispersion, which has different behavior 
than conventional FDTD [55].  

Since the early days of FDTD applications, it 
was promptly recognized that one of its main 
limitations is the staircasing error [2]. In addition 
to contour-path conformal modeling techniques 
stated above, so-called “subgridding” 
techniques—a type of structured h-refinement 
whereby different grid cell sizes are used in 
different portions of the FDTD domain and 
connect though interfaces with hanging nodes—
provide one possible approach to mitigate 
staircasing. Subgridding was first developed in the 
late 80’s with major impetus occurring in the 90’s 
[56-61]. Research continues to this day to develop 
stable subgridding algorithms that can provide low 

spurious reflections at the fine-coarse grid 
interfaces and small aliasing error from the 
necessary interpolation/decimation operations [62-
64]. Nonorthogonal FDTD algorithms—relying on 
the use covariant and contravariant field 
components in a non-orthogonal coordinate 
system—are also used introduced to mitigate 
staircasing. They were first introduced in the early 
1980s, but early versions of nonorthogonal FDTD 
algorithms were prone to numerical instabilities 
due to subtle inconsistencies in the spatial 
discretization. Nonorthogonal FDTD algorithms 
with (conditional) stability were developed only in 
the late 1990s [65,66]. These developments for the 
most part still relied upon nonorthogonal, but still 
structured grids. The use of unstructured grids for 
FDTD is not as natural because the traditional 
derivation of finite-differences becomes somewhat 
contrived. In this case, FETD becomes a more 
natural choice for the spatial discretization. Figure 
2 illustrated various extensions of the basic FDTD 
method toward improving its accuracy and/or 
geometrical flexibility. In general, there is a mild 
trade-off between these two objectives in FDTD, 
leading to the “negative correlation” illustrated in 
this Figure. 
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It should be pointed out FDTD is also quite 
suited for solving Maxwell equations in complex 
media with dispersive, anisotropic and/or 
nonlinear properties. A discussion on these 
extensions and applications is beyond the 
objectives of this paper, but a detailed review can 
be found in [7]. 

The late part of the present decade has 
witnessed a wide popularization of a number of 
user-friendly, commercial software that feature the 
FDTD as their main “solver engine”. Commercial 
PC-based codes have become pervasive in the RF, 
microwave, antenna, and optical communities and 
have also influenced the direction of research 
efforts. Furthermore, it has become apparent that 
certain research areas—such as device design—
have become increasingly less reliant on “in-
house” development of analysis (in particular 
numerical) tools. If this tendency continues, it is 
expected that this will lead to an increased 
“niching” of efforts by the CEM community and 
perhaps closer alignment with the computational 
physics and applied mathematics community, and 
perhaps less with the microwave and antenna 
engineering community at-large.  

One important limitation present in 
commercial codes is related to the optimal choice 
in the “FDTD family” of depends on the nature 
and size of the problem, as illustrated in Figure 3. 
Commercial codes do not (yet) incorporate 
capabilities that would necessarily lead to the 
optimal choice of method for a given problem.  
 
 
III.   25 YEARS OF PROGRESS IN FETD: A 

BIRD’S EYE VIEW 
 

FETD is a relatively less mature than FDTD. 
As mentioned before, the main motivation for the 
development of FETD has been to increase the 
geometrical flexibility. This is because FETD is 
naturally based upon irregular (unstructured) grids, 
and thus capable of better adapting to curved or 
slanted geometries than a Cartesian FDTD. 
Compared to FDTD, the two major drawbacks for 
FETD are (1) the need for a pre-processing mesh 
generation step and (2) the need for a (sparse) 
linear solve at each time step.  

The early FETD approaches for solving 
Maxwell equations were developed in the mid 
1980s and were based on a point-matched 

approach combined with nodal basis functions for 
each field component [3]. Although successfully 
for some problems especially in two-dimensions, 
this “nodal” approach was prone to spurious or 
ghost modes (also known as “spectral pollution”). 
This was a problem not restricted to FETD per se, 
but it is also present in other algorithms based on 
irregular grids, including the frequency-domain 
FE. For many years, the problem of spurious 
modes evaded a fundamental solution. Only ad 
hoc approaches such as inclusion of penalty terms 
seemed to work in suppressing spurious modes. It 
was only with the development of edge elements 
(also known as Whitney or curl-conforming 
elements) that the problem of spurious modes was 
finally overcome in FE (and FETD) [67].  

