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Abstract─ Antenna measurements are often car-
ried out in the radiating near-field of the antenna 
under test. Near-field transformation algorithms 
determine an equivalent sources representation of 
the antenna in an inverse process and field values 
in almost arbitrary distances can be computed. In 
this paper two integral equation methods for the 
near-field transformation are presented, which are 
especially suitable for electrically large antennas, 
irregular sample point distributions, higher order 
probes, and non-ideal measurement environments. 
 
Index Terms─ Integral Equation Methods, Near-
Field Far-Field Transformation, Plane Wave Ex-
pansion, Equivalent Current Methods. 
 

I. INTRODUCTION 
The radiation characteristic of an antenna under 

test (AUT) can be determined employing one of 
the various measurement techniques, e.g. far-field, 
compact range or near-field measurements [1]. For 
electrically large antennas, which achieve far-field 
conditions in a distance of several tens or even 
hundreds of meters, indoor far-field measurements 
are not applicable due to the limited size of the 
measurement facility. In open field test ranges the 
environmental conditions are difficult to control 
for precise measurements. In near-field measure-
ment techniques the radiated field distribution of 
the AUT is measured in the radiating near-field 
and afterwards processed into the far-field or even 
other observation locations, typically outside the 
AUT minimum sphere as illustrated in Fig. 1. 
With the computational resources available nowa-
days, near-field transformation algorithms allow to 
compute the far-field pattern of the AUT with 
 

 
 
Fig. 1.  Antenna field regions and measurement setup. 

 
accuracies comparable to a direct far-field meas-
urement. 

In the transformation algorithm, the radiated 
field distribution of the AUT is represented by 
equivalent sources and their unknown amplitudes 
are determined in an inverse process from the 
measured near-field values. 

In practice a near-field probe with finite geo-
metrical extent and a corresponding receiving 
characteristic is used to probe the AUT field dis-
tribution. For a measurement of the electric field 
strength at a discrete sampling point, the probe 
kind of integrates the field over its volume result-
ing in an output signal proportional to the 
weighted field distribution around the sampling 
location (see Fig. 2). To compensate this effect, 
a probe correction is 
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Fig. 2.  Probe weighting effect in electric near-field 
measurement. 
 
employed in most of the transformation algorithms 
[2]. 

Depending on the kind of measurement, various 
near-field transformation algorithms exist, all with 
their own benefits and drawbacks. 

One of the major categories are algorithms 
working with eigenmode expansions of the AUT 
fields [3], for example spherical, cylindrical, and 
plane waves for spherical [4], cylindrical, and 
planar measurement surfaces [5], respectively. 

To relate the amplitudes of the waves to the 
measured near-field values in an efficient manner, 
the orthogonality of the eigenmodes is utilized. 
This requires an often regular measurement grid 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

on the corresponding coordinate surfaces, even 
though some techniques have been proposed for 
spherical [6] and planar [7] near-field measure-
ments with non-ideal probe locations. 

The computational complexity of the probe cor-
rection strongly depends on the measurement ge-
ometry. While general probes can be corrected 
efficiently for planar near-field measurements [5], 
a full correction of higher order probes for spheri-
cal near-field measurements becomes time con-
suming since either the measurement or the trans-
formation time [8] is increased. Nevertheless effi-
cient formulas for so-called first order probes with 
an azimuthal mode spectrum restricted to the 
μ=±1modes are well-known [4]. 

A second category of near-field transformation 
algorithms works with integral equation evalua-
tions. Equivalent current methods (ECM) [9-12] 
assume equivalent Huygens currents either on a 
fictitious surface (green sphere in Fig. 3 left) or the 
radiating structure itself (red arrows on horn an-
tenna surface mesh Fig. 3 left). The currents are 
related to the field values employing a  field inte-
gral equation. For an efficient solution, this equa-
tion can be evaluated using fast solver techniques 
like the multilevel fast multipole method 
(MLFMM) [13-14]. As such, a plane wave expan-
sion is employed to convert the equivalent Huy-
gens currents into propagating plane waves (Fig. 3 
middle), which can be translated to the field probe 
position efficiently. 

A full probe correction is achieved by weight-
ing the incident plane waves with the probe’s far- 
field pattern prior to superposition (Fig. 3 right) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 3.  Equivalent current and plane wave representation of AUT. 
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without increasing the algorithms complexity. A 
second approach, referred to as plane wave based 
near-field far-field transformation (PWNFFFT), 
utilizes the plane waves as equivalent sources di-
rectly [15]. Due to the integral equation formula-
tion, both approaches are well suited for irregular 
measurement surfaces. The fast solver techniques 
with a low complexity also allow the transforma-
tion of electrically large antennas. 

In the following sections, the ECM and 
PWNFFFT approaches are discussed and some 
results are shown. Further, some remarks on elec-
trically large antennas and non-ideal measurement 
environments are given. 
 
