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Abstract ─ In this paper, an Integral Equation-
based Simplification Method (IE-SM) is presented 
for the efficient analysis of the symmetrical
electromagnetic model. The proposed approach 
stems from the decomposition and recomposition 
of any arbitrary excitation sources into a set of 
independent vectors which induce a symmetrical 
current distribution. Compared to the Conventional 
Integral Equation (CIE) method for modeling an 
entire structure, this simplification method not only 
saves computation resources and time by reducing 
the number of unknowns, but also maintains the 
computation accuracy. In addition, this method has 
a simple integral equation formulation, so it can be 
easily accelerated with fast algorithms and 
integrated into the existing Method of Moments 
(MoM) codes. Numerical examples show that the 
proposed method demonstrates both satisfactory 
accuracy and efficiency with less computational 
complexity. 

Index Terms ─ Integral equation, recomposition,
symmetry model, vector decomposition. 

I. INTRODUCTION 
Method of Moments (MoM)-based integral 

equation solvers are widely used for analyzing 
time-harmonic electromagnetic radiation and 
scattering problems. For a practical 
electromagnetic problem, many targets, such as 
tank, aircraft, missile, and some microwave & 

optical devices have elegant symmetric property. 
To take advantage of the symmetry, the numerical 
model can be simplified and the number of the 
unknowns can be greatly reduced. In [1], Lobry, et 
al., proposed a simplification method for rotational 
symmetry models with the boundary element 
method. In [2] and [3], Naito, et al., also made a 
great contribution to the simplification of symmetry 
model. The impedance matrix can be transformed 
to a bordered block diagonal matrix by using spatial 
eigenmodes transformation. A similar approach 
with discrete Fourier transform matrix has been 
reported [4]. However, for an electrically large 
problem, the matrix transformation process 
requires huge physical memory and longer 
computation time. Matrix transformation is 
difficult to be accelerated by fast multipole 
algorithms or other related algorithms. Therefore, it
is not suitable for an electrically large problem. 
Furthermore, this transformation is too complicated 
to be integrated into the existing MoM code [5]. 

Commercial electromagnetic software such as 
Ansoft HFSS/Designer, Agilent ADS, EMSS 
FEKO, CST etc., uses electric and magnetic 
symmetry planes to simplify the symmetrical
electromagnetic model [6]-[8]. The prerequisite of 
the application of magnetic or electric symmetry 
planes is the symmetrical distribution of the 
induced fields, which requires both geometry and 
excitation sources to be identically symmetrical.
Therefore, when using magnetic or electric 
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symmetry planes, geometry and excitations should 
be symmetrical. The requirement of symmetry 
excitations severely limits the use of magnetic and 
electric symmetrical planes of commercial 
electromagnetic software. 

In this paper, an effective simplification 
method for the symmetrical electromagnetic model 
is presented. The excitation vector is decomposed 
and recomposed into a set of independent vectors. 
For each new excitation vector, the induced current 
distribution is symmetrical, so that only a part of the 
induced current needs to be computed. This 
approach employs a simple integral equation in 
which one field triangle corresponds to multiple 
source triangles. Therefore, it is easy to interface 
with fast algorithms and integrate with the existing 
MoM codes. Moreover, the current continuity at the 
truncated boundary of the simplified model is 
described in detail. A new basis function is derived 
from the Rao-Wilton-Glisson (RWG) basis 
function, which is more suitable to achieve the 
current continuity at the truncated boundary. 
 

II. PROBLEM FORMULATION 
A. Integral-equation and basis function 

Let S  be the surface of a metallic object. By 
enforcing the boundary conditions on the Perfect 
Electric Conductor (PEC) surface ,S  the Mixed-
Potential Integral Equation (MPIE) is given as [9]: 
 � � � �1

ˆ ˆ ,inc
A Vn E n j G J G J

j
�

�
� � � � � � � 8 � 5 8 56 7
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where incEincE  is the incident electric field, n̂  is the 
outside unit normal to ,S  JJ  is the unknown current 
density on ,S  and AGG  and VG  are the vector and 
scalar potential Green’s functions. 

Testing equation (1) with basis function can be 
rewritten in a matrix form as follows; 
 � �� � � �,Z I V�  (2) 
where [Z] is the impedance matrix. [V] is a voltage 
excitation vector. [I] is the unique solution to the 
impedance equation. Specifically, for a plane 
symmetry structure, impedance matrix [Z] is a 
multilevel block circulant matrix, where each level 
is a 2x2 block circulant [10]. 

