

FPGA Accelerated Phased Array Design Using the Ant Colony
Optimization

Ozlem Kilic

Department of Electrical Engineering and Computer Science
The Catholic University of America, Washington, DC, USA

kilic@cua.edu

Abstract – The objective of this paper is to
investigate the utilization of field programmable
gate arrays (FPGA) in the field of
electromagnetics by applying the ant colony
optimization (ACO) method in the design of
phased array antennas for multiple beam satellite
communication systems. The amplitudes of the
array elements are optimized to reduce the co-
channel interference in a multiple beam satellite
communication system. The potential gains in the
speed of the calculations are investigated in
comparison to conventional simulation techniques
of the same application on a regular PC. Two
different FPGA platforms and implementation
approaches are compared for performance to two
software developments implemented using Matlab
and C languages. It has been shown that
significantly accelerated performance can be
achieved for the particular application. This kind
of speed improvement can enable handling more
complex requirements and constraints for the same
application in a very reasonable amount of time,
which would otherwise be impossible with
conventional computational platforms and
techniques. This magnitude of speed
improvement is due to the configurable nature of
the FPGAs. Unlike central processing units (CPU)
in a conventional computer, which have to deal
with a preset set of instructions to properly
function; FPGAs are completely programmable to
carry out a set of functions in the most efficient
manner for the particular algorithm at hand. In
this study, the FPGA has been configured to
function as an efficient “ACO machine.” Both
parallelization and pipelining have been utilized to
achieve this performance. The details of the
implementation on the FPGA platform and the
achieved acceleration are discussed in the paper.

Index Terms - FPGA, parallel computing,
reconfigurable programming, HPC, ant colony
optimization, phased arrays, satellite
communications, interference.

I. INTRODUCTION

The need for faster computations in the
electromagnetics community has been a bottleneck
for some of the modern applications such as smart
antennas, advanced rf materials, etc. These devices
utilize complex structures and demand ambitious
performance within their operational environment.
It is often necessary to simulate the performance
of components and platforms as a single system in
the design stage. As a result, accurate and fast
modeling of large scale structures with fine
features often becomes a challenge. Conventional
full wave simulation techniques typically are not
capable of solving such problems due to
limitations in computational resources. Often,
researchers resort to asymptotic or hybrid
techniques in order to obtain a “reasonably
accurate” solution.

The challenge becomes even bigger when the
performance of these complex designs needs to be
optimized over a set of constraints and parameters.
Often the classical optimization techniques are not
suitable because they typically require an initial
estimate reasonably close to the final result in
order to avoid stagnation at a local optimum point.
They also tend to require analytical calculations
such as derivatives that take computational time.
Recently nature based heuristic optimization
methods have gained attention in the
electromagnetics community due to their robust
random search mechanisms which have long been
utilized for survival by different species.

23

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 1, JANUARY 2010

Furthermore, these algorithms are inherently
parallel in nature, which allows for accelerated
computing.

The supercomputing systems, which can
potentially handle numerically intensive problems,
are not commonly available because of their cost.
Hardware accelerated computing has been gaining
momentum over the last decade due its
applicability to parallel computing while using a
fraction of the power requirements of the
conventional microprocessors and requiring much
less cost in comparison to supercomputers.

The objective of this paper is two folds: (i)
investigate the use of field programmable gate
arrays (FPGAs) in numerically intensive
electromagnetic simulations, (ii) utilize the parallel
nature of the ant colony optimization to accelerate
the optimization of complex electromagnetic
problems. Since FPGAs can be instantly
reconfigured to carry out different tasks
simultaneously, they offer a natural choice for this
application.

II. RECONFIGURABLE
COMPUTING WITH FPGAs

An FPGA is a type of programmable chip that

can be configured to behave in just about any way
the programmer wishes enabling them to be highly
efficient platforms. Over the last decade, FPGAs
have established themselves as the third
programmable platform after microprocessors and
digital signal processor (DSP) chips, [1]. While in
the past the use of DSPs was ubiquitous, the
utilization of FPGAs is growing rapidly due to the
need for processing millions of instructions per
second (MIPS). The primary reason FPGAs are
preferred over DSPs is in fact driven by the
application’s MIPS requirement, [2]. Three
factors have driven the interest on these devices:
performance, cost and their reconfigurable nature.
Their high performance relies on the parallel
implementation that they naturally offer. This
feature allows packing massive amounts of
processing performance in a single package,
eliminating the need to utilize different hardware
components for different applications.
Furthermore, the algorithms can be optimized over
the reconfigurable hardware to avoid any overhead

associated with the fixed instruction sets of
microprocessors.

