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Abstract ─ Recently, many uncertainty analysis methods 

have been taken into consideration in electromagnetic 

compatibility (EMC) simulation. As a traditional method, 

the Method of Moments (MoM) owns many advantages 

compared with other methods, especially in calculating 

the high dimension problems. However, its main 

disadvantage is the poor accuracy. In this paper, the 

Richardson extrapolation has been used to improve the 

MoM in order to promote the accuracy. By using feature 

selective validation (FSV), the effectiveness of the 

improvement can be obviously shown compared with the 

standard results calculated by the Monte Carlo Method 

(MC). 

 

Index Terms ─ EMC simulation, feature selective 

validation, Method of Moments, Richardson extrapolation, 

uncertainty analysis. 
 

I. INTRODUCTION 
Nowadays, the electromagnetic compatibility (EMC) 

community is facing a growing demand for taking 

uncertainty into consideration in EMC simulation. The 

MC [1-3] is a widely used uncertainty analysis method. 

Random input parameters are sampled according to their 

distributions, and a very large number of simulations are 

required to achieve accurate information. Therefore, low 

computational efficiency makes the MC uncompetitive, 

though the MC owns high accuracy. In theoretical 

research, the results calculated by the MC can be 

regarded as the standard answers in order to verify other 

uncertainty analysis methods. 

Recently, another effective method, called the 

Stochastic Galerkin Method (SGM), has been taken into 

consideration in EMC uncertainty analysis by Canavero 

[4,5]. Many typical EMC problems with uncertainty 

parameters have been solved successfully by the SGM. 

The Stochastic Collocation Method (SCM) is another 

uncertainty analysis method which has also been applied 

in EMC [6,7]. These two methods are both rooted in the 

generalized polynomial chaos expansion theory, and 

they can reach a high accuracy with high computational 

efficiency. However, if the dimension of random 

variables is high enough, the realization of the SCM and 

the SGM will be impossible. It is well-known that such 

problem is also named ‘curse of dimensionality’. 

The MoM [5,8] is another traditional uncertainty 

analysis method, and it would not be affected by ‘curse 

of dimensionality’. In addition, easy to realize and high 

computational efficiency are another two advantages of 

the MoM. However, the main disadvantage of the MoM 

is the low accuracy. In the paper, a novel method is 

presented in order to improve the accuracy of the MoM 

by using the Richardson extrapolation [9,10]. At last, a 

published example of one dimension wave propagation 

with uncertainty medium parameters is calculated by the 

MoM, the MC and the improved MoM. By using FSV, 

the improvement in accuracy of the novel method can be 

seen clearly. 

The structure of the paper is as follows. In Section 

II, the uncertainty analysis in EMC simulation is 

introduced; Section III employs a brief description of the 

MoM; the