
An Alternative Multiresolution Basis in EFIE for Analysis of Low-
Frequency Problems 

 
Jianjun Ding, Jian Zhu, Ru-shan Chen, Z. H. Fan, and K. W. Leung 

 
Department of Electronic Engineering 

Nanjing University of Science and Technology, Nanjing, 210094, China 
draksea@yahoo.com, zhujian82gogo@hotmail.com, eerschen@mail.njust.edu.cn, 

zhfan@mail.njust.edu.cn, eekleung@cityu.edu.hk 
 

Abstract ─ An alternative multiresolution (MR) 
basis is presented for the method-of-moments 
(MoM) solution of the electric-field integral 
equation (EFIE) for the analysis of low-frequency 
problems. The proposed MR basis functions can 
be treated as an extension of the traditional loop-
tree basis function to hierarchical functions. 
Similar to the loop-tree basis, the MR basis 
functions are linear combinations of standard Rao-
Wilton-Glisson (RWG) functions. Therefore, the 
MR algorithm can be easily applied to MoM codes 
with RWG basis. Since the MR basis is immune 
from the so-called low-frequency breakdown, the 
MR basis is especially suitable for the analysis of 
low-frequency problems. Compared with the 
previous MR basis, the present MR basis is easier 
to construct and comprehend, and the basis-
changing matrix is sparser. Physical interpretation 
and comparison are given for the previous and 
present MR bases. Numerical results demonstrate 
that both the previous and present MR bases are 
efficient for 3D electromagnetic scattering 
problems at low frequencies. 
  
Index Terms ─ EFIE, electromagnetic scattering, 
low frequency, method of moments (MoM), 
multiresolution techniques. 

 
I. INTRODUCTION 

The method of moments (MoM) is one of the 
most powerful numerical methods applicable to a 
wide variety of practical electromagnetic radiation 
and scattering problems [1, 2]. The electric field 
integral equation (EFIE) is always preferred in 
MoM. However, the EFIE suffers the so called 
low-frequency breakdown problem which occurs 
when the harmonic field wavelength is 

substantially larger than the characteristic size of 
the MoM grid. An effective solution to this 
problem is to separate the solenoidal part of the 
current [3-11]. The loop-star basis and loop-tree 
basis are proposed in the early 1980s [3, 4]. Both 
of them introduce divergence-free loop functions 
which can effectively separate the solenoidal part 
of the current. The detailed discussion and 
application of the loop-star basis and loop-tree 
basis can be found in [5-9], and a comparison of 
the frequency dependent iterative solver 
convergence for RWG, loop-tree, and loop-star 
basis functions is given in [10]. 

In recent years, the multiresolution (MR) basis 
has been proposed and acted as an efficient 
physics-based preconditioner [12-27]. Compared 
with the loop-star/tree basis, the MR basis has a 
much faster MoM convergence rate when an 
iterative solver is applied. The reasons why the 
MR basis can positively act on the spectrum of a 
MoM matrix has been investigated and discussed 
in [20, 21]. The MR basis was first mentioned by 
G. Vecchi in [7], where he pointed out that a MR 
basis can be efficiently constructed to replace the 
loop-star basis. Consequently, a MR basis was 
proposed in [12]. Then a modified MR basis was 
proposed in [13] to simplify the generation 
procedure. However, the MR bases in [12, 13] has 
a limit in modeling the curved structures, since the 
shape of the hierarchical meshes is restricted by 
the coarse mesh. To remedy this drawback of MR 
basis, a curvilinear MR basis is proposed in [15]. 
More recently, a new MR algorithm was proposed 
in [16-19] to overcome the shortcoming of the MR 
basis defined over triangular patches. In the new 
MR algorithm, the concepts of generalized mesh 
and generalized RWG (gRWG) basis were 
introduced. The generalized mesh is generated by 
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a grouping algorithm. The gRWG basis is the 
generalization of the standard RWG basis and it is 
defined on the generalized meshes. The new MR 
basis functions are constructed as linear 
combinations of gRWG basis functions and can 
finally be represented by linear combinations of 
the RWG basis functions. 