FPGAs are reprogrammable silicon chips in a
two dimensional array of logic cells. A logic-cell
is essentially made up of a small lookup table
(LUT), a flip-flop and a 2-to-1 multiplexer, which
can be used to bypass the flip-flop if necessary.
Each logic-cell can be connected to other logic-
cells through interconnect resources; i.e. wires
placed around the logic-cells. Complex logic
functions can be created by connecting hundreds
or thousands of these logic cells together. In
addition to these interconnect resources; FPGAs
also have fast dedicated lines in between
neighboring logic cells allowing the efficient
creation of arithmetic functions. A schematic of
the FPGAs is demonstrated in Figure 1.

Fig. 1 Schematic diagram of FPGA
components and functionality.

FPGAs can offer significant speed

improvement compared to CPUs, [3] and have
better price per performance ratio. They are still
keeping up with Moore’s law, roughly doubling
their performance every 18 months. Furthermore,
they have lower power consumption per
computation, which makes them very attractive for
very large problems. One of the main advantages
of FPGAs is that they can dynamically create
processing engines that fit the algorithm problem
rather than fitting the algorithm to particular
processor architecture. Despite all the advantages,
FPGAs are finding their way to scientific
computing rather slowly due to two challenges: (i)
The programming on the chip requires significant
hardware knowledge as well as understanding of
the parallel nature of the algorithm to be
implemented, (ii) FPGAs are best suited for

24 ACES JOURNAL, VOL. 25, NO. 1, JANUARY 2010

integer calculations and floating point calculations
are often required in scientific applications.
Nevertheless, researchers have been utilizing this
platform for electromagnetic applications, [4] [5].

III. THE ANT COLONY

OPTIMIZATION (ACO)
ALGORITHM

The ACO algorithm mimics the behavior of

ants in their search for the shortest path between
their nest and the food. Although ants are nearly
blind animals, they demonstrate the capability to
establish the shortest path between their nest and
food. The ethologists have discovered that ants
deposit a chemical substance called pheromone on
their paths, which is used by other ants in their
search process. The most traveled path is marked
with the highest level of pheromone. This positive
feedback behavior allows more ants to choose the
path with the most pheromone amount, [6]. The
algorithm for this concept is demonstrated in Fig.
2. The ants serve as agents that search the
optimization space for a satisfactory solution. The
cost function is a measure of how satisfactory a
solution is, with low cost implying a “better”
solution. The description of the cost function is
application dependent and is one of the most
critical parts of the algorithm in terms of
efficiency and accuracy. The random search is
iteratively applied by the ants until one of the
chosen paths satisfies the required convergence
criteria.

Fig. 2. ACO algorithm.

The ACO algorithm is based on selection of

different paths, and therefore inherently applies to
a discrete set of choices at each decision point. As
a consequence, ACO is suitable for non-
continuous optimization domains. However, for
electromagnetics and antenna problems, the
optimization domain usually consists of a

continuous range of choices. Continuous
problems have been solved for by modifications to
the ACO algorithm, [7]-[10] This paper utilizes
the Touring ACO by Hiroyasu, [7] where the
solution is represented as a string of bits so that the
path to decide is the bit values for this binary
string, as shown in Fig. 3.

Fig. 3 The binary path for ACO in continuous
domain.

The probability of a zero or one for each bit
position is calculated from the total pheromone
levels for the path for bit value of zero and one at
each position as a function of the pheromone
levels on the path as follows:

0
0

0 1

(1)
(1)

(1) (1)
t

p t
t t
τ

τ τ
+

+ =
+ + +

 (1)

 In equation (1), 0τ denotes the total
pheromone amount for bit value of zero at a given
stage, and is computed from the sum of all
pheromone amounts laid by all ants in the current
iteration plus an “evaporated” amount of
pheromone laid before in previous iterations, as
shown in equation (2). The total pheromone
amount for bit value of 1, 1τ is calculated in a
similar fashion. The coefficient ρ represents the
evaporation parameter, and 1-ρ is the evaporation
amount. This simulates nature’s influence on the
pheromone amounts that have been laid a while
back. The increase in the total pheromone
amounts due to each ant is inversely proportional
to the cost function,

antkC . The incremental

pheromone values
0

antkτΔ and
1

antkτΔ correspond
to the bit value zero and one, respectively.
 .