There are two kinds of basis functions shown in 
Fig. 1 [11], the Rao-Wilton-Glisson (RWG) basis 
function and the half-RWG basis function. The 
half-RWG basis function is derived from the RWG: 
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where nl  is the length of the common edge, and nA9  
is the area of triangle nT 9 . Vector n1�  connects the 
observation point rr  to the free vertex of the minus 
triangle. Vector n1�  connects the free vertex of plus 
triangle to the observation point. The red line in Fig. 
1 stands for the common edge of two adjacent 
triangles. Half-RWG consists only of one triangle 
facet. 
 

    
 (a) (b) 
 
Fig. 1. Two kinds of basis function: (a) RWG basis 
function, and (b) half-RWG basis function. 
 
B. Decomposition of plane wave excitation 
vector 

In this paper, a plane wave is taken as the 
excitation source to introduce the presented 
method. Considering a scattering problem, the 
voltage vector is given by [12, eq. (2.8)]: 
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incEincE is the electric field of an incident 
electromagnetic signal; the voltage excitation 
vector is similar to the circuit voltage with units of 
Vm.The dot product in equation (4) is expanded as 
follows: 
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According to the linear system characteristics 
of a plane symmetry structure, the excitation 
vectors needs to be decomposed and recomposed 
into a set of new independent vectors. For each new 
vector, a MoM linear system can obtain an efficient 
solution. 

III. CLASSIFICATION AND 
SIMPLIFICATION OF SYMMETRY 

STRUCTURES 
The structure of plane symmetry can be divided 

into three categories as shown in Fig. 2. The 
number of symmetry planes of an isosceles triangle,
a rectangular, and a sphere, are one, two and three 
respectively. The symmetry planes are orthogonal 
to each other. 

 (a) (b) (c) 

Fig. 2. Classification of symmetry structures: (a) 
single symmetry plane, (b) double symmetry 
planes, and (c) triple symmetry planes. 

A. Single symmetry plane 
An isosceles triangle patch is taken as an 

example of a single symmetry plane. It is 

symmetrical about the yoz-plane shown in Fig. 3.

primary triangle image triangle

plane of symmetry

① ②②

x

y

o

Fig. 3. Isosceles triangle patch. 

The model of a single symmetry plane is 
divided into two subregions. The impedance matrix 
is a 2x2 block circulant matrix. The simultaneous 
equations are set up as follows: 

� � � �
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 They can also be recomposed as follows: 
� � � � � �1 1 2 ,V : :� � (7)
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Therefore, excitation vector [V] in equation (2) 
can be decomposed into two new independent 
vectors [13] as follows: 
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 (10) 

The sign relationship of two new excitation 
vectors between two subregions of the geometry 
model is shown in Table 1. 
 
Table 1: Sign relationship of new excitation vectors 

Subregion [V1] [V2] 
   
   

 
(1) Computing the induced current of excitation 

vector [V1]. 
Because the impedance matrix is 2x2 block 

circulant matrix, the sign of current expansion 
coefficients is the same as that of the excitation 
vector. We can obtain the current expansion 
coefficient relationship between two subregions as 
illustrated in Fig. 4: 
 � � � �1 2 .I I�  (11) 

Because two subregions of the electromagnetic 
model have the same current coefficient, only one 
half of the current in this model needs to be solved. 
Consequently, the impedance matrix of the Mixed-
Potential Integral Equation (MPIE) is given by: 
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(12) 

where 
 � � 1, 1,2c k if k� � . 

One field triangle corresponds to two source 
triangles as shown in Fig. 4. 1nf  is the basis 

function of primary source triangle 1;n 2nf is the 
basis function of the other source triangle 2 ,n  
respectively. 

The current of two parts have the relationship 
as follows: 
 1 2I I ,x x� �I I  (13) 

 1 2I Iy y�I I . (14) 
As shown in Fig. 4, there is no current flowing 

through the symmetry plane (yoz-plane). 
Symmetry plane is equivalent to PEC plane. 
Therefore, the triangle facets connecting yoz-plane 
are not assigned for the half-RWG basis function. 

field triangle

primary source triangle
image source triangle

1I y

1I x 2I x

2I y
1I 2I

 
 
Fig. 4. The field and source triangles. Red arrows 
are the current direction of the two source triangles. 
 
(2) Computing the induced current of excitation 

vector [V2]. 
We can further derive the current coefficients 

relationship between two subregions shown in Fig. 
5: 
 � � � �1 2I I� � . (15) 

Consequently, only one half of the model needs 
to be analyzed. The impedance matrix of the 
Mixed-Potential Integral Equation (MPIE) is given 
by: 
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1
,
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(16) 

where 

 . 

