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Abstract – The objective of this paper is to 
investigate the utilization of field programmable 
gate arrays (FPGA) in the field of 
electromagnetics by applying the ant colony 
optimization (ACO) method in the design of 
phased array antennas for multiple beam satellite 
communication systems.  The amplitudes of the 
array elements are optimized to reduce the co-
channel interference in a multiple beam satellite 
communication system.  The potential gains in the 
speed of the calculations are investigated in 
comparison to conventional simulation techniques 
of the same application on a regular PC.  Two 
different FPGA platforms and implementation 
approaches are compared for performance to two 
software developments implemented using Matlab 
and C languages. It has been shown that 
significantly accelerated performance can be 
achieved for the particular application.  This kind 
of speed improvement can enable handling more 
complex requirements and constraints for the same 
application in a very reasonable amount of time, 
which would otherwise be impossible with 
conventional computational platforms and 
techniques.  This magnitude of speed 
improvement is due to the configurable nature of 
the FPGAs.  Unlike central processing units (CPU) 
in a conventional computer, which have to deal 
with a preset set of instructions to properly 
function; FPGAs are completely programmable to 
carry out a set of functions in the most efficient 
manner for the particular algorithm at hand.  In 
this study, the FPGA has been configured to 
function as an efficient “ACO machine.”  Both 
parallelization and pipelining have been utilized to 
achieve this performance.  The details of the 
implementation on the FPGA platform and the 
achieved acceleration are discussed in the paper.     

Index Terms - FPGA, parallel computing, 
reconfigurable programming, HPC, ant colony 
optimization, phased arrays, satellite 
communications, interference. 
 

I. INTRODUCTION 
 

The need for faster computations in the 
electromagnetics community has been a bottleneck 
for some of the modern applications such as smart 
antennas, advanced rf materials, etc. These devices 
utilize complex structures and demand ambitious 
performance within their operational environment.  
It is often necessary to simulate the performance 
of components and platforms as a single system in 
the design stage.  As a result, accurate and fast 
modeling of large scale structures with fine 
features often becomes a challenge. Conventional 
full wave simulation techniques typically are not 
capable of solving such problems due to 
limitations in computational resources.  Often, 
researchers resort to asymptotic or hybrid 
techniques in order to obtain a “reasonably 
accurate” solution.    

The challenge becomes even bigger when the 
performance of these complex designs needs to be 
optimized over a set of constraints and parameters.  
Often the classical optimization techniques are not 
suitable because they typically require an initial 
estimate reasonably close to the final result in 
order to avoid stagnation at a local optimum point.  
They also tend to require analytical calculations 
such as derivatives that take computational time.  
Recently nature based heuristic optimization 
methods have gained attention in the 
electromagnetics community due to their robust 
random search mechanisms which have long been 
utilized for survival by different species.  
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Furthermore, these algorithms are inherently 
parallel in nature, which allows for accelerated 
computing.  

The supercomputing systems, which can 
potentially handle numerically intensive problems, 
are not commonly available because of their cost.  
Hardware accelerated computing has been gaining 
momentum over the last decade due its 
applicability to parallel computing while using a 
fraction of the power requirements of the 
conventional microprocessors and requiring much 
less cost in comparison to supercomputers. 

The objective of this paper is two folds: (i) 
investigate the use of field programmable gate 
arrays (FPGAs) in numerically intensive 
electromagnetic simulations, (ii) utilize the parallel 
nature of the ant colony optimization to accelerate 
the optimization of complex electromagnetic 
problems.  Since FPGAs can be instantly 
reconfigured to carry out different tasks 
simultaneously, they offer a natural choice for this 
application.   

 
II. RECONFIGURABLE 
COMPUTING WITH FPGAs 

 
An FPGA is a type of programmable chip that 

can be configured to behave in just about any way 
the programmer wishes enabling them to be highly 
efficient platforms.  Over the last decade, FPGAs 
have established themselves as the third 
programmable platform after microprocessors and 
digital signal processor (DSP) chips, [1].  While in 
the past the use of DSPs was ubiquitous, the 
utilization of FPGAs is growing rapidly due to the 
need for processing millions of instructions per 
second (MIPS). The primary reason FPGAs are 
preferred over DSPs is in fact driven by the 
application’s MIPS requirement, [2].  Three 
factors have driven the interest on these devices: 
performance, cost and their reconfigurable nature.  
Their high performance relies on the parallel 
implementation that they naturally offer.  This 
feature allows packing massive amounts of 
processing performance in a single package, 
eliminating the need to utilize different hardware 
components for different applications.  
Furthermore, the algorithms can be optimized over 
the reconfigurable hardware to avoid any overhead 

associated with the fixed instruction sets of 
microprocessors.   