ant

0 0 0

ant

0 k

if k chooses 0 for the current bit

else

(1) () (, 1)

1

C(, 1)

0

ant

ant

ant

k

k

k

t t t t

t t

τ ρτ τ

τ

+ = + Δ +

⎧
⎪Δ + = ⎨
⎪
⎩

∑
(2)

25KILIC: FPGA ACCELERATED PHASED ARRAY DESIGN USING THE ANT COLONY OPTIMIZATION

IV. THE APPLICATION:

OPTIMIZATION OF PHASED
ARRAYS FOR MULTIPLE BEAM
SATELLITE COMMUNICATIONS

In cellular satellite communications systems, a
given coverage area is typically filled with a
number of contiguous spot beams, which carry
concentrated radiation along preferred directions.
Since large areas are served in satellite
communications, many beams need to be
generated by the satellite antenna. Due to limited
available bandwidth, the same frequency bands are
often reused in cells separated apart from each
other to accommodate the traffic. The frequency
reuse approach results in co-channel interference
due to the energy leaking from beams operating at
the same frequency into each other. The concept
of frequency reuse for a multiple beam satellite
communication system is demonstrated in Fig. 4,
where the beams operating at the same frequency
are denoted with the same color. A reuse factor of
7 is shown in this figure; i.e. the same frequency is
repeated every seven beams in the coverage area.
In such a configuration, there is a potential of
energy leak into beams operating at the same
frequency through the side lobes of the radiation
for an intended beam. Such a design often relies
on the spatial isolation of these co-channel beams
for reduced interference. However, if there are a
substantial number of them, the resultant noise can
be detrimental to the operation of the system.

Fig. 4. Co-channel interference concept for
multiple beam satellite communications
systems.

This paper discusses the optimization of
phased array antenna patterns to minimize this co-
channel noise for multiple beam satellite systems.
The noise the paper is concerned with is due to the
interference from other beams in the system. The
antenna pattern is manipulated by changing the
amplitudes of the array elements so that the
radiation along the direction of the co-channel
beam centers is reduced below a threshold placing
nulls in the antenna pattern along these directions.
A linear array will be assumed for ease of
computations with the understanding that the
algorithm can be easily modified to adapt to a
planar array. The only anticipated challenge in
modifying the algorithm to planar arrays is the
requirement to solve for a larger number of
unknowns.

Numerous nature inspired optimization
algorithms, including ACO, has been successfully
applied to this problem before using conventional
programming techniques on CPU, [11]. The
optimization problem involves the computation of
the array factor for a given array geometry and
reducing the radiation levels along the co-channel
beam directions. For a linear array with equally
spaced elements, the array factor, ()f θ and the
normalized radiation pattern, ()nU θ can be

calculated as given in [12] as follows:

1
cos

0

() m

N
j jmkd

m
m

f I e eϕ θθ
−

+

=

= ∑ (3)

2 2

(,) () (,)n nU f eθ ϕ θ θ ϕ= (4)

where m is an index over element number, N is the
total number of elements, ,m mI ϕ are the
amplitude and phase of the mth element, d is the
center-to-center separation between elements,

2k π
λ= is the wave number, and ,θ ϕ are the

observation angles with respect to the array axis.
To further simplify the analysis, the individual
elements are assumed to be isotropic sources; i.e.
(,) 1e θ ϕ = . With these assumptions, the

normalized radiation pattern is the square of the
array factor, and the optimization can be based
solely on the array factor calculations. A uniform
phase distribution is assumed, and the

26 ACES JOURNAL, VOL. 25, NO. 1, JANUARY 2010

optimization searches for a suitable set of
mI

values to achieve the desired radiation
performance.