Inspired by the novel idea of generalized mesh 
and generalized RWG basis, an alternative MR 
basis is proposed in this paper which is also 
defined on the generalized meshes. Contrary to the 
MR algorithm in [16-19] which relies on 
mathematical operations, the MR basis proposed 
in this paper is generated via geometric operations. 
Compared with the previous MR basis, the 
proposed MR basis can be constructed in a much 
easier fashion and provide more direct physical 
meanings. Also, the basis-changing matrix of the 
RWG basis functions to the MR basis functions is 
sparser and can be generated faster. Furthermore, 
physical interpretations are provided for both MR 
bases and the number of MR basis functions of 
each level is clearly given which explains why the 
MR bases span the same space as the RWG basis. 
Numerical examples demonstrate that the MR 
bases have a much faster convergence rate for 
iterative solvers than the traditional loop-tree basis 
as explained in [20, 21].  

This paper is organized as follows. Section II 
introduces the hierarchical generalized meshes and 
the gRWG basis. Section III gives a detailed 
description of the MR basis generation. Section IV 
provides physical interpretations for the MR bases. 
A discussion on the computational complexity of 
the MR basis is given in Section V. Section VI 
presents numerical results to validate and 
demonstrate the performance of the MR basis. 
Finally, the work is concluded in Section VII. 
 
II. GENERALIZED MESH AND GRWG 

BASIS 
Before discussing the new MR basis, the 

essential concepts of the generalized mesh and 
gRWG basis are briefly described as preliminary 
knowledge. Since the detailed generation 
algorithm of the generalized mesh and gRWG 
basis has already been given in [17, 18], only a 
brief description is provided in this section. 

 
 
 

A. Hierarchical generalized meshes 
Generation of the hierarchical generalized 

meshes starts from an input triangular mesh which 
is called level-0 mesh and denoted by M0. Using a 
grouping algorithm, the nearby cells of the level-0 
mesh are grouped into level-1cells. The union of the 
level-1 cells is called level-1 mesh, M1. Applying 
the same grouping algorithm to the level-1 cells 
will generate the level-2 mesh (M2) and so on and a 
set of hierarchical generalized meshes {Ml, l = 1, 
…, L} will be obtained. The last level L is usually 
decided by the maximum size of the generated cells 
that should be smaller than the wavelength, with a 
typical range of λ/8 − λ/4. To demonstrate the 
grouping algorithm, the hierarchical generalized 
meshes of a circular plate are shown in Fig. 1. 

 
 
Fig. 1. An example of hierarchical generalized 
meshes on a circular plate. (a) level-0 mesh, (b) 
level-1 mesh, (c) level-2 mesh, (d) level-3 mesh. 

 

B. Generalized RWG basis 
Similar to the definition of the RWG basis, a 

gRWG basis function is defined on a pair of 
adjacent cells of its corresponding level. Denoting a 
level-l gRWG basis function as )(rR l
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where l
iA ,  and l

iA ,  are the areas of the two 

adjacent cells ( l
iC , , l

iC , ), and l
i  is the length of 

the level-l generalize edge shared by the two cells 
and is a polygonal line in general. 

 

C. Inter-mesh reconstruction relationship 
The inter-mesh reconstruction relationship can 

be derived through the charge matrix. In the inter-
mesh reconstruction relationship, a level-l gRWG 
function )(rRl

i


 can be expressed as the linear 

combination of the level-(l-1) gRWG functions 
)(1 rRl

n


  (n = 1,…, 1l

iN ) which are completely 

defined in the domain l
i

l
i CC ,,    of )(rRl
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where l
inR ,

 is the reconstruction coefficient. 

Applying the surface divergence to both sides of 
(2), we have 
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Projecting (3) on the cells 1l
mC  (m = 1, …, 1

,
l
icN ) in 
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, a linear system can be 

obtained as 
,l l l

i i iQ R q                                       (4) 

where l
iQ    is the 11

,
  l

i
l

ic NN  charge matrix 

whose element is given by  

1

1

,
( ) ,l

m

l l
i s n Cm n

Q R r 
     
 

 

11, 2, ,
, , , l

i

T
l l l l
i i i N i

R R R R 
       , 1( ) l

m

l l
i s n Cm

q R r      
 

. 

As will be discussed in the next section, the 
maximum number of the linear independent 
functions )(1 rRl

n


  (n = 1,…, 1l

iN ) is 11
, l
icN  

according to Euler’s theorem. Therefore, the rank 

of the matrix l
iQ    is 11

, l
icN  and a full row rank 

matrix l
iQ  
  can be obtained by deleting an 

arbitrary row of l
iQ   . When 11

, l
icN < 1l

iN , the 

matrix equation (4) has infinitely many solutions 
and the least squares solution can be taken as the 
reconstruction coefficients l

iR   , i.e. 