One field triangle corresponds to two source 
triangles, as shown in Fig. 5. 

There is normal current flowing through the 
yoz-plane (blue line). The symmetry plane is 
equivalent to a Perfect Magnetic Conductor (PMC) 
plane. Therefore, to ensure current continuity at the 
truncated boundary, the triangle facets connecting 
the yoz-plane should be assigned by the half-RWG 
basis function. 
 

field triangle

primary source triangle image source triangle

1I y

1I x

1I 2I x

2I y2I

 
 
Fig. 5. The field and source triangles. Red arrows 
are the current direction of the two source triangles. 
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The assignment of half-RWG basis functions to 
the triangle facets connected to symmetry plane for 
different excitation vectors is summarized in Table 
2. If there is normal current flowing through the 
symmetry plane, half-RWG basis functions are 
assigned to ensure the current continuity at the 
truncated edges. 

Table 2: Assigned case of half-RWGs 
[V1] [V2]

yoz-plane H
(*H denotes half-RWG) 

B. Double symmetry plane 
Here, the rectangular patch is taken as an 

example of double symmetry planes. It is 
symmetrical about the xoz-plane and yoz-plane, as 
shown in Fig. 6. 

①① ②②

③③④④

primary source triangle

image source triangle

field triangle

Fig. 6. Rectangular patch. 

The model with double symmetry planes is 
divided into 4 subregions. The impedance matrix is 
a two-level block circulant matrix where each level 
is a 2x2 block circulant. The simultaneous 
equations are set up as follows: 

� � � � � � � �
� � � � � � � �
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6 7 6 7 6 7
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. (17)

The excitation vector can be recomposed as 
follows: 
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where 
� �1 ( ) ( ),AD BE CF j AJ BE CH: � � � � � �

� �2 ( ) ( ),AE BD CG j AK BJ CI: � � � � � � � �

� �3 ( ) ( ),AF BG CD j AH BI CJ: � � � � � � �
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Therefore, the excitation vector can be 
decomposed into 4 new independent vectors as
follows: 

� � � � � � � � � �1 2 3 4 ,V V V V V� � � � (19)
where 
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The sign relationship of new excitation vectors 
among 4 subregions of the symmetry model is 
shown in Table 3. 

Table 3: Sign relationship of four new excitation 
vectors 

Subregion [V1] [V2] [V3] [V4]

The assignment of half-RWG basis functions to 
the triangle facets connected to symmetry plane for 
different excitation vectors is summarized in Table 
4. For example, the half-RWG basis should be 
assigned to the triangle facets connecting to the 
xoz-plane and the yoz-plane for excitation vector 
[V2]. 

Table 4: Assigned case of half-RWGs 
[V1] [V2] [V3] [V4]

xoz-plane H H
yoz-plane H H

(*H denotes half-RWG) 

C. Triple symmetry plane 
Here, the cuboid is taken as an example of triple 

symmetry planes. It is symmetrical about the xoy-
plane, xoz-plane and yoz-plane, as shown in Fig. 7.
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field triangle

eight source triangles

primary source triangle

o x

y z

 
 
Fig. 7. Metal cuboid. 
 

The model has three symmetry planes, so there 
are eight symmetrical subregions. The impedance 
matrix is a three-level block circulant matrix. The 
simultaneous equations are set up as follows: 
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The excitation vector can be recomposed as 
follows: 
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where 
 � �1 ( ),AD BE CF: � � �  � �2 ( ),AE BD CG: � � � �  

 � �3 ( ),AF BG CD: � � � �  � �4 ( ),AG BF CE: � � � �  
 � �5 ( ),j AJ BE CH: � � � �  � �6 ( ),j AK BJ CI: � � � � �  
 � �7 ( ),j AH BI CJ: � � � �  � �8 ( ).j AI BH CK: � � � �  

Therefore the excitation vector in equation (2) 
is decomposed into eight new independent vectors 

as follows: 
 � � � � � � � �1 2 8 .V V V V� � � � � �8� .V� 8�  (22) 

The sign relationship of the excitation vector 
among 8 subregions of the symmetry model is 
shown in Table 5. 
 
Table 5: Sign relationship of eight new excitation 
vectors 

Subregion [V1] [V2] [V3] [V4] [V5] [V6] [V7] [V8] 

 

 

 

 

 

 

 

 
 

Table 6 shows the half-RWG basis functions, 
which are assigned to the triangle facets connected 
to the truncated edges for different excitation 
vectors. 
 