FPGAs are reprogrammable silicon chips in a 
two dimensional array of logic cells.  A logic-cell 
is essentially made up of a small lookup table 
(LUT), a flip-flop and a 2-to-1 multiplexer, which 
can be used to bypass the flip-flop if necessary.  
Each logic-cell can be connected to other logic-
cells through interconnect resources; i.e. wires 
placed around the logic-cells.  Complex logic 
functions can be created by connecting hundreds 
or thousands of these logic cells together.  In 
addition to these interconnect resources; FPGAs 
also have fast dedicated lines in between 
neighboring logic cells allowing the efficient 
creation of arithmetic functions.  A schematic of 
the FPGAs is demonstrated in Figure 1. 

 
Fig. 1 Schematic diagram of FPGA 
components and functionality. 

 
FPGAs can offer significant speed 

improvement compared to CPUs, [3] and have 
better price per performance ratio.  They are still 
keeping up with Moore’s law, roughly doubling 
their performance every 18 months.  Furthermore, 
they have lower power consumption per 
computation, which makes them very attractive for 
very large problems.  One of the main advantages 
of FPGAs is that they can dynamically create 
processing engines that fit the algorithm problem 
rather than fitting the algorithm to particular 
processor architecture.  Despite all the advantages, 
FPGAs are finding their way to scientific 
computing rather slowly due to two challenges: (i) 
The programming on the chip requires significant 
hardware knowledge as well as understanding of 
the parallel nature of the algorithm to be 
implemented, (ii) FPGAs are best suited for 
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integer calculations and floating point calculations 
are often required in scientific applications.  
Nevertheless, researchers have been utilizing this 
platform for electromagnetic applications, [4] [5].  

 
III. THE ANT COLONY 

OPTIMIZATION (ACO) 
ALGORITHM 

 
The ACO algorithm mimics the behavior of 

ants in their search for the shortest path between 
their nest and the food.  Although ants are nearly 
blind animals, they demonstrate the capability to 
establish the shortest path between their nest and 
food.  The ethologists have discovered that ants 
deposit a chemical substance called pheromone on 
their paths, which is used by other ants in their 
search process.  The most traveled path is marked 
with the highest level of pheromone.  This positive 
feedback behavior allows more ants to choose the 
path with the most pheromone amount, [6].  The 
algorithm for this concept is demonstrated in Fig. 
2.  The ants serve as agents that search the 
optimization space for a satisfactory solution.  The 
cost function is a measure of how satisfactory a 
solution is, with low cost implying a “better” 
solution.  The description of the cost function is 
application dependent and is one of the most 
critical parts of the algorithm in terms of 
efficiency and accuracy.  The random search is 
iteratively applied by the ants until one of the 
chosen paths satisfies the required convergence 
criteria. 

Fig. 2. ACO algorithm. 
 
The ACO algorithm is based on selection of 

different paths, and therefore inherently applies to 
a discrete set of choices at each decision point. As 
a consequence, ACO is suitable for non-
continuous optimization domains.  However, for 
electromagnetics and antenna problems, the 
optimization domain usually consists of a 

continuous range of choices.  Continuous 
problems have been solved for by modifications to 
the ACO algorithm, [7]-[10] This paper utilizes 
the Touring ACO by Hiroyasu, [7] where the 
solution is represented as a string of bits so that the 
path to decide is the bit values for this binary 
string, as shown in Fig. 3.  

Fig. 3 The binary path for ACO in continuous 
domain. 
 