V. FPGA IMPLEMENTATION OF

ACO ALGORITHM FOR PHASED
ARRAY OPTIMIZATION

Two target platforms were chosen for running

the ACO on an FPGA: (i) Silicon Graphics (SGI)
Altix 450 system, (ii) ML510 development board
based on Xilinx Virtex-5 FX130T FPGA. The
Altix system is configured with two Itanium
processor based compute blades and a
Reconfigurable Application-Specific Computing
(RASC) blade. The RASC blade comprises of two
Xilinx Virtex 4 XC4VLX200 FPGAs. The ML510
board is an embedded development platform with
a 512 MB Compact Flash card and two 512 MB
DDR2 DIMMs. Both platforms have a CPU
connected to an FPGA, but using different I/O
mechanisms in the hardware (NUMAlink and
Core Services for SGI, APU for the ML510).

Mapping such an algorithm to an FPGA is
different than programming a Van Neumann
machine. Rather than a program counter
controlling sequencing of instruction execution,
data counters are used to control the streaming of
data through a pipelined array of processing
elements. Functions of the processing elements are
fixed and data is passed from one processing
element to the next, eliminating the need to move
data in and out of memory as a shared processing
resource steps through the processing sequence of
the algorithm. One must also be aware of the
resources available (i.e. internal registers, look-up
tables RAM, multipliers and accumulators) when
determining the way in which parallelism is
achieved in an FPGA.

The ACO algorithm has multiple processing
functions that are repeatedly performed as
described earlier in the flowchart in Fig. 2. There
are three major sections to the algorithm: Path
Generation, Cost Calculation and Pheromone
Update, which comprise a recursive pipeline.
Additional logic monitors the process to determine
when the algorithm has converged, and forwards
the resulting data to the application running on the
compute blade. Researchers have successfully
implemented ACO on FPGA platform before,

where in [13] a simplified form of ACO, namely
P-ACO, was used to be able to fit the code on the
Virtex-II Pro Platform utilizing FPGA XC2VP125.
In [14] the authors utilize the FPGA as a
coprocessor to the CPU, which carries out the
controller evaluation functionalities.

This paper implements the ACO algorithm
entirely on a single FPGA by using two different
approaches. The first approach uses a highly
efficient VHDL code on the SGI Altix platform.
The second approach utilizes a software interface
to the VHDL, ImpulseC, to implement the code in
a C-like environment on the ML510 board.
Details on the development for both approaches
and a comparison of their performances are
provided in the following sections.

V.1 VHDL Implementation on Altix 450

Path Generation updates the binary paths as
discussed in Fig. 3. For this simulation, paths are
produced using 8 bits for each optimization
parameter (i.e. the amplitudes of the array
elements), 40 parameters in each ant path (i.e. the
number of array elements), 40 ant paths per
iteration (i.e. 40 ants carry search for a solution
simultaneously in each iteration), and as many
iterations as it takes to converge, with an upper
limit set by the user. These data are generated at
the bit level. For each bit, the probability is
maintained as to whether that bit is a one or a zero.
The new path is generated based on these
probability values. With this implementation,
increasing the number of bits per parameter will
increase the FPGA resource requirement for this
function, but will not increase the processing time.

Streaming data from the Path Generation is
fanned-out to parallel Multiply-Accumulators
(MAC) in the Cost Calculation, as shown in Fig. 5.
Separate MACs provide simultaneous updates to
the cost function for each null, processing each
parameter in every path. Note that the coefficients
that describe the desired null pattern are stored in
the FPGAs Block RAM. Four of these Block
RAMs are used for each coefficient to provide the
required 32-bit data width. After these MACs, the
number of computations decreases to just the
number of nulls. A multiplexer is employed to
funnel data into divider that normalizes the data
that has been accumulated. These numbers are
accumulated to a single sum and a cost function is
applied to generate the total cost for each ant path.

27KILIC: FPGA ACCELERATED PHASED ARRAY DESIGN USING THE ANT COLONY OPTIMIZATION

Based on this cost, the pheromone levels along
each path and the probability of 0/1 at each bit
position in the binary string is updated as shown in
Fig. 6.

Fig. 5. Cost calculation block diagram.

Fig. 6. Pheromone update block diagram.

The time required to process data with this

FPGA implementation is shown in the timing
diagram in Fig. 7, where Clk is the 100 MHz
system clock. The Reset signal starts the first
iteration of the algorithm, while the Restart signal
starts the subsequent iterations of the algorithm. A
timing strobe denoted by pSOF is used to
increment the AntCount, which keeps track of the
path being processed. GPFirstAntOut and
GPLastAntOut are timing strobes that mark the
start of the first and last path outputs from
Generate Path. The flow of probability data from
Pheromone Update to Generate Path is controlled
by the data counter pCount, and AmpSOF is a
timing strobe that marks the beginning of data
flow out of the Path Generation section.