Table 6: Assigned case of half-RWGs 

 [V1] [V2] [V3] [V4] [V5] [V6] [V7] [V8] 
xoy-
plane H H H H

xoz-
plane H H H H

yoz-
plane H H H H

(*H denotes half-RWG) 
 

The above analyses on three categories of 
plane-symmetry structure utilize a plane wave as 
the excitation. In practical electromagnetic 
applications, there are many other kinds of 
excitation sources, such as waveguide excitation, 
electric/magnetic point source, and aperture field 
source etc. For those excitation sources, the 
excitation vector of MoM linear system can also be 
decomposed and recomposed into a set of 
independent vectors with the aforementioned 
relationship. Therefore, the proposed approach can 
be used to effectively analyze symmetrical 
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electromagnetic models without the constraints of 
excitation sources. 

IV. COMPUTATIONAL COMPLEXITY 
Assume that the number of symmetrical 

subregions is N, the number of unknowns in each 
subregion is M, and the number of iterations to 
reach convergence is k. 

The total unknown of CIE is NM. The 
complexity of matrix filling, storage and iterative 
solution are 2 2( ),N M> 2 2( )N M> and 2 2( ),kN M>
respectively. 

For IE-SM, for the calculation of each 
impedance matrix element, one field triangle 
corresponds to N source triangles, so that N
submatrices need to be calculated and stored. 
Therefore, complexity of matrix filling and storage 
becomes 2( ).NM> Actually, the matrix filling time 
of IE-SM would be less than 1/N of that of CIE. In 
terms of memory usage, IE-SM is 1/N of CIE. 

In the Krylov iterative solution process, MoM 
linear system needs to be solved N times because 
the excitation vector is decomposed into N new 
independent vectors. Thus, complexity of the 
iterative solution is 2( ).NkM> As a result of less 
unknowns, IE-SM achieves more stable and rapid 
convergence than CIE. Actually, computation time 
of IE-SM is much less than 1/N of that of the CIE 
method. The comparison of the computational 
complexity of IE-SM and CIE is summarized in 
Table 7. 

Table 7: Complexity statistics 
Memory Matrix 

Filling Time
Iterative 
Solution Time

CIE � �2 2N M> � �2 2N M> � �2 2kN M>
IE-
SM � �2NM> � �2NM> � �2kNM>

V. NUMERICAL SIMULATIONS 
To validate the accuracy and the efficiency of 

the proposed approach, four numerical simulations 
are presented in this section. These simulations 
include the electromagnetic wave scatterings from 
a metallic sphere and a missile model, 
electromagnetic wave transmission through a cross-
shaped quasi-optical filter, and electromagnetic 
wave radiation from a pyramidal horn antenna. All 
numerical experiments run on a HP mini 

workstation with quad-core 64-bit Intel i7-870 CPU 
and 16 GB of RAM. The resulting impedance 
matrices are iteratively solved using the GMRES 
(80) solver [14], where 80 is the restart number and 
the relative error tolerance is set to be 10-3. 

A. Metal sphere 
For the first simulation, a metal sphere as 

shown in Fig. 8 was analyzed using the proposed 
simplification method. In the simulation, only one-
8th of the model needs to be calculated. Our
simulation results of bistatic Radar Cross-Section 
(RCS) agree very well with that of Mie series 
solution shown in Fig. 9. The normalized induced 
current distributions of the CIE and IE-SM method 
are compared in Fig. 10, and a good agreement can 
be observed. The one-8th model was discretized into 
476 triangles, and the average side length of the 
triangle facets was about one-tenth of the 
wavelength. The matrix filling and solving time are 
only 3.1 and 6.8 s, respectively. The corresponding 
CPU time on the same PC is 26.4 and 141.8 s for 
modeling the whole structure with 3808 triangle 
facets. The number of iterations required for the 
norm of the relative residual to fall below 10-3 with 
IE-SM and CIE are 2 and 4, respectively. 

Fig. 8. The model of metal sphere with 1R ?� is 
simplified to one-8th model by symmetry. 

Fig. 9. The bistatic RCS of metal sphere. 

oR

Planeeee wavePlane wave

1?
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 (a) (b) 
 
Fig. 10. Normalized current distribution of metal 
sphere: (a) CIE, and (b) IE-SM. 
 