II. EQUIVALENT CURRENT METHOD 

According to Huygens’ principal, the electric 
field strength 
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Green’s functions of free space and inc ( )ME r  is 
the incident field used as excitation for scattering 
investigations. In the following, the paper focuses 
on antenna measurements, where no incident elec-
tric field inc ( )ME r  is present. The ECM relating 
the equivalent Huygens currents to the measured 
probe signals is developed in the following. The 
formulation starts with the output signal 
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of the field probe measuring the radiated near-field 
distribution. It is obtained by weighting the elec-
tric field over the probe volume according to the 
spatial probe characteristic probe ( )w r  as seen in 
Fig. 2. 

The electric and magnetic surface currents 
characterizing the AUT are discretized on a trian-
gular surface mesh [12] utilizing Rao-Wilton-

Glisson (RWG) basis functions ( )β r  [16] result-
ing in 
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pJ  and qM  are the unknown current expansion 
coefficients. Applying Gegenbauer’s addition 
theorem together with a plane wave expansion, the 
spatial integral for the probe signal can be cast in a 
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over the Ewald sphere analog to the fast multipole 
method (FMM) [13-14]. The spatial basis func-
tions ( )β r  are Fourier transformed into their 

spectral counterparts ˆ( )kβ% , i.e. the corresponding 
plane wave representation. The spatial probe 
weighting function probe ( )w r  is Fourier trans-
formed as well into the spectral probe correction 
coefficient ˆ( , )MkP r . This is simply the product 
of the probe’s far-field pattern and the antenna 
factor, relating the electric field to the probe sig-
nal. The plane waves are translated from the AUT 
to the field probe position Mr  by multiplication 

with the diagonal translation operator ˆ ˆ( , )L MT k r . 
Then, they are weighted with the probe correction 
coefficient and superimposed to give the measured 
probe signal. The diagonal form of the translation 
operator is a key factor for the realization of a fast 
integral equation solver. The FMM acceleration is 
implemented in a multilevel fashion (MLFMM) 
similar to [17] and further described in section VI. 

To determine the unknown current expansion 
coefficients in an inverse process, the probe output 
signal is measured at several points. Electrically 
large AUTs require a huge number of unknowns in 
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order to model the radiation behavior accurately 
and a large number of measurement points is also 
required for the inverse solution. Due to the high 
complexity of direct solvers, the resulting normal 
system of equations is solved by the iterative gen-
eralized minimum residual method (GMRES) 
[18]. 

In addition to far-field computations, ECMs are 
also suitable for antenna diagnostics, especially if 
a priori knowledge is given. Therefore, the equiva-
lent currents on the radiating structure can be di-
rectly evaluated in order to inspect the antenna’s 
functioning. It is further noted that ECMs are suit-
able for near-field measurements close to the 
AUT, when modal expansion methods might no 
longer be applicable. 

 
Key features of the presented ECM include: 

 
• Antenna diagnostics possible 
• Near-field measurements close to AUT 

possible 
 
III. PLANE WAVE BASED NEAR-FIELD 

TRANSFORMATION 
The second approach (PWNFFFT) utilizes di-

rectly plane waves as equivalent sources represent-
ing the AUT. The spectral plane wave representa-
tion of the AUT is obtained from the electric 
equivalent Huygens currents by Fourier transform 
according to 
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without any prior discretization. The same is done 
for the magnetic currents. The output signal of the 
field probe is thus obtained from Eq. (4) as 
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spectrum 
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for convenience. The further steps, translation and 

probe correction as well as the entire solution 
process are similar to the ECM. The plane waves 
used as equivalent sources are proportional to the 
desired far-field pattern of the AUT. Therefore, an 
additional far-field computation from the deter-
mined sources is no longer required. 
 

Key features of the presented PWNFFFT in-
clude: 
 

• Minimum number of unknowns possible  
• No separate far-field computation 

 
IV. NEAR-FIELD TRANSFORMATION 

ALGORITHM 
The utilization of the presented methods for 
near-field measurements is addressed in this 
section and shown in the flowchart in Fig. 4.  
 
 

 
 
Fig. 4.  Flowchart of near-field transformation. 
 
First the near-field of the AUT is sampled in typi-
cally two polarizations. For the ECM it is possible 
to assume the equivalent currents on a model of 
the AUT. Alternatively they can be assumed on 
arbitrary surfaces, typically enclosing the AUT. 
The currents are converted to propagating plane 
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waves in a preprocessing step. That is where the 
PWNFFFT starts. The inverse problem is solved 
employing the FMM fast integral equation solver. 
Near-field values can be computed from both the 
equivalent currents as well as the plane waves. For 
the PWNFFFT no further computations are re-
quired to obtain the far-field pattern of the AUT, 
whereas further computations are required for the 
ECM. For the ECM, the equivalent currents can be 
evaluated for diagnostic purposes. 
 