,l l l
i i iR Q q


        
                          (5) 

where l
iQ


  
  is the Moore-Penrose pseudoinverse 

of l
iQ  
 . 

 
III. MR BASIS GENERATION 

For a general 3-D surface (without torus), the 
Euler’s theorem states that [9, 19] 

2,V F E N                          (6) 

where V, E, F, NГ denote the number of vertices, 
edges, faces, and separated boundary contours, 
respectively. Since the number of vertices and 
edges on the boundary contours is equal, we have 

int int 2,V F E N                       (7) 

where Vint, Eint is the number of internal vertices 
and edges, respectively. 

For a domain (e.g. a cell or a pair of cells of 
level-l) composed of 1

,
l
icN  cells of level-(l-1), we 

have 
1)1( 1

,int
1  


 l

ic
l
i NNVN .           (8) 

1l
iN  is the number of the gRWG functions in the 

domain, since the gRWG functions are defined on 
the interior edges. If connecting all the cells in a 
tree (see e.g. Fig. 2) and avoid forming any loop 
on the tree, then the maximum number of edges on 
the tree will be 11

, l
icN . Obviously, the gRWG 

functions corresponding to the edges on the tree 
are linear independent. Therefore, the maximum 
number of the linear independent gRWG functions 
in the domain is equal to 11

, l
icN . 

If the surface is discretized with triangles, the 
number of solenoidal functions NS and the number 
of nonsolenoidal functions NX of loop-star basis 
are given by [7, 9] 

1int  NVNS                               (9) 

1 FN X .                               (10) 
Their sum is equal to the number of the RWG 
functions, i.e. 

,S XN N N                                (11) 

where N is the number of the RWG functions. 
Similar to loop-star/tree basis, the MR basis 

can also be split into the solenoidal and 
nonsolenoidal parts. It will be shown in the next 
section that the solenoidal and nonsolenoidal 
functions of the MR basis span the same space as 
for the loop-tree/star basis, and the numbers of the 
solenoidal and nonsolenoidal functions of the MR 
basis can also be given by equations (9)-(11). 
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A. Solenoidal basis 
It has already been shown in [17] that the use 

of a hierarchical decomposition of the 
nonsolenoidal part together with a non hierarchical 
loop basis suffices to obtain well conditioned 
MoM matrices and, hence, quickly convergent 
solvers for low-frequency and very dense 
discretizations. The difference between the low-
frequency and very dense discretization is 
addressed in [11]. Therefore, for simplicity, the 
loop basis generated on level-0 mesh is chosen as 
the solenoidal part of the MR basis. The detailed 
discussion of the loop basis can be found in [7, 9], 
whereas the topic of generating the loop basis 
functions on the more complex surfaces (e.g. wire-
surface structure) can be found in [28]. 

After generating the loop basis, the solenoidal 
basis of the MR basis can be written as 

  0 ,
T

L Lf T R      
 

                      (12) 

where 1, 2, ,, , ,
S

T

L L L N Lf f f f      
   

  is the solenoidal 

MR basis,  LT  is the basis-changing matrix, and 
0 0 0 0

1 2, , ,
T

NR R R R      
   

  is the RWG basis of level-

0 mesh. 
 

B. Nonsolenoidal basis 
The nonsolenoidal basis is defined on the 

hierarchical generalized meshes. The 
nonsolenoidal basis functions of the highest level 
(level-L) are different from the nonsolenoidal basis 
functions of other levels (level-l, l = 1, …, L-1). 
Therefore, the nonsolenoidal basis functions of 
level-L are generated separately from the function 
of the other levels. 

1). Nonsolenoidal functions of level-L 
The generation of the nonsolenoidal functions 

of level-L is similar to that of the tree basis 
functions in loop-tree basis. The only difference is 
that the cells of level-L are replaced by triangles. 
An easy procedure of constructing the 
nonsolenoidal functions of level-L is to connect 
the cells of the level-L mesh in a tree, and each 
gRWG basis function on the branch of the tree is 
taken as a nonsolenoidal function. To demonstrate 
this procedure, the nonsolenoidal functions 
defined on the level-2 mesh (Fig. 1) are plotted. In 
this example, it is assumed that level-2 mesh is of 
the highest level. As shown in Fig. 2 (a), each 
black line connecting a pair of cells represents a 

generated nonsolenoidal function. It is worth 
mentioning that the number of the nonsolenoidal 
functions of level-L equals the number of the cells 
of level-L minus one. 