B. Missile model 

Next, the bistatic RCS of a plane wave incident 
on a missile model is analyzed. The geometry of the 
problem is shown in Fig. 11. The bistatic RCS for a 
plane wave with vertical polarization at oblique 
incidence 0 0( 45 , 45 )inc incθ φ� �  is plotted as a 
function of observation directions in Fig. 12. A very 
good agreement with the simulated values of 
modeling the entire structure is validated. Here, the 
one-4th model was discretized into 2600 triangular 
cells. The matrix filling and solving time were only 
36.6 s and 175.2 s, respectively. The corresponding 
CPU time was 153.3 s and 2141.8 s for CIE 
modeling the whole structure. The number of 
iterations for IE-SM and CIE are 3 and 6, 
respectively. It is worth mentioning that the 
magnetic and electric symmetrical planes of 
commercial electromagnetic software can be used 
to analyze this missile structure provided the wave 
propagates along the axis direction of the missile 
with the E-field parallel to the wing. 
 

 
 
Fig. 11. The missile model is simplified to one-4th 
model by symmetry. Dimension are in : 1 7.0,l �  

2 2.0,l �  3 2.8,l �  4 0.8,l �  1 0.2,w �  2 0.7,w �  

3 0.5,w �  4 0.4,w �  5 0.04,w �  1.0;D �  the depth of 
focus of the missile head is 1/32. 
 

 
 (a) 
 

 
 (b) 
 
Fig. 12. The bistatic RCS of: (a) xoz-plane, and (b) 
yoz-plane. 
 
C. Cross-shaped quasi-optical filter 

A bandpass filter comprised of periodic cross-
shaped holes with a resonance frequency of 280 
GHz was analyzed as follows. The one-4th model 
shown in Fig. 13 is discretized into 218 triangles to 
ensure accurate results were obtained throughout 
the entire frequency band. The transmission 
coefficients for a plane wave with the E-field 
parallel to the x-axis at normal incidence (TEMx 
mode) are plotted as a function of frequency in Fig. 
14. Black lines represent the results obtained using 
our proposed method, red lines represent the results 
using the simulation from [15], and curves with 
blue circles represent the measured values. A close 
agreement between the proposed method and the 
results in [15] has been achieved. The time for 
calculating a frequency point is 6.3 s, while it takes 
up to 28.4 s for computing the whole unit cell. 
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Fig. 13. The unit cell of cross-shaped aperture array 
is simplified to one-4th model. Dimension are in 
micrometers (mm): Square lattice period, 

1 2a =a 810,�a =a 810,1 2 slot length 570,l � slot width 
160.w�

(a) 

(b) 

Fig. 14. (a) Magnitude, and (b) phase of the 
transmission coefficient. 

D. Horn antenna 
Finally, a pyramidal horn antenna [6] operating 

at the frequency 1.645 GHz was constructed and 
simulated. An illustration of the horn antenna is 
shown in Fig. 15. A waveguide mode excitation is 

applied to the feeding port. The desired mode (in 
this case a TE10 mode) is directly impressed to the 
rectangular waveguide section denoted by the red 
line shown in Fig. 15. The mesh size on the back 
face of the waveguide is one-fifteenth of the 
wavelength. Figure 16 shows the far field patterns 
of the E-plane and H-plane computed by IE-SM and 
the EMSS FEKO [6]. Excellent agreement is 
observed. Here, the one-4th model was discretized
into 1300 triangular cells. The matrix filling and 
solving time were 9.8 and 77.5 s, respectively. If 
modeling the whole structure with 5200 triangle 
facets, the corresponding time of CIE would be 43 
and 530 s. The number of iterations for IE-SM and 
CIE are 5 and 7, respectively. 

1
42.8

w � 1 55l �

1 46h �

2 30.2h �

2 12.96l � 2 6.48w �

Fig. 15. The model of horn antenna is simplified to 
one-4th model. Dimension are in centimeters. 

 (a) (b) 

Fig. 16. The far field pattern: (a) E-plane, and (b) 
H-plane. 

VI CONCLUSION 
An integral equation-based simplification 

method is presented for the analysis of 
electromagnetic targets with plane symmetry. The 
proposed method does not require excitation 
resources to be identically symmetrical. It can make 
the induced current distribution symmetrical by 
decomposing and recomposing the excitation 
vector. Consequently, this method greatly reduces 
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the simulation time and memory usage compared 
with the Conventional Integral Equation (CIE) 
method. Numerical experiments validated the 
accuracy and the computational efficiency of the 
proposed IE-SM method.  
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