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Abstract ─ The combination of asymptotic 
phase basis functions and matrix impedance 
method is proposed and used for fast 
computation of monostatic scattering from 
electrically large object. Since asymptotic phase 
(AP) basis function can be defined on large 
patches, less number of unknowns is required 
than that when using traditional 
Rao-Wilton-Glisson (RWG) vector basis 
function. In order to efficiently compute 
electromagnetic scattering, the flexible general 
minimal residual (FGMRES) iterative solver is 
applied to compute the coefficients of the basis 
functions and the sparse approximate inversion 
(SAI) preconditioning technique is used to 
accelerate the iterative solver. However, the 
impedance matrix varies with incident angles, 
resulting in significant computation time cost 
for construction of impedance and SAI 
preconditioning matrices. This difficulty can be 
alleviated by using the model-based parameter 
estimation (MBPE) technique. Both the 
impedance and SAI preconditioning matrices 
are interpolated at intermediate angles over a 
relatively large angular band with rational 
function interpolation method. Numerical results 
demonstrate that this method is efficient for 
monostatic RCS calculation with high accuracy. 
 
Index terms ─ Interpolation, linear phase basis 
function, preconditioning technique, monostatic 
RCS, electromagnetic scattering 
 

I. INTRODUCTION 
Electromagnetic wave scattering problems 

address the physical issue of detecting the 
diffraction pattern of the electromagnetic 
radiation scattered from a large and complex 

body when illuminated by an incident incoming 
wave. A good understanding of these 
phenomena is crucial to radar cross section 
(RCS) calculation, antenna design, 
electromagnetic compatibility, and so on. All 
these simulations are very demanding in terms 
of computer resources, and require efficient 
numerical methods to compute an approximate 
solution of Maxwell’s equations. Using the 
equivalence principle, Maxwell’s equations can 
be recast in the form of integral equations that 
relate the electric and magnetic fields to the 
equivalent electric and magnetic currents on the 
surface of the object. Amongst integral 
formulations, the surface integral equation (SIE) 
is widely used for electromagnetic wave 
scattering problems as it can handle the most 
general geometries. The matrix associated with 
the resulting linear systems is large, dense, 
complex and non-Hermitian [1]. It is basically 
impractical to solve SIE matrix equations using 
direct methods because they have a memory 
requirement of O(N2), where N refers to the 
number of unknowns. This difficulty can be 
circumvented by use of iterative methods, and 
the required matrix-vector product operation can 
be efficiently evaluated by multilevel fast 
multipole algorithm (MLFMA) [2, 3]. The use 
of MLFMA reduces the memory requirement to 
O(NlogN) and the computational complexity of 
per-iteration to O(NlogN). 

Generally, the scattering of arbitrary metallic 
object can be accurately computed by 
Rao-Wilton-Glisson (RWG) basis function and 
MoM-MLFMA. Using traditional RWG basis 
functions, the required number of unknowns is 
on the order of 100 per square wavelength 
making electrically large problems impractical 
[20]. For large smooth objects, the rapid spatial 
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variation in the current is due to phase variations 
rather than magnitude variations. By using the 
asymptotic phase (AP) basis functions [5-8], 
drastically computation time can be reduced for 
large and smooth bodies. However, the AP based 
impedance matrix varies with incident angles, 
resulting in significant computation time cost 
for impedance matrix construction for 
monostatic calculations. This can be 
computationally prohibitive despite the 
increased power of the present generation of 
computers. 

Since the LP-RWG based impedance matrix 
is not constant for monostatic RCS computation, 
traditional current interpolation techniques 
[15-19] are not suitable for fast angular sweep. 
To efficiently obtain the monostatic RCS using 
AP-RWG basis function, the impedance matrix 
interpolation method can be applied to avoid the 
construction of impedance matrices repeatedly 
[11-13]. MBPE is the abbreviation of 
model-based parameter estimation and the 
rational function approximation is used in 
MBPE. Using integral equation and moment 
method to compute the scattering, the elements 
of impedance matrix are calculated by integral 
of Green's function. Since the Green's function 
takes the form of exponential function which is 
easily to be approximated by rational function, 
the MBPE could be able to perform good results 
in impedance matrix interpolation. 