Most often, the various extensions developed 
for the basic FETD algorithm mirror the progress 
observed in FDTD with a time lag of a few years. 
The application of PML absorbing boundary 
condition to FETD was first seen, for example, in 
the late 1990s and it is currently still under active 
development. Differently from FDTD, FETD 
naturally allows for a conformal PML 
implementation over curved grid boundaries [68-
70], which permits a more compact (i.e., with less 
buffer space) grid, especially for scattering 
problems. Another approach to truncate the grid 
boundaries in FE has been to use FE-BI (boundary 
integral) formulations [4]. Due to difficulties 
caused by causality requirements and stability 
issues, FE-BI approaches are relatively less 
developed in the time-domain than in frequency-
domain. Extensions of FETD to complex media 
were first developed in the 1990s and continue to 
this day, more recently pushed by technological 
advances in remote sensing and metamaterials, for 
example [7]. Similarly to FDTD, FETD is also 
prone to numerical dispersion error and higher-
order versions of FETD do exist to combat this 
problem. However, the dispersion error in FETD 
irregular grids manifests itself in a quasi-isotropic 
fashion, as opposed to the anisotropic dispersion 
observed in the conventional (Cartesian) FDTD 
grid. This is because the irregular grid “averages 
out” the cumulative dispersion error along the 
various directions.  

As stated, FETD methods provide more 
accurate geometric representation than FDTD. 
Moreover, FETD methods are much more 
amenable to high-order accuracy (p-refinement) in 
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general geometries by means of higher order basis 
functions, as opposed to enlarged stencils in 
FDTD. In particular, hierarchical higher order 
functions are particularly advantageous for p-
adaptation because they can be implemented “in 
succession” and elements of different order can be 
coexist in the same mesh [71,72]. Also, h-p 
adaptive refinement methods are more suited for 
FETD methods [73,74]. 

Since FETD requires sparse linear algebra, an 
important associated area of research is on 
efficient linear solvers for large sparse linear 
systems. FETD requires iterative solvers and good 
preconditioners for large problems. For smaller 
problems direct solution methods often suffice 
(and are typically preferred since they avoid 
convergence issues). The nature of the matrix 

solvers in FETD depend on the particular time-
discretization scheme being employed. Broadly 
speaking, time-discretization schemes utilized in 
FETD fall into two classes: The first class (I, 
sometimes referred to “implicit FETD” [4] 
although in a different sense from FDTD) 
necessitates the inversion of a system matrix that 
is a combination of stiffness and mass matrices, 
whereas the second class (II, sometimes referred to 
as “explicit FETD” [4] again in different sense 
from FDTD) necessitates the inversion of the mass 
matrix only [75]. The mass matrix is (when 
appropriately constructed) symmetric positive-
definite, while the stiffness matrix is singular, 
hence linear systems resulting from class II are 
more benign. The ensuing trade-off is that Class II  

 
 

 
 

 FDTD FETD 
staircasing error yes no* 
linear algebra none real and sparse 

numerical dispersion anisotropic isotropic** 
higher-order larger stencils p-refinement 

mesh generation (pre-processing) step absent present** 
          (*)—linear facets    (**)—for irregular grids 
 
 
algorithms lead to conditionally stable 
algorithms, while Class I can produce 
unconditionally stable algorithms with no 
stability bound on the time-step. 

As mentioned above, FETD algorithms have 
been traditionally based on the discretization of 
the second-order wave equation using edges 
elements for the electric or magnetic field, as 
opposed to using the two first-order Maxwell 
equations. The solution space of the former is 
larger compared to the latter, admitting 
(spurious) gradient fields with linear growth as 
solutions. Normally, if the initial conditions are 
properly set (divergence-free), these solutions 
are not excited. For long-time simulations 
however, numerical round-off error introduced 
by the linear solver can lead to the excitation of 
such modes. More recently, mixed FETD 
formulations directly based upon the first-order 
Maxwell curl equations have become 
increasingly popular [5,74-76]. In this case, two 

different sets of basis functions are used (hence the 
name mixed), most often edge elements for the 
electric field and face elements for the magnetic 
field. This choice is informed by using the language 
of differential forms for Maxwell equations—as 
opposed to vector fields— where the electric field is 
a one-form and the magnetic flux density is a two-
form [77]. This application of mixed basis functions 
satisfies a discrete version of the de Rham diagram, 
and thus it avoids spurious modes (see Section IV). 
Using a leap-frog scheme for the time-discretization, 
mixed E-B FETD produces conditionally stable 
algorithms with no secular growth modes [5]. 
Furthermore, under proper choice of edge and face 
basis function in a Cartesian grid and after mass 
lumping, the mixed E-B FETD recovers Yee’s 
FDTD (see Section IV). It also suggests a consistent 
way to extend Yee’s FDTD to slanted/curved 
interfaces and to construct hybrid FDTD/FETD 
algorithms.  