Fig. 7. Timing diagram of ACO.

By running the FPGA at 100 MHz clock rate,
the data is processed at a rate of 10 ns per clock.
Parameters are processed on each clock cycle,
with a one path delay at the beginning, due to
amplitude normalization in Path Generation, and a
one path delay at the end due to probability update
in Pheromone Update. It should be noted that this
path delay at the end is not shown in the timing
diagram, but is enforced by the Restart, which is
issued by Pheromone Update once the last path
computations have completed.

For 40 parameters per path and 40 paths per
iteration, the best expected run time per iteration is
at about 16.8 μs (= 10 ns/ parameter * 40
parameters/path * 42 paths/iteration). It should be
noted that 42 paths were used to account for the
one path delay at the beginning, due to amplitude
normalization in Path Generation, and a one path
delay at the end due to probability update in
Pheromone Update. For the planar array case (i.e.
40x40 array), run time is expected to be about 672
ms/iteration (= 10 ns/ parameter * (40*40)
parameters/path * 42 paths/iteration).

V.2 Impulse C Implementation on ML510

SGI’s Altix 450 platform is a highly efficient
structure that integrates CPU with FGAs and
utilizes shared memory to reduce any bottlenecks
for data access. However, it is a highly
sophisticated platform that requires expertise in
programming on such platforms. Since expertise
on such customized platforms are not common for
the researched who is not in the field of FPGA
computing, it was deemed of interest to implement
the same algorithm on a more readily found FPGA
card utilizing a software interface that helps
simplify FPGA programming. The block diagram
below shows the CPU-FPGA architecture for the

28 ACES JOURNAL, VOL. 25, NO. 1, JANUARY 2010

ML510 development board using Impulse C
language as an interface. A C-like code is used
with interpreted commands that translate into HDL
implementation of the code by utilizing
parallelism and pipelining. The development of
the code utilizes the functions Impulse C provides
for pipelining and parallelization, and the user can
avoid working with the detailed timing diagrams
as in the VHDL implementation. Impulse C
generates the necessary timing for the specific
FPGA platform it supports. Compiling the
Impulse C code to the FPGA device involves two
main steps: (i) Generating HDL and exporting
from Impulse CoDeveloper, (ii) Synthesizing and
mapping to the FPGA board using Xilinx ISE.
Since the first step is automated by Impulse C, the
user has limited control on the specifics of the
HDL code generated in comparison to the first
approach where the VHDL code was developed
manually. The algorithm was compiled at 100
MHz as in the SGI Altix implementation and a bit
file was created successfully. Therefore, the
devices are running at the same speed for identical
algorithms for a fair comparison of efficiency.
The algorithm was run numerous times and an
average run time of 0.3 milliseconds per iteration
was observed. While the time for implementation
of the code can be significantly reduced by using a
software interface, a significant price in the run
time efficiency is paid for as a result.

Fig. 8. CPU-FPGA architecture for the
ML510 implementation.

VI. SIMULATION RESULTS –
COMPARISONS OF FPGA, C AND
MATLAB IMPLEMENTATIONS

As in all heuristic optimization methods, the

performance of the algorithm depends on how the

convergence criteria and cost function are defined.
The cost function is defined such that a 25% drop
in the peak gain is allowed while requiring the
power levels along the direction of co-channel
beams to be at least 40 dB down. For simulation
purposes in this investigation, the centers of six
co-channel beam locations were considered; at
3.75, 6.34 and 9.00 degrees off the main direction
on either side. A linear array of 40 elements, with
center-to-center element separation of half a
wavelength was considered, and symmetry was
employed; i.e. amplitude and phase values of the
array elements were assumed symmetric with
respect to the center of the array. The
optimization space was sampled by 40 ants using
eight bits per each optimization parameter. Due to
the symmetry assumption, the number of
unknowns is 20, half of the number of array
elements. Therefore, the binary string generated
by each ant is 160 (=20x8) bits long.