Interpolating impedance matrix is able to save 
much time for constructing impedance matrix 
but can do nothing for iterative solution 
repeatedly. Using SAI preconditioning method 
[9,10] can accelerate iterative solution but 
increases large time for constructing SAI 
matrices. Thus, new method is required to 
circumvent this difficulty. Due to SAI matrix is 
an approximate inverse of impedance matrix, it 
is still a continuous function of angle. Moreover, 
inaccurate preconditioning matrix can not 
impact the precise of linear system. 
Consequently, using interpolation technique is a 
good way to accelerate the construction of SAI 
matrices. In this paper, the combination of the 
impedance matrix interpolation and the 
preconditioning matrix interpolation is proposed 
to efficient computation of monostatic RCS over 
broad angular band. 

The remainder of this paper is organized as 
follows. Section II demonstrates the theory and 
formulation of asymptotic phase basis function. 
Impedance and SAI preconditioning matrix 
interpolation technique is discussed in section 

III. Numerical experiments of several 
geometries are presented to demonstrate the 
efficiency of this proposed method in Section IV. 
Conclusions are provided in Section V. 
 

II. FORMULATIONS OF INTEGRAL 
EQUATIONS WITH ASYMPTOTIC 

PHASE BASIS 
For electromagnetic scattering from perfect 

electrical conductor (PEC), the SIE includes 
electric field integral equation (EFIE) and 
magnetic field integral equation (MFIE). In 
order for avoiding resonance problem, the 
combination form of EFIE and MFIE which 
names combined field integral equations (CFIE) 
is widely used for closed structure [4]. The 
CFIE formulation of electromagnetic wave 
scattering problems using planar 
Rao-Wilton-Glisson (RWG) basis functions for 
surface modeling is presented in [20]. The 
resulting linear systems from CFIE formulation 
after Galerkin’s testing are briefly outlined as 
follows: 
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Here G(r, r′) refers to the Green’s function in 
free space and {an} is the column vector 
containing the unknown coefficients of the 
surface current expansion with RWG basis 
functions. Also, as usual, r and r′ denote the 
observation and source point locations. Einc(r) 
and Hinc(r) is the incident excitation plane wave, 
and η and k denote the free space impendence 
and wave number, respectively. Once the matrix 
equation (1) is solved by numerical matrix 
equation solvers, the expansion coefficients {an} 
can be used to calculate the scattered field and 
RCS. In the following, we use A to denote the 
coefficient matrix in equation (1), x = {an}, and 
b = {Vm} for simplicity. Then, the CFIE matrix 
equation (1) can be symbolically rewritten as: 

Ax = b    (2) 
Following the conventional MoM formulation, 

the induced current J is expanded in terms of 
subsectional basis functions fn. On the smooth 
regions of S, where the induced surface currents 
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present an asymptotic behaviour, the current 
density is expanded in terms of the so-called 
linearly phased Rao–Wilton–Glisson (LP-RWG) 
vector basis functions proposed in [5-8], whose 
formulation is included here for the sake of 
completeness: 
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where 
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 Λ ρ  and Λ is the RWG basis 

function. ln is the length of the common edge to 
the triangles Tn

± conforming the basis function, 
An

± is the area of each triangle, ρn
± is the 

corresponding vector from the free vertex of Tn
± 

to a point r on the triangle, and ρnc
± is the vector 

from the free vertex of triangle Tn
± to the 

midpoint of the common edge rnc. Finally, kn is 
the vector wavenumber associated to the phase 
of the current density on the function. Compared 
with traditional RWG basis functions, drastic 
reduction of the required number of unknowns 
can be achieved by using the linearly-phased 
RWG basis functions. 