 

Table 1:  Comparison of some basic FDTD and FETD properties. 
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IV. BRIDGING THE GAP BETWEEN 
FDTD AND FETD 

 
Both FDTD and FETD are partial-

differential-equation (PDE) based algorithms 
and—as considered here—applied to the same 
set of equations. Hence, it is only reasonable to 
expect, at some fundamental level, some major 
congruence between these two algorithms. 
Indeed, it can be shown that the FDTD is 
equivalent to (or it can be viewed as a special 
case of) FETD under the following choices for 
the FE discretization:  
i) Regular quadrilateral (2-D) or hexahedral (3-
D) grid.  
ii) Mixed basis functions to expand the electric 
and magnetic fields (i.e., edge elements for E 
and face elements for B) along with Galerkin 
testing or construction of Galerkin Hodge 
operators [70,74-76], 
iii) Mass lumping applied to the mass matrix to 
approximate it as a diagonal matrix, and  
iv) Leap-frog update for the time discretization. 

A key reference on mass lumping schemes 
for Maxwell equations is [78]. The geometric 
underpinning for all these choices in FETD 
becomes apparent when Maxwell’s equations 
are cast in terms of exterior differential forms 
[67, 77]. In this representation, the electric field 
intensity vector E is the proxy of a one-from E, 
whereas the magnetic flux density vector B is 
the proxy of a two-form, B. More generally, p-
forms are objects that can be associated at the 
discrete level with “p-cells” of the mesh (p=0: 
nodes, p=1: edges, p=2: faces, p=3: volumes) 
and admit a natural discrete representation 
(cochains [79]) in terms of the so-called 
Whitney p-forms [67]. The latter recover edge 
elements for p=1 and face elements for p=2, for 
example. Moreover, the reason for staggered 
grids in FDTD is geometrically motivated by the 
fact that objects on the primal grid possess 
internal orientation (i.e., are “ordinary” 
differential forms) such as E and B, whereas 
objects on the dual grid possess external 

orientation (i.e., they are “twisted” differential 
forms) such as H and D, see illustration in Fig. 4 
(left) [77]. These two kinds of discrete differential 
forms are defined on two grids (cell complexes), 
each inheriting one type of orientation (primal and 
dual grid, or ordinary and twisted complex, see Fig. 
4).  

When using differential forms, all vector 
differential operators such as div, curl, and grad are 
unified and become reduced to different incarnations 
of the exterior derivative operator d [77,80]. The 
exterior derivative d admits a trivial implementation 
on an arbitrary mesh in terms of its adjoint: the 
boundary operator ∂ [80]. The boundary operator 
carries the intuitive meaning, i.e., it maps an edge 
into its (two) boundary nodes; it maps a face into its 
(three, in the case or a triangular or tetrahedral mesh, 
or four, in the case of a rectangular or hexahedral 
mesh) boundary edges; and so on, as illustrated in 
Fig. 4 (right) [77,80,81]. Note that ∂2=0 is verified 
for any mesh element (i.e., the boundary of a 
boundary is zero). This identity is simply a 
generalization of the vector calculus identities div 
curl=0 and curl grad =0. 

In relation with these identities, it should also be 
pointed out that any FDTD or FETD implementation 
should obey a discrete version of the so-called de 
Rham diagram [67,82], which is illustrated in Fig. 5.  
Essentially, the de Rham diagram implies that (in a 
simply connected domain) the space of discrete 
zero-curl fields is isomorphic (i.e., one-to-one) to the 
space of discrete gradient fields; the space of 
discrete zero-divergence fields is isomorphic to the 
space of discrete curl fields; and so on, mirroring the 
properties of the respective continuum spaces. 
Conformity to the de Rham diagram is a key 
property to avoid appearance of spurious modes 
during the discretization process [67,82]. In the 
conventional (Yee’s) FDTD scheme, the de Rham 
diagram is trivially verified. However, this is not 
true for subgridded FDTD, contour-path FDTD, or 
hybrid FDTD/FETD implementations, for example. 
In those cases, care should be exercised to make sure 
the resulting formulation follows the discrete de 
Rham diagram. 
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Fig. 4. Left—Internal (ordinary forms) and external (twisted forms) orientations for electromagnetic 
fields. This leads naturally to dual staggered grids (cell complexes). For simplicity, we depict a regular, 
hexahedral mesh. Right—Representation of the boundary operator ∂ acting on mesh elements (edge and 
cell/face). Note that the boundary of a boundary is always zero: ∂2=0, which generalizes the identities curl 
grad =0, and div curl =0 distilled from their metric structure (Reprinted with permission from F. L. 
Teixeira and W. C. Chew, J. Math. Phys., vol. 40, no. 1, pp. 169–187, 1999. © 1999, American Institute 
of Physics). 
 