V. RESULTS 
Both ECM and PWNFFFT algorithms have 

been applied to a near-field measurement scenario. 
A Kathrein base station antenna was measured at 
1.92 GHz using a spherical NSI near-field scanner 
[19] and an open-ended waveguide probe. The 
antenna has a height of 1.3 m which equals 8.3 λ . 
The parameters of the measurement setup are 
summarized in Table 1. Fig. 5 shows the equiva-
lent currents determined by the ECM approach on 
a rectangular box surrounding the AUT. Some 
clues on the radiating elements inside the radome 
can be obtained. Nevertheless, a model of the base 
station antenna would deliver more detailed diag-
nostic information like the excitation levels of the 
single radiators. 

 
Table 1.  Parameters of measurement setup. 

AUT Kathrein base station 
antenna 742 445 

Measurement type Spherical 

Probe WR 430 OEWG 

Frequency 1.92 GHz 

Antenna size 1.3 m 8.3λ�  

Measurement dis-
tance 2.715 m 

 
 

The transformed far-field pattern is shown in 
Fig. 6 in E- and H-plane cuts and compared to the 
reference pattern obtained from the commercial 
NSI2000 software. With respect to the large dy-
namic range of 60 dB in the E-plane cut, a good 
agreement with the reference could be achieved. 

 
 

Fig. 5.  Equivalent currents on rectangular box sur-
rounding  base station antenna. 
 

 
             (a) 

 

 
             (b) 

Fig. 6.  Reference and transformed far-field patterns of 
base station antenna. (a) E-plane cut. (b) H-plane cut. 
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VI. ELECTRICALLY LARGE 
ANTENNAS AND NON-IDEAL 

MEASUREMENT ENVIRONMENTS 
The low complexity of the algorithms due to the 

diagonal translation operators can be further en-
hanced in a multilevel version [12,20] analog to 
the multilevel fast multipole method (MLFMM) 
[14]. Therefore the measurement points are 
grouped in a multilevel box structure and the plane 
waves are no longer translated to every measure-
ment point explicitly. Instead the plane waves are 
translated to the box centers on the highest level 
and are further processed through the different 
levels towards the measurement points using dis-
aggregation and anterpolation. Disaggregation is a 
simple phase shift between the box centers on ad-
jacent levels or the lowest level of the box struc-
ture and the measurement points respectively. An-
terpolation can be seen as counterpart to interpola-
tion and it reduces the sampling rate of the plane 
wave spectrum according to its spectral content 
with decreasing box sizes on the various levels. 
The probe correction is performed on the lowest 
level of the box structure for a minimum number 
of plane wave samples. The hierarchical field rep-
resentation is the principal point for reducing the 
computational complexity of the algorithm from 
O(N2) to O(NlogN), N being the number of meas-
urement points. 

For measurement points fulfilling the far-field 
condition, efficient far-field translations, utilizing 
a single plane wave in the direction towards the 
measurement point, can be used. In order to relax 
the far-field criterion, the AUT can be recursively 
subdivided into smaller source boxes with a re-
duced far-field distance. The probe output voltage 
is obtained as superposition of the individual 
source boxes. Near- and far-field translations are 
combined in a hybrid approach in order to opti-
mize the overall complexity [21]. 

The plane wave characteristic of the equivalent 
sources allows to utilize reflection and diffraction 
concepts also in near-field distance to the AUT. 
Subdividing the AUT in source boxes and utilizing 
far-field translations, infinite perfectly conducting 
ground planes and dielectric halfspaces, as ap-
proximation for real ground effects, can be consid-
ered in the transformation algorithm by superim-
posing ground reflected waves with the line-of-
sight waves [20]. More complex obstacles and 

scattering objects can be considered by an 
MLFMM-UTD hybrid approach [22], if sufficient 
a priori knowledge is given. Unknown scattering 
objects and non-ideal measurement environments 
are modeled as additional sources via scattering 
centers [23]. The plane waves representing the 
AUT as well as the additional scattering centers 
are determined in the inverse solution process. 
Only some oversampling of the measured fields is 
required to determine the additional unknowns. 

 
Key features of the algorithms include: 
 
• Low complexity of O(NlogN) 
• Arbitrary measurement grids possible 
• Full probe correction 
• Antenna diagnostics 
• Integration of scattering contributions pos-

sible 
 

VII. CONCLUSION 
An equivalent current method as well as a plane 

wave based near-field transformation have been 
disucssed. Due to the integral equation formula-
tion, these approaches are well suited for irregular 
measurement grids and a full probe correction is 
easily integrated without increasing the complex-
ity. Fast solver techniques and a hybrid formula-
tion utilizing combined near- and far-field transla-
tions allow an efficient transformation also for 
electrically large antennas with a low complexity. 
The plane wave based formulation allows for the 
compensation of ground reflections and also the 
effects of non-ideal measurement environments 
can be countered by introducing a scattering center 
approach. 
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