The probability of a zero or one for each bit 
position is calculated from the total pheromone 
levels for the path for bit value of zero and one at 
each position as a function of the pheromone 
levels on the path as follows: 
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      In equation (1), 0τ  denotes the total 
pheromone amount for bit value of zero at a given 
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IV. THE APPLICATION: 

OPTIMIZATION OF PHASED 
ARRAYS FOR MULTIPLE BEAM 
SATELLITE COMMUNICATIONS 
 

In cellular satellite communications systems, a 
given coverage area is typically filled with a 
number of contiguous spot beams, which carry 
concentrated radiation along preferred directions.  
Since large areas are served in satellite 
communications, many beams need to be 
generated by the satellite antenna.  Due to limited 
available bandwidth, the same frequency bands are 
often reused in cells separated apart from each 
other to accommodate the traffic.  The frequency 
reuse approach results in co-channel interference 
due to the energy leaking from beams operating at 
the same frequency into each other.  The concept 
of frequency reuse for a multiple beam satellite 
communication system is demonstrated in Fig. 4, 
where the beams operating at the same frequency 
are denoted with the same color. A reuse factor of 
7 is shown in this figure; i.e. the same frequency is 
repeated every seven beams in the coverage area. 
In such a configuration, there is a potential of 
energy leak into beams operating at the same 
frequency through the side lobes of the radiation 
for an intended beam.  Such a design often relies 
on the spatial isolation of these co-channel beams 
for reduced interference. However, if there are a 
substantial number of them, the resultant noise can 
be detrimental to the operation of the system.   

Fig. 4. Co-channel interference concept for 
multiple beam satellite communications 
systems. 

 

This paper discusses the optimization of 
phased array antenna patterns to minimize this co-
channel noise for multiple beam satellite systems.  
The noise the paper is concerned with is due to the 
interference from other beams in the system.  The 
antenna pattern is manipulated by changing the 
amplitudes of the array elements so that the 
radiation along the direction of the co-channel 
beam centers is reduced below a threshold placing 
nulls in the antenna pattern along these directions.  
A linear array will be assumed for ease of 
computations with the understanding that the 
algorithm can be easily modified to adapt to a 
planar array.  The only anticipated challenge in 
modifying the algorithm to planar arrays is the 
requirement to solve for a larger number of 
unknowns.   

Numerous nature inspired optimization 
algorithms, including ACO, has been successfully 
applied to this problem before using conventional 
programming techniques on CPU, [11].  The 
optimization problem involves the computation of 
the array factor for a given array geometry and 
reducing the radiation levels along the co-channel 
beam directions.  For a linear array with equally 
spaced elements, the array factor, ( )f θ  and the 
normalized radiation pattern, ( )nU θ  can be 

calculated as given in [12] as follows: 
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where m is an index over element number, N is the 
total number of elements, ,m mI ϕ  are the 
amplitude and phase of the mth element, d is the 
center-to-center separation between elements, 

2k π
λ= is the wave number, and ,θ ϕ  are the 

observation angles with respect to the array axis.  
To further simplify the analysis, the individual 
elements are assumed to be isotropic sources; i.e. 
( , ) 1e θ ϕ = .  With these assumptions, the 

normalized radiation pattern is the square of the 
array factor, and the optimization can be based 
solely on the array factor calculations.  A uniform 
phase distribution is assumed, and the 
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optimization searches for a suitable set of 
mI  

values to achieve the desired radiation 
performance. 

 
V. FPGA IMPLEMENTATION OF 

ACO ALGORITHM FOR PHASED 
ARRAY OPTIMIZATION 

 
Two target platforms were chosen for running 

the ACO on an FPGA: (i) Silicon Graphics (SGI) 
Altix 450 system, (ii) ML510 development board 
based on Xilinx Virtex-5 FX130T FPGA. The 
Altix system is configured with two Itanium 
processor based compute blades and a 
Reconfigurable Application-Specific Computing 
(RASC) blade. The RASC blade comprises of two 
Xilinx Virtex 4 XC4VLX200 FPGAs. The ML510 
board is an embedded development platform with 
a 512 MB Compact Flash card and two 512 MB 
DDR2 DIMMs.  Both platforms have a CPU 
connected to an FPGA, but using different I/O 
mechanisms in the hardware (NUMAlink and 
Core Services for SGI, APU for the ML510).   

Mapping such an algorithm to an FPGA is 
different than programming a Van Neumann 
machine. Rather than a program counter 
controlling sequencing of instruction execution, 
data counters are used to control the streaming of 
data through a pipelined array of processing 
elements. Functions of the processing elements are 
fixed and data is passed from one processing 
element to the next, eliminating the need to move 
data in and out of memory as a shared processing 
resource steps through the processing sequence of 
the algorithm.  One must also be aware of the 
resources available (i.e. internal registers, look-up 
tables RAM, multipliers and accumulators) when 
determining the way in which parallelism is 
achieved in an FPGA.  