 

 
Fig. 2. The nonsolenoidal functions, which are 
depicted with black lines, on a circular plate. (a) 
Level-2 functions, (b) level-1 functions. 

 
2). Nonsolenoidal functions of level- l (l = 1, 

…, L-1) 
Let the nonsolenoidal functions of level-l 

belong to the cell 1l
kC  of level-(l+1) denoted with 

 1,,1, 1,  
l

C

l
ik i

k
Nif 


, in which l

Ci
k

N 1  is the 

number of the cells of level-l belonging to the cell 
1l

kC , the nonsolenoidal functions of level-l can be 

expressed as the union of the nonsolenoidal 
functions that belong to all the cells of level-(l+1), 
i.e. 
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(13) 

where l
cN  and 1l

cN  are the numbers of the cells of 

level-l and level-(l+1) respectively, and 1 l
c

l
c NN  

is the number of the nonsolenoidal functions of 
level-l. A simple way of generating the level-l 
nonsolenoidal functions in the cell 1l

kC  is to 

connect all the level-l cells which are completely 
included in the cell 1l

kC  in a tree and taking the 

gRWG basis functions on the branches of the tree 
as nonsolenoidal functions. An example of level-1 
nonsolenoidal functions is shown in Fig. 2 (b). As 
can be observed from Fig. 2 (b), the level-2 cells 
are bounded with yellow lines and the level-1 
nonsolenoidal functions are clustered in each 
level-2 cell shown with black lines. 

The nonsolenoidal functions (13) can be 
written as linear combinations of the gRWG basis 
functions of level-l, i.e. 

(a) (b) 
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' ,
Tl l l

X Xf T R         
 

                     (14) 

where 11, 2, ,
, , , l l

c c

Tl l l l
X X X N N X

f f f f 
      

   
 , '

Tl
XT    is 

the basis-changing matrix, and 
TlR   


 

1 2, , , l

l l l

N
R R R  
  

  is the gRWG basis of level-l. 

Applying the inter-mesh reconstruction 
relationship (2) recurrently, the nonsolenoidal 
functions of level-l can then be written as linear 
combinations of the RWG basis functions of level-
0 mesh, i.e., 

0Tl l
X Xf T R         
 

.                   (15) 

Then, the nonsolenoidal functions of all levels can 
be written as 

  0 ,
T

X Xf T R      
 

                    (16) 

where 0 1, , ,
T T T T

L
X X X Xf f f f                 

   
  and 

  0 1, , ,
T T TT L

X X X XT T T T              
 .  

Finally, the MR basis functions can be 
expressed in terms of the RWG basis functions as 
follows 

  0 ,
T

MRf T R      
 

                    (17) 

where      ,L XT T T    . 

 
IV. PHYSICAL INTERPRETATION OF 

MR BASES 
Although the generation algorithm of the MR 

basis proposed in [18, 19] is clearly given, the 
physical meaning behind it is not clearly pointed 
out. Readers may also be confused about why the 
number of the MR basis functions equals the 
number of the RWG basis functions. Therefore, 
physic interpretations are tried to give in this 
section for both the present MR basis and the 
previous MR basis for better understanding of the 
MR bases. 

 

A. The present MR basis 
From the discussion given in Section III-B, the 

total number of the nonsolenoidal functions can be 
calculated as 

0 1

1 1 2( ) ( ) ( 1)

1

L
X X X X

L
c c c c

N N N N

F N N N N

F

   

      

 


 .         (18) 

Therefore, the numbers of the nonsolenoidal 
functions of the MR basis also satisfy (10). Similar 
to the loop-tree/star basis, it can be easily proven 
that all the solenoidal and nonsolenoidal functions 
of the present MR basis are linear independent 
from each other. Therefore, the MR basis spans 
the same space as for the loop-star/tree basis. 