 

 
 

Fig. 5. Schematic illustration of the de Rham diagram (in a simply connected domain) and the relation 
among the various finite element spaces [67,82], differential forms [67,77], mesh components [80,81], 
and discrete operator maps [77]. The exterior derivative operator d (upper row) plays the role of the grad, 
curl, and div operators (fourth row) when acting on 0-, 1-, and 2-forms, respectively [77,81]. Both 
(consistent) FDTD and FETD algorithms should obey this diagram to avoid spurious modes. 
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V.  FUTURE CHALLENGES 

 
Prediction of future trends is always speculative 
and prone to miss “black swan” type of events. 
With this caveat in mind, we list below some of 
the future challenge areas for FDTD and FETD. 
 
5.1 Parallelization and hardware developments— 
Since both FDTD and FETD algorithms are highly 
parallelizable, the full exploitation of parallel 
architectures and multicore processors with 
improved throughput and latency remains an 
important task. For FETD, linear solvers that 
explicitly exploit parallel architectures are likely to 
gain more importance. Coupled developments in 
FPGA and software-configurable microprocessors 
design are also likely to enhance the overall 
performance of FDTD and FETD codes. Of major 
importance also is the exploitation of graphics 
processing units (GPUs) and their highly parallel 
structure for acceleration of both FDTD and sparse 
linear solvers (the latter with obvious impact on 
FETD) [83].   
 
5.2 Grid dispersion error control— For very large 
scale problems, minimization of grid-dispersion 
error is a critical issue. Ideally, this should be done 
with minimal impact on the underlying sparsity of 
the methods. In FDTD, pre-asymptotic high-order 
schemes have come a long way towards this 
objective, but similar progress remains to be 
achieved in FETD.  
 
5.3 Adaptation— Further development in a priori 
and a posteriori error indicators in time-domain 
will certainly benefit the development of fully 
adaptive meshing techniques, either based on 
structured (for FDTD, such as subgridding 
techniques) or unstructured meshes for FETD, and 
using either static or dynamically adaptation [84].  
 
5.4 Multi-domain approaches and domain-
decomposition—Development of domain-
decomposition (DD) techniques as a “divide-and-
conquer” methodology to reduce the CPU 
requirements and most importantly, memory 
requirements in FETD, is another future challenge. 
Much progress has been done in recent years in 
frequency-domain DD-FE techniques, but 
application to the time-domain remains a 
challenge. In FDTD, the (possibly adaptive) use of 

Huygens’ boxes to minimize the solution space 
remains an area for future developments especially 
for problems with highly disparate geometrical 
sizes, and for applications such as antenna-
platform and antenna-antenna interaction problems 
[85].  
 
5.5 Hybridization with integral-equation and 
asymptotic methods—The seamless integration 
(hybridization) of FETD and FETD with either 
full-wave TD-IE (integral equation) and/or high-
frequency asymptotic approaches employing, for 
example, Gaussian beams or TD-UTD (uniform 
theory of diffraction), in dynamically adaptive 
schemes remains to be achieved.  
 
5.6 Discrete differential forms—Application of 
differential forms is of particular interest to 
provide “design principles” of new FDTD and 
FETD compatible discretization schemes for more 
arbitrary mesh elements (polyhedral, concave)  
and in composite/heterogeneous grids [86]. 
 
5.7 Asynchronous time-stepping—Time-stepping 
is a relatively primitive and costly approach to 
enforce causality in time-domain methods. 
Possibly, the exploitation of discrete-event 
simulation approaches whereby dynamical states 
are updated asynchronously on demand (i.e., only 
when necessary) [87]—instead of 
synchronously—will certainly be an important 
development to extend the applicability of FDTD 
and FETD to, for example, problems with 
disparate time-scales (multiscale).    
 
5.8 Hybrid FDTD/FETD —Since FETD provides 
better geometrical flexibility and FDTD better 
memory scalability, it is only natural to seek an 
hybridization of these two methods—using FETD 
in regions with high geometrical complexity and 
FDTD elsewhere [88]. Earlier hybrid 
FDTD/FETD schemes were often plagued by 
numerical instabilities and spurious modes [89]. 
Recently, consistent hybrid FDTD/FETD methods 
based on vector elements and free from 
instabilities were put forth [90]. These methods 
obey the consistency rules discussed in Section IV. 
It is expected that further development of hybrid 
FDTD/FETD, such as integration of higher order 
and extension to complex media, will make it a 
method of choice for many electromagnetic 
problems [91].    
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