The ACO algorithm has multiple processing 
functions that are repeatedly performed as 
described earlier in the flowchart in Fig. 2. There 
are three major sections to the algorithm: Path 
Generation, Cost Calculation and Pheromone 
Update, which comprise a recursive pipeline. 
Additional logic monitors the process to determine 
when the algorithm has converged, and forwards 
the resulting data to the application running on the 
compute blade. Researchers have successfully 
implemented ACO on FPGA platform before, 

where in [13] a simplified form of ACO, namely 
P-ACO, was used to be able to fit the code on the 
Virtex-II Pro Platform utilizing FPGA XC2VP125.  
In [14] the authors utilize the FPGA as a 
coprocessor to the CPU, which carries out the 
controller evaluation functionalities.   

This paper implements the ACO algorithm 
entirely on a single FPGA by using two different 
approaches.  The first approach uses a highly 
efficient VHDL code on the SGI Altix platform.  
The second approach utilizes a software interface 
to the VHDL, ImpulseC, to implement the code in 
a C-like environment on the ML510 board.  
Details on the development for both approaches 
and a comparison of their performances are 
provided in the following sections. 

 
V.1 VHDL Implementation on Altix 450 

Path Generation updates the binary paths as 
discussed in Fig. 3. For this simulation, paths are 
produced using 8 bits for each optimization 
parameter (i.e. the amplitudes of the array 
elements), 40 parameters in each ant path (i.e. the 
number of array elements), 40 ant paths per 
iteration (i.e. 40 ants carry search for a solution 
simultaneously in each iteration), and as many 
iterations as it takes to converge, with an upper 
limit set by the user.  These data are generated at 
the bit level. For each bit, the probability is 
maintained as to whether that bit is a one or a zero. 
The new path is generated based on these 
probability values. With this implementation, 
increasing the number of bits per parameter will 
increase the FPGA resource requirement for this 
function, but will not increase the processing time.  

Streaming data from the Path Generation is 
fanned-out to parallel Multiply-Accumulators 
(MAC) in the Cost Calculation, as shown in Fig. 5.  
Separate MACs provide simultaneous updates to 
the cost function for each null, processing each 
parameter in every path. Note that the coefficients 
that describe the desired null pattern are stored in 
the FPGAs Block RAM. Four of these Block 
RAMs are used for each coefficient to provide the 
required 32-bit data width. After these MACs, the 
number of computations decreases to just the 
number of nulls. A multiplexer is employed to 
funnel data into divider that normalizes the data 
that has been accumulated. These numbers are 
accumulated to a single sum and a cost function is 
applied to generate the total cost for each ant path. 
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Based on this cost, the pheromone levels along 
each path and the probability of 0/1 at each bit 
position in the binary string is updated as shown in 
Fig. 6. 

 

 
Fig. 5.  Cost calculation block diagram. 

 
Fig. 6.  Pheromone update block diagram. 

 
The time required to process data with this 

FPGA implementation is shown in the timing 
diagram in Fig. 7, where Clk is the 100 MHz 
system clock.  The Reset signal starts the first 
iteration of the algorithm, while the Restart signal 
starts the subsequent iterations of the algorithm. A 
timing strobe denoted by pSOF is used to 
increment the AntCount, which keeps track of the 
path being processed. GPFirstAntOut and 
GPLastAntOut are timing strobes that mark the 
start of the first and last path outputs from 
Generate Path. The flow of probability data from 
Pheromone Update to Generate Path is controlled 
by the data counter pCount, and AmpSOF is a 
timing strobe that marks the beginning of data 
flow out of the Path Generation section. 

 
Fig. 7. Timing diagram of ACO. 
 

By running the FPGA at 100 MHz clock rate, 
the data is processed at a rate of 10 ns per clock. 
Parameters are processed on each clock cycle, 
with a one path delay at the beginning, due to 
amplitude normalization in Path Generation, and a 
one path delay at the end due to probability update 
in Pheromone Update. It should be noted that this 
path delay at the end is not shown in the timing 
diagram, but is enforced by the Restart, which is 
issued by Pheromone Update once the last path 
computations have completed. 