 
B. The previous MR basis 

The previous MR basis functions proposed in 
[18, 19] are constructed via SVD on charge 
matrices. After applying SVD on a charge matrix, 
the right singular vectors associated to non-zero 
and null singular values are assigned as the 
coefficients of the corresponding gRWG function 
to generate the solenoidal and nonsolenoidal MR 
functions respectively. However, the reason is not 
explained. In the following, a physical explanation 
to the above mathematical operations is given. 
Assuming a charge matrix generated by projecting 
n level-l gRWG functions onto m level-l cells, 
then its SVD result can be written as 
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where 0121  m  , since the rank of 

[Q] is m-1. The expression (19) can be rewritten as 
   1 2 1 2

1 1 2 2 1 1

, , , , , ,

[ , , , ,0 , ,0 ]
n n

m m m n
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U U U U U    

   

 

 
 

.      (20) 

 

It can be inferred from (20) that the gRWG 
functions multiplies the first m-1 columns of [V] 
generates m-1 linear independent functions which 
have surface charge and can be taken as the 
nonsolenoidal functions. Therefore, the number of 
the nonsolenoidal functions generated with the 
algorithm in [17, 18] can also be given by (18). 
Namely, the numbers of the MR nonsolenoidal 
functions in the present paper and in [17, 18] are 
equal. It can also be inferred from (20) that the 
gRWG functions multiplies the other n-m columns 
of [V] generates n-m linear independent functions 
which have no surface charge and can be taken as 
the solenoidal functions. 

It can be inferred from the discussion at the 
beginning of Section III that the number of the 
level-l solenoidal functions in a level-(l+1) cell 
(except the level-L cell of closed surfaces which 
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has no boundary) equals the number of the interior 
vertexes shared by the level-l edges inside the 
level-(l+1) cell. Furthermore, the number of the 
level-l solenoidal functions added by generating 
solenoidal functions across a pair of level-(l+1) 
cells equals the number of the interior vertexes 
which connecting the level-l edges that coincide 
with the common edge of the two level-(l+1) cells. 
Therefore, the total number of the MR basis 
functions generated in [18, 19] can be finally 
described by (21). It can be proven by theorem 1 
that the number of the MR basis functions equals 
the number of the RWG basis functions of the 
input mesh. 
Theorem 1 The number of the RWG basis 
functions of the input mesh can be written as the 
sum of the following elements: 
 

,
0 1 1

,
l
eNL L

l l
e v n

l l n

N N N
  

 
    

 
                       (21) 

where l
eN  (l=L) is the number of the level-L 

interior edges and 





1

1
,

l
cN

m

l
me

l
e NN  (0≤l<L-1)  is 

the total number of the level-l interior edges inside 
all level-(l+1) cells, in which l

meN ,  is the number 

of the level-l edges inside the m-th level-(l+1) cell 
and 1l

cN  is the number of level-(l+1) cells, and 
l

nvN ,  is the number of the interior vertexes on the 

n-th level-l interior edges. 
 

Proof: The expression (21) can be interpreted by 
the changes of the interior edges of each level in 
the procedure of generating the hierarchical 
meshes. In the first step of the mesh generating 
procedure, the level-1 mesh is generated from the 
input mesh (level-0) and parts of the level-0 
interior edges are grouped into the level-1 interior 
edges. Since the number of the level-0 interior 
edges grouped into one level-1 interior edge 
equals the number of the level-0 interior vertexes 
on the level-1 interior edge plus one, the total 
number of the grouped level-0 interior edges 
equals the total number of level-0 interior vertexes 
on the level-1 interior edges plus the number of 
the level-1 interior edges. Namely, the number of 
the level-0 interior edges can be decomposed as 
the sum of the total number of the level-0 interior 
edges inside all level-1 cells (i.e. the number of the 

left level-0 interior edges), the total number of 
level-0 interior vertexes on the level-1 interior 
edges, and the number of the level-1 interior 
edges. Similarly, the number of the level-l (1≤
l<L-1) interior edges can be decomposed as the 
sum of the total number of the level-l interior 
edges inside all level-(l+1) cells, the total number 
of level-l interior vertexes on the level-(l+1) 
interior edges, and the number of the level-(l+1) 
interior edges. As a consequence, the number of 
the level-0 interior edges can be finally written as 
(21). Since each RWG basis function of the input 
mesh is corresponding to a level-0 interior edge, 
theorem 1 is proven. 