When the algorithm was run on a standard PC
(CPU: Intel Pentium M, 3 GHz and RAM: 1 GB)
using Matlab, the time per a single iteration took
about 0.47 seconds. The same algorithm when
implemented on C and run on the same platform
ran about 53.4 times faster than the Matlab version,
roughly at 8.8 milliseconds per iteration. The
VHDL implementation on the Altix 450 system
performed at 31.3 microseconds for runs after the
bit loading was completed, resulting in a factor of
15,160 in speed compared to the Matlab
implementation. The same algorithm took 102.1
microseconds per iteration including the bit
loading, resulting in a factor of 4,607 in speed
compared to the Matlab implementation. It should
be noted that the bit loading is only necessary
when the algorithm is first run. Later runs do not
need this process as the FPGA is already
configured. The FPGA implementation using
VHDL on Altix 450 system performed 100 times
faster than the implementation on ML510 board
using Impulse C language. The results of the
algorithm are demonstrated for different
convergence criteria (0.001, 0.07 and 0.20) in Fig.
9. The most strict case (err = 0.001) took on
average 12 minutes to complete. The second case
(err = 0.07) converged in about 0.4 minutes.
Finally, the least strict case err = 0.20) took 0.01
minutes to complete. These times are based on
average numbers for multiple runs of the same
criteria.

29KILIC: FPGA ACCELERATED PHASED ARRAY DESIGN USING THE ANT COLONY OPTIMIZATION

Fig. 9. Optimized antenna pattern for six co-
channel beam centers - FPGA implementation
on SGI Altix Platform.

VII. THE PROCESS FOR
RUNNING THE ALGORITHM ON

THE FPGA

There are significant differences between
conventional software design flow and a hardware
design flow for FPGAs, [15]. A multistage
process is completed before a design can be used
in an FPGA. These stages include synthesis,
verification, translation, mapping, place and route.
Synthesis stage is where the hardware description
language code (e.g. VHDL, Verilog) is translated
into a text description of a schematic. The
verification step is to ensure that the specified
design of the first step is functional. The
translation means the conversion of this text
description into a binary format. At this stage all
the components and connections are mapped to the
configurable logic blocks. The place and route
stage is when the design is fitted onto the target
FPGA. As a result of these stages a *.bit file,
which is a configuration file to program the FPGA
resources, is created to load the design onto the
FPGA. Once all these stages are completed, the
algorithm can be run repeatedly, without having to
repeat these steps.

This multi-stage process in addition to the
need to efficiently utilize available FPGA
resources through pipelining and parallelism
requires a steep learning curve for a scientist who
is used to the conventional programming
techniques. It is this aspect of the FPGAs that
hinders the wide use of these platforms in the
broader scientific community. Another key

difference between FPGA implementation versus
conventional programming is the compilation
times. Software compilation is shorter than the
hardware implementations and debugging can be
done as an iterative approach. However, in the
hardware approach the mapping of a defected
design can cause significant delays in the place
and route stage and should be avoided.

VIII. CONCLUSIONS

The utilization of FPGAs in the field of
electromagnetics has been investigated by
optimizing the radiation pattern of an array
antenna using the ant colony optimization method.
The acceleration performance in comparison with
conventional programming techniques has been
shown to be in the order of 15,000 for the
particular application using a clock speed of 100
MHz. This order of magnitude of speed
improvement can enable handling more complex
requirements and constraints for the same
application in a very reasonable amount of time,
which would otherwise be impossible with
conventional computational platforms and
techniques.

This study demonstrates that FPGAs have
tremendous potential for scientific computing.
However, the problem investigated was small
enough to be custom fit on a single FPGA, which
enabled the high acceleration achieved. In more
challenging electromagnetic problems,
improvements at this magnitude may not be
feasible. The most likely approach in such cases is
utilizing the FPGA as a coprocessor to the CPU,
which will reduce the acceleration factor.
Furthermore, there are significant challenges to be
overcome before the FPGAs can be considered as
mainstream platforms for scientific computing.
The overall acceleration for an application is
highly dependent on the nature of the algorithm,
required resources and what is available to the
programmer, as well as programming skills.
Interdependence and resource requirements of
processes determine how the code can be
parallelized. To optimally utilize the FPGA, the
programmer needs to know the available resources
and time required for each process. This is often a
highly detailed process without access to
mainstream products. The device at hand must

30 ACES JOURNAL, VOL. 25, NO. 1, JANUARY 2010

have the required resources for a given code.
Successfully creating a bitfile for a given design to
run at a given clock rate is not always possible for
a given FPGA device. This is a fundamental
limitation of FPGA development. Often the
remedy is only implementing parts of the
algorithm on FPGA, and running the rest on the
CPU.