For 40 parameters per path and 40 paths per 
iteration, the best expected run time per iteration is 
at about 16.8 μs (= 10 ns/ parameter * 40 
parameters/path * 42 paths/iteration).  It should be 
noted that 42 paths were used to account for the 
one path delay at the beginning, due to amplitude 
normalization in Path Generation, and a one path 
delay at the end due to probability update in 
Pheromone Update.  For the planar array case (i.e. 
40x40 array), run time is expected to be about 672 
ms/iteration (= 10 ns/ parameter * (40*40) 
parameters/path * 42 paths/iteration). 

 
V.2 Impulse C Implementation on ML510 

SGI’s Altix 450 platform is a highly efficient 
structure that integrates CPU with FGAs and 
utilizes shared memory to reduce any bottlenecks 
for data access.  However, it is a highly 
sophisticated platform that requires expertise in 
programming on such platforms.  Since expertise 
on such customized platforms are not common for 
the researched who is not in the field of FPGA 
computing, it was deemed of interest to implement 
the same algorithm on a more readily found FPGA 
card utilizing a software interface that helps 
simplify FPGA programming.  The block diagram 
below shows the CPU-FPGA architecture for the 
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ML510 development board using Impulse C 
language as an interface.  A C-like code is used 
with interpreted commands that translate into HDL 
implementation of the code by utilizing 
parallelism and pipelining. The development of 
the code utilizes the functions Impulse C provides 
for pipelining and parallelization, and the user can 
avoid working with the detailed timing diagrams 
as in the VHDL implementation.  Impulse C 
generates the necessary timing for the specific 
FPGA platform it supports.  Compiling the 
Impulse C code to the FPGA device involves two 
main steps:  (i) Generating HDL and exporting 
from Impulse CoDeveloper, (ii) Synthesizing and 
mapping to the FPGA board using Xilinx ISE.  
Since the first step is automated by Impulse C, the 
user has limited control on the specifics of the 
HDL code generated in comparison to the first 
approach where the VHDL code was developed 
manually.  The algorithm was compiled at 100 
MHz as in the SGI Altix implementation and a bit 
file was created successfully. Therefore, the 
devices are running at the same speed for identical 
algorithms for a fair comparison of efficiency.  
The algorithm was run numerous times and an 
average run time of 0.3 milliseconds per iteration 
was observed.  While the time for implementation 
of the code can be significantly reduced by using a 
software interface, a significant price in the run 
time efficiency is paid for as a result. 

Fig. 8. CPU-FPGA architecture for the 
ML510 implementation. 
 

VI. SIMULATION RESULTS – 
COMPARISONS OF FPGA, C AND 
MATLAB IMPLEMENTATIONS 

 
As in all heuristic optimization methods, the 

performance of the algorithm depends on how the 

convergence criteria and cost function are defined.  
The cost function is defined such that a 25% drop 
in the peak gain is allowed while requiring the 
power levels along the direction of co-channel 
beams to be at least 40 dB down.  For simulation 
purposes in this investigation, the centers of six 
co-channel beam locations were considered; at 
3.75, 6.34 and 9.00 degrees off the main direction 
on either side.  A linear array of 40 elements, with 
center-to-center element separation of half a 
wavelength was considered, and symmetry was 
employed; i.e. amplitude and phase values of the 
array elements were assumed symmetric with 
respect to the center of the array.  The 
optimization space was sampled by 40 ants using 
eight bits per each optimization parameter.  Due to 
the symmetry assumption, the number of 
unknowns is 20, half of the number of array 
elements.  Therefore, the binary string generated 
by each ant is 160 (=20x8) bits long. 