To solve the equation (2) by an iterative 
method, the matrix-vector products are needed 
at each iteration step. Physically, a matrix-vector 
product corresponds to one cycle of iterations 
between the basis functions. The basic idea of 
the fast multipole method (FMM) is to convert 
the interaction of element-to-element to the 
interaction of group-to-group. Here a group 
includes the elements residing in a spatial box. 
The mathematical foundation of the FMM is the 
addition theorem for the scalar Green’s function 
in free space. Using the FMM, the matrix-vector 
product Ax can be written as: 

Ax = ANx + AFx    (4) 
Here AN is the near part of A and AF is the far 
part of A.  
  In the FMM, the calculation of matrix 
elements in AN remains the same as in the MoM 
procedure. However, those elements in AF are 
not explicitly computed and stored. Hence they 
are not numerically available in the FMM. It has 
been shown that the operation complexity of 
FMM to perform Ax is O(N1.5). If the FMM is 
implemented in multilevel, the total cost can be 
reduced further to O(NlogN) [2,3]. 
 
 
 

III. IMPEDANCE AND 
PRECONDITIONING MATRIX 

INTERPOLATION METHOD 
The methodology on how to efficient 

calculation of monostatic scattering with 
asymptotic phase basis function is discussed in 
this section. When asymptotic phase basis is 
applied for construction of the impedance 
matrix, each element of the matrix is not 
constant over the interested angular band. 
Repeated impedance matrix construction cost 
plenty of time. Accordingly, interpolation 
method is used to accelerate monostatic 
scattering calculation. First of all, the impedance 
matrix interpolation method is introduced. Then 
SAI preconditioning matrix interpolation 
method is proposed. Finally, a hybrid method 
combines both of the two interpolation methods 
is discussed, which make a good way to the 
efficient analysis of wide-band scattering.  

Using method of moment, the current density 
at certain angle can be obtained by solving 
equation (2). For a wide angular band, we have 
to repeat this procedure at a set of discrete 
frequencies to get the monostatic response. For 
structures with a large electrically scale, the 
required solution is highly computationally 
expensive. In order to reduce the matrix filling 
time of equation (2), the MBPE interpolation is 
employed to obtain the impedance matrix over a 
wide band. 
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where Zij denotes the element of the impedance 
matrix Z, the superscripts i and j are the serial 
number of row and column, respectively. c0, …, 
cp and d1, …, dq are coefficients determined by 
the solution of following linear equations: 
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(6) 

Equation (6) can be solved by a direct matrix 
inversion, since the order of the matrix p + q + 1 
is low in this case. To accelerate the solution of 
(2), the octree structure based fast multiple 
method [2,3] is applied to MoM. Then equation 
(2) can be rewritten as 

(Znear + Zfar)·I = V   (7) 
where Znear is the near field impedance matrix 
evaluated by the MoM and Zfar is the far field 
part evaluated by the MLFMA. The set of Znear 
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are interpolated by the MBPE while Zfar are 
evaluated by the MLFMA method efficiently.  

Although the impedance matrix interpolation 
method can avoid filling impedance matrix 
repeatedly, iterative solution of matrix equations 
is still required at each angular point. Thus, 
computational efficiency is challenged by 
ill-conditioned linear equations. Preconditioning 
technique, such as SAI, can greatly improve 
condition number of the system so as to 
accelerate the convergence of the iterative solver. 
The formulation of preconditioning technique 
can be described by 

M·ZI = M·V    (8) 
where M is the SAI preconditioning matrix in 
this paper, the purpose of preconditioning is to 
make the preconditioned matrix MZ better 
conditioned than matrix Z. Generally, Znear is 
used as the basis for constructing preconditioner. 
Thus, it suffices to solve a single problem for 
each minimum group at the lowest level as in [9, 
10]. Since the operation on all edges of the same 
group is done at a time, it can reduce the 
construction of SAI significantly. However, it is 
still time-consuming to construct SAI 
preconditioning matrix repeatedly at each 
frequency point. According to the theory of SAI, 
it is apparent that preconditioning matrix is a 
sparse matrix for computation and storage, 
which makes the utilization of interpolation 
method possible. Therefore, matrix interpolation 
by the MBPE can be transplanted to interpolate 
SAI preconditioning matrix. 
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Also the unknown coefficients of the numerator 
and denominator are uniquely determined by 
matching the p + q + 1 sampling Mij as equation 
(6). 
 