It can be inferred from the above discussion 
that the number of the solenoidal and 
nonsolenoidal functions of the previous MR basis 
functions can also be given by equations (9)-(11). 
The level-L functions of the previous MR basis 
should be constructed independently if the cells 
are not finally grouped into one big cell. The level-
L functions of the previous MR basis could be 
generated by applying SVD on the charge matrix 
generated by projecting the level-L gRWG 
functions on the level-L cells or simply taking the 
level-L gRWG basis functions as the level-L MR 
basis functions. It can also be inferred from 
Theorem 1 that the solenoidal part of the present 
MR basis can be constructed as a hierarchical 
basis in which each solenoidal function is 
generated as a linear combination of the gRWG 
functions of the same level which constitute a loop 
around an interior vertex. 

 
V. COMPUTATIONAL COMPLEXITY 

Since the computational complexity of the 
loop basis is known as O(N) [28], only the 
computational complexity of the nonsolenoidal 
MR basis is needed to be analyzed. The 
computational complexity of the nonsolenoidal 
MR basis can be estimated by estimating the 
number of on-zero elements of the basis-changing 
matrix [T]. 

The number of non-zero elements of the basis-
changing matrix [T] as the functions of the number 
of levels of a structure discretized with 19090 
unknowns is investigated and shown in Fig. 3. It 
can be observed from Fig. 3 that the number of 
non-zero elements of matrix [T] increase linearly 
with the number of the levels of the MR basis. 
Therefore, the computational complexity of the 
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nonsolenoidal MR basis is of O(NL), where L is 
the number of levels. If keep grouping the cells of 
each level upwards until the cells are finally 
grouped into one single cell in the highest level 
mesh, the number of levels L will be equal to 
LogN and the computational complexity will be of 
O(NLogN). The number of non-zero elements and 
the generation time of matrix [T] as functions of 
the number of the unknowns for the previous MR 
basis and present MR basis when the cells are 
finally grouped into a single cell are investigated 
and shown in Fig. 4 (a) and (b), respectively. It 
can be observed from the figure that the 
computational complexity of both the previous and 
present MR basis is of O(NLogN) and the 
computational complexity of the present MR basis 
has a smaller constant. 
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Fig. 3. The number of non-zero elements of the 
basis-changing matrix [T] versus the number of 
levels of a structure discretized with 19090 
unknowns. 
 

VI. NUMERICAL RESULTS 
In this section, the MR basis is applied for the 
analysis of EM scattering problems at low 
frequencies. In the following examples, the 
restarted GMRES(30) algorithm is used as an 
iterative method. All simulations were performed 
on a PC computer with Intel(R) Core(TM)2 1.86 
GHz CPU and 2 GB RAM using single precision. 
Zero vector is taken as initial approximate solution 
and the iteration process is terminated when the 
relative backward error is reduced by 10-4. And all 
the results with different bases were obtained after 

applying a diagonal preconditioning to the MoM 
matrix. 
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Fig. 4. (a) The number of non-zero elements of the 
basis-changing matrix [T], (b) the time for 
generation of matrix [T], versus the number of 
unknowns. 
 

A. Offset bend rectangular cavity 
The first example is a metallic offset bend 

rectangular cavity with 8.7 cm by 10 cm square 
cross section and offset angles 30°. As shown in 
Fig. 5, the offset bend rectangular cavity is 
discretized with 4317 unknowns. The mesh of the 
offset bend rectangular cavity could generate six 
levels hierarchical meshes and five levels MR 
basis at most. The EM scattering of the offset bend 
rectangular cavity is calculated with the EFIE 
using the RWG, loop-tree, the previous MR, and 
present MR bases. The 2-norm condition number 
and convergence behavior of GMRES(30) for the 
offset bend rectangular cavity using the above 
bases over a frequency range of 0.1-200 MHz is 
shown in Fig. 5 and Fig. 6, respectively. The 
corresponding total time for applying the MR 
bases is depicted in Fig. 7. 

With reference to the figures, the RWG basis 
performs worse than both the loop-tree basis and 
MR bases in the low frequency range. It can be 
also found that the MR bases perform much better 
than the loop-tree basis in the low frequency 
range. The more levels of the present MR basis, 
the better it performs in the low frequency range. 
Comparing the previous MR basis with the present 
MR basis, it can be found that the present MR 
basis performs similar to the previous MR basis at 
low frequencies. However, the previous MR basis 
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performs more stable as the frequency increases. 
The corresponding total time which includes the 
time of the generation of the basis-changing 
matrix, the time of the generation of the diagonal 
preconditioning matrix, and the solution time of 
the GMRES(30) is depicted in Fig. 6. The result 
using the RWG basis is not given in Fig. 6 since 
the GMRES(30) solver cannot converge by using 
the RWG basis at some frequencies. It is also 
clearly indicates that the MR bases have better 
performance than the loop-tree basis at the low-
frequency range. 