REFERENCES

[1] P. Lysaght; P. A. Subrahmanyam; “Guest
Editors’ Introduction: Advances in
Configurable Computing,” IEEE CS and IEEE
CASS, pp. 85-89, March-April
2005Macdonald, V. H.

[2] “FPGA versus DSP, Design, Reliabilty
and Maintenance,” Altera White Paper 01023,
www.altera.com/literature/wp/wp-01023.pdf

[3] Jahyun J. Koo, David Fern´andez, Ashraf
Haddad and Warren J. Gross; “Evaluation of a
High-Level-Language Methodology for High-
Performance Reconfigurable Computers,”
Proc. IEEE Int. Conf. ASAP, pp. 30-35, July
2007.

[4] O. Kilic, M. S. Mirotznik, J. P. Durbano,
“Application of FPGA Based FDTD
Simulators to Rotman Lenses,” Proc. 2006
ACES Conference, Miami, FL.

[5] C. He, W. Zhao, and M. Lu, “Time
Domain Numerical Simulation for Transient
Waves on Reconfigurable Coprocessor
Platform,” Proc. of the 13th Annual IEEE
Symposium on Field-Programmable Custom
Computing Machines (FCCM’05), 2005.

[6] M. Dorigo, V. Maniezzo and A. Colorni,
“The Ant System: Optimization by a Colony
of Cooperating Agents,” IEEE Trans. Systems,
Man, and Cybernetics, Part B, Vol:26,No. 1,
1996, pp. 1-13

[7] T. Hiroyasu, M. Miki, Y. Ono and Y.
Minami, “Ant Colony for Continuous
Functions,” The Science and Engineering,
Vol. XX, No.Y, Doshisha University, Japan,
2000.

[8] D. Corne, M. Dorigo, & F. Glover. 1999.
The ant colony optimization meta-heuristic. In
New ideas in optimization, 11–32. M. Dorigo
and G. D. Caro, eds. New York: McGraw-
Hill.

[9] W. Lei, and W. Qudi. 2002. Further
example study on ant system algorithm based

continuous space optimization. 4th World
Congress on Intelligent Control and
Automation, Shanghai, China, pp. 2541–2545.

[10] K. Socha, 2004 ACO for continuous and
mixed-variable optimization. Proc. of 4th
International Workshop on Ant Colony
Optimization and Swarm Intelligence
(ANTS’2004), Brussels, Belgium.

[11] O. Kilic, “Comparison of Nature Based
Optimization Methods for Multi-beam
Satellite Antennas,” Proc. 2008 ACES
Conference, Niagara Falls, Canada

[12] W. A. Stutzman and G. A. Thiele,
“Antenna Theory and Design,” Artech House,
1997.

[13] B. Scheuermann, K. Sob, M. Guntsch, M.
Middendorf, O. Diessel, H. ElGindy and H.
Schmeck, “FPGA implementation of
population-based ant colony optimization”,
Applied Soft Computing, Vol. 4, Issue 3,
August 2004, pp 303-322.

[14] Chia-Feng Juang, Chun-Ming Lu, Chiang
Lo, and Chi-Yen Wang, “Ant Colony
Optimization Algorithm for Fuzzy Controller
Design and Its FPGA Implementation”, IEEE
Transaction on Industrial Electronics, Vol. 55,
No. 3, March 2008, pp 1453-1462.

[15] R. Wain. I. Bush, M. Guest, M. Deegan, I.
Kozin, C. Kitchen, “An overview of FPGAs
and FPGA programming,”
http://www.cse.scitech.ac.uk/disco/publication
s/FPGA_overview.pdf

Ozlem Kilic graduated from
The George Washington
University (1996) with a D.Sc.
in Electrical Engineering. She
is presently a professor with
the Catholic University of
America. Before joining CUA,
she worked at the U.S. Army

Research Laboratories, Adlephi, MD and
COMSAT Laboratories, Clarksburg, MD.
Her research areas include computational
electromagnetics, hardware accelerated
programming for scientific computing,
antennas and propagation, and radiation and
scattering problems from random media.

31KILIC: FPGA ACCELERATED PHASED ARRAY DESIGN USING THE ANT COLONY OPTIMIZATION