IV. NUMERICAL RESULTS 
In this section, a number of numerical results 

are presented to demonstrate the accuracy and 
efficiency of the preconditioning matrix 
interpolation method for fast calculation of RCS 
over wide band. The flexible general minimal 
residual (FGMRES) [21,22] algorithm is applied 
to solve linear systems. The dimension size of 
Krylov subspace is set to be 30 for outer 
iteration and the dimension is set to be 10 for 
inner iteration. The tolerance of inner iteration is 
0.1 in this paper. All experiments are conducted 
on an Intel Core(TM) II Duo with 3.45 GB local 
memory and run at 2.40 GHz in single precision. 

The iteration process is terminated when the 
2-norm residual error is reduced by 10-3, and the 
limit of the maximum number of iterations is set 
as 1000. 

As well known, the impedance matrix with 
traditional RWG basis is constant for monostatic 
scattering computation. Using traditional RWG 
basis functions, the required number of 
unknowns is on the order of 100 per square 
wavelength making electrically large problems 
impractical. In order to alleviate this difficulty, 
the asymptotic phase RWG basis is used for 
construction impedance matrix. However, the 
impedance matrix is not constant over the 
angular band. Fortunately, the element of 
impedance matrix is a trigonometric function of 
the incident angle and can be interpolated by 
MBPE successfully. Three geometries are 
applied to illustrate the performance of our 
method. They consist of a metallic cylinder (10λ
×4λ) with 5279 unknowns, a PEC Cube (15λ×
15λ×15λ) with 7137 unknowns, and a metallic 
plane with 10968 unknowns. The incident wave 
is the plane wave with vertical polarization. That 
is, if the incident angle is θ and φ, the vector of 
incident direction is (-sinφ, cosφ). The 
frequency of incident wave is 300 MHz for both 
cylinder and cube. The frequency is 600MHz for 
PEC plane.  
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Fig. 1. Cylinder: (a) RCS for VV-polarization, 
300 MHz; (b) Number of matrix vector 
products. 
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Fig. 2. Cube: (a) RCS for VV-polarization, 300 
MHz; (b) Number of matrix vector products. 
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Fig. 3. Plane: (a) RCS for VV-polarization, 600 
MHz; (b) Number of matrix vector products. 
 

In our simulations, 6 uniform samples are 
required in the impedance matrix interpolation 
method for these three examples. As shown in 
Fig. 1(a), Fig. 2(a) and Fig. 3(a), it can be seen 
that the impedance matrix interpolation method 

is an accurate method and the impedance matrix 
interpolation method is more efficient than the 
traditional method. As shown in Fig. 1(b), Fig. 
2(b) and Fig. 3(b), there is no difference for the 
number of the matrix-vector production when 
the SAI matrices are interpolated. It can be 
concluded that almost the same convergence can 
be obtained whether the SAI matrix is 
constructed by interpolation method or not.  

Since the elements of the impedance matrix is 
a simple function of the angle, only few 
sampling angles are needed for a wide angular 
band. That is, only few solution processes of the 
linear system constructed by method of moment 
are needed for a wide angular band. This 
property is also valid for frequency sweep. In 
this paper, the angular sweep is focused on and 
only 6 uniform samples are computed for every 
example. The number 6 is an experience 
parameter. Generally speaking, interpolation 
results are inaccurate. In this paper, the 
interpolation method is used to interpolating the 
impedance matrix and preconditioning matrix. 
Definitely, there is some difference between the 
exact results and interpolation results. The 
difference will influence the surface electrical 
current distribution. However, the RCS is the 
logarithmic function of current. Accordingly, the 
difference will not impact the RCS greatly. 
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Fig. 4. RCS for frequency sweep: (a) Cube, 1 
GHz ~ 3 GHz; (b) Plane, 200 MHz ~ 700 MHz. 
 