The impact of the discretization density to the 
performance of different bases is investigated. The 
2-norm condition number of the MoM matrices 
using the RWG basis, loop-tree basis, and the 
present and previous MR bases for the offset bend 
rectangular cavity discretized with different 
number of unknowns is shown in Fig. 8. It can be 
found from Fig. 8 that the MR bases perform more 
stable than the RWG basis and loop-tree basis as 
the discretization density increases and this result 
agrees with the results in [11]. 
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Fig. 5. The 2-norm condition number as a function 
of frequency for the offset bend rectangular cavity 
using the RWG, loop-tree, and MR bases. 
 

B. Tank model 
As shown in Fig. 9, the second example is a 

tank model discretized with 8706 unknowns. The 
length, width, and height of the tank model are 
10.3 m, 3.3 m, and 2.3 m, respectively. To 
describe the shape of the tank model efficiently, 
the parts varying rapidly in geometry are 

discretized with relatively small triangular patches 
and the other parts are with large patches. 
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Fig. 6. The convergence behavior of GMRES(30) 
as a function of frequency for the offset bend 
rectangular cavity using the RWG, loop-tree, and 
MR bases. 
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Fig. 7. The total time as a function of frequency 
for the offset bend rectangular cavity using the 
loop-tree and MR bases. 
 

The convergence curves of the GMRES(30) 
are compared in Fig. 9 at the low frequency 1.0 
MHz using the RWG, loop-tree and the MR bases. 
It can also be found from Fig. 9 that the 
convergence of the GMRES(30) using the MR 
bases which have higher levels is much faster than 
the others. The convergence behavior of 
GMRES(30) and the corresponding total time for 
applying the MR bases over a frequency range of 
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0.1-6 MHz is shown in Fig. 10 and Fig. 11, 
respectively. From Fig. 10 and Fig. 11 it can found 
that the both MR basis performs similar at lower 
frequencies and the previous MR performs more 
stable as the frequency increases. 
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Fig. 8. The 2-norm condition number as a function 
of discretization density for the offset bend 
rectangular cavity using the RWG, loop-tree, and 
MR bases. 
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Fig. 9. The convergence history of the GMRES(30) 
for the tank model at 1.0 MHz using the RWG, 
loop-tree, and MR bases. 
 

VII. CONCLUSION 
An alternative MR basis has been proposed for 
analyzing low-frequency problems using the 
MoM. Contrary to the previous MR basis which is 
generated based on mathematical operations, the 
present MR basis is generated based on 
geometrical operations. The present MR basis is 

an extension of the loop-tree basis to hierarchical 
basis, and the loop-tree can be treated as a special 
one-level MR basis. 
 

100

1000

0 1 2 3 4 5 6
Frequency (MHz)

N
um

be
r 

of
 it

er
at

io
ns

Present MR, 4 levels

Present MR, 6 levels

Previous MR, 6 levels

 
Fig. 10. The convergence behavior of GMRES(30) 
as a function of frequency for the tank model 
using the MR bases. 
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Fig. 11. The total time as a function of frequency 
for the tank model using the MR bases. 
 
Therefore, the present MR basis is easier to 
construct and comprehend. Also, the 
computational complexity of the present MR basis 
is lower than that of the previous MR basis and the 
basis-changing matrix of the RWG basis to the 
present MR basis is sparser. As similar to the loop-
tree basis, the present MR basis functions are 
combinations of RWG basis functions. Thus, the 
present MR basis can be easily applied to existing 
MoM codes. It has been demonstrated by the 
numerical results that the MR bases can be used to 
solve low-frequency EM scattering problems 
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efficiently. Compared with the traditional loop-
tree basis, the MR bases converge much faster at 
low frequencies for iterative solvers. Although the 
present MR basis performs similar to the previous 
MR basis at lower frequencies, it should be 
pointed out that the present MR basis suffers the 
same drawback as the loop-tree basis, i.e. it will be 
unstable as the frequency goes higher. Therefore, 
the previous MR basis is recommended at higher 
frequencies since it performs more stable as the 
frequency increases. 
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