When the algorithm was run on a standard PC 
(CPU: Intel Pentium M, 3 GHz and RAM: 1 GB) 
using Matlab, the time per a single iteration took 
about 0.47 seconds.  The same algorithm when 
implemented on C and run on the same platform 
ran about 53.4 times faster than the Matlab version, 
roughly at 8.8 milliseconds per iteration. The 
VHDL implementation on the Altix 450 system 
performed at 31.3 microseconds for runs after the 
bit loading was completed, resulting in a factor of 
15,160 in speed compared to the Matlab 
implementation. The same algorithm took 102.1 
microseconds per iteration including the bit 
loading, resulting in a factor of 4,607 in speed 
compared to the Matlab implementation.  It should 
be noted that the bit loading is only necessary 
when the algorithm is first run.  Later runs do not 
need this process as the FPGA is already 
configured. The FPGA implementation using 
VHDL on Altix 450 system performed 100 times 
faster than the implementation on ML510 board 
using Impulse C language. The results of the 
algorithm are demonstrated for different 
convergence criteria (0.001, 0.07 and 0.20) in Fig. 
9.  The most strict case (err = 0.001) took on 
average 12 minutes to complete.  The second case 
(err = 0.07) converged in about 0.4 minutes.  
Finally, the least strict case err = 0.20) took 0.01 
minutes to complete.  These times are based on 
average numbers for multiple runs of the same 
criteria.   
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Fig. 9. Optimized antenna pattern for six co-
channel beam centers - FPGA implementation 
on SGI Altix Platform. 
 

VII. THE PROCESS FOR 
RUNNING THE ALGORITHM ON 

THE FPGA 
 

There are significant differences between 
conventional software design flow and a hardware 
design flow for FPGAs, [15].  A multistage 
process is completed before a design can be used 
in an FPGA.  These stages include synthesis, 
verification, translation, mapping, place and route.  
Synthesis stage is where the hardware description 
language code (e.g. VHDL, Verilog) is translated 
into a text description of a schematic.  The 
verification step is to ensure that the specified 
design of the first step is functional.  The 
translation means the conversion of this text 
description into a binary format.  At this stage all 
the components and connections are mapped to the 
configurable logic blocks.  The place and route 
stage is when the design is fitted onto the target 
FPGA.  As a result of these stages a *.bit file, 
which is a configuration file to program the FPGA 
resources, is created to load the design onto the 
FPGA.  Once all these stages are completed, the 
algorithm can be run repeatedly, without having to 
repeat these steps.   

This multi-stage process in addition to the 
need to efficiently utilize available FPGA 
resources through pipelining and parallelism 
requires a steep learning curve for a scientist who 
is used to the conventional programming 
techniques.  It is this aspect of the FPGAs that 
hinders the wide use of these platforms in the 
broader scientific community.  Another key 

difference between FPGA implementation versus 
conventional programming is the compilation 
times.  Software compilation is shorter than the 
hardware implementations and debugging can be 
done as an iterative approach.  However, in the 
hardware approach the mapping of a defected 
design can cause significant delays in the place 
and route stage and should be avoided.  
 

VIII. CONCLUSIONS 
 

The utilization of FPGAs in the field of 
electromagnetics has been investigated by 
optimizing the radiation pattern of an array 
antenna using the ant colony optimization method.  
The acceleration performance in comparison with 
conventional programming techniques has been 
shown to be in the order of 15,000 for the 
particular application using a clock speed of 100 
MHz.  This order of magnitude of speed 
improvement can enable handling more complex 
requirements and constraints for the same 
application in a very reasonable amount of time, 
which would otherwise be impossible with 
conventional computational platforms and 
techniques.   

This study demonstrates that FPGAs have 
tremendous potential for scientific computing.  
However, the problem investigated was small 
enough to be custom fit on a single FPGA, which 
enabled the high acceleration achieved. In more 
challenging electromagnetic problems, 
improvements at this magnitude may not be 
feasible. The most likely approach in such cases is 
utilizing the FPGA as a coprocessor to the CPU, 
which will reduce the acceleration factor.  
Furthermore, there are significant challenges to be 
overcome before the FPGAs can be considered as 
mainstream platforms for scientific computing.  
The overall acceleration for an application is 
highly dependent on the nature of the algorithm, 
required resources and what is available to the 
programmer, as well as programming skills.  
Interdependence and resource requirements of 
processes determine how the code can be 
parallelized.  To optimally utilize the FPGA, the 
programmer needs to know the available resources 
and time required for each process.  This is often a 
highly detailed process without access to 
mainstream products. The device at hand must 
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have the required resources for a given code.  
Successfully creating a bitfile for a given design to 
run at a given clock rate is not always possible for 
a given FPGA device.  This is a fundamental 
limitation of FPGA development. Often the 
remedy is only implementing parts of the 
algorithm on FPGA, and running the rest on the 
CPU. 
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