53ZHANG, ET. AL.: COMBINATION OF ASYMPTOTIC PHASE BASIS FUNCTIONS AND MATRIX INTERPOLATION METHOD 



In order to better understanding the proposed 
method, the results of frequency sweep are 
given from Fig. 4. Since this paper focuses on 
the monostatic RCS, only the RCS of the last 
two examples (Cube and Plane) are computed 
with respect to frequency.  

From Fig. 4, it is concluded that the proposed 
method can also be used for frequency sweep. 
The interpolation results are almost the same as 
the reference results. Either angle sweep or 
frequency sweep, the elements of the impedance 
matrix are calculated by integral of Green's 
function. Since the Green's function takes the 
form of exponential function which is easily to 
be approximated by rational function, the MBPE 
could be able to perform good results in 

impedance matrix interpolation.  
When the method of moment is used for the 

computation of radar cross section, the main 
problem is to solve the linear system Ax = b. 
For computation of monostatic RCS, especially 
asymptotic phase basis is used, the impedance 
matrix A will be modified according to the 
incident angle. The interpolation method can not 
be applied for induced current x. A good way for 
better efficient simulation is to interpolating the 
impedance matrix. That is, cost more memories 
to achieve less computation time. From the 
results of this paper, MBPE performs well for 
interpolating both impedance matrix and 
pre-conditioner matrix.  

 
Table 1: Construction time for impedance matrix (Time: second) 

Object Unknown Impedance 
without Interpolation 

Impedance 
 with Interpolation 

Cylinder 4279 7211 628 
Cube 7137 9980 1041 
Plane 10968 63742 7734 

 
Table 2: Construction time for SAI preconditioning matrix (Time: second) 

Object Unknown SAI without Interpolation SAI with Interpolation 

Cylinder 4279 1527 143 
Cube 7137 543 58 
Plane 10968 19080 2045 

 
Table 3: Total solution time for fast frequency sweep (Time: second) 

Object Unknown Frequency Angular 
Band 

Without 
Interpolation 

Hybrid 
Interpolation 

Cylinder 4279 300 MHz 0~90° 10423 3954 
Cube 7137 300 MHz 0~90° 12654 3872 
Plane 10968 600 MHz 0~90° 92718 19877 

 
As shown in Tab.1, the construction time of 

near field impedance matrices are compared 
between traditional method and interpolation 
method for these three examples. As shown in 
Tab.2, the construction time of SAI matrices are 
compared between traditional method and 
interpolation method for these three examples. It 
can be found that the computational cost of the 
interpolation method is much less. The main 
cost of impedance and SAI interpolation method 
is the construction time and memory 
requirement for those angular sampling points. 

The memory requirement to save samples of 
near-field impedance matrices and 
preconditioning matrices is 147 MB for the first 
example, 254 MB for the second example and 
1.34GB for these three examples. As shown in 
Tab. 3, the total computation time is compared 
for the frequency sweep. “Without 
Interpolation” means impedance matrix 
constructed directly and SAI pre-conditioner 
constructed directly. “Hybrid Interpolation” 
means impedance matrix interpolation and SAI 
preconditioning method interpolation with the 
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rational interpolation method. It can be also 
found by comparison that the large calculation 
time can be saved when the hybrid interpolation 
technique is used.  
 

V. CONCLUSION 
In this paper, the asymptotic phase basis 

function and impedance matrix interpolation 
method is combined together to analyze the 
monostatic scattering from electrically large 
objects over a wide angular band. The 
impedance matrix is approximately constructed 
by MBPE method at each incident angle. The 
MLFMA and Krylov subspace iterative solver 
are used and the SAI is used to accelerate the 
convergence. In order to further reduce the 
computation time of constructing SAI 
preconditioning matrix, the MBPE technique is 
used for construction of SAI matrices at each 
angle. Numerical experiments demonstrate that 
our proposed hybrid interpolation method is 
more efficient when compared with the 
traditional method for electromagnetic 
scattering from the electrically large objects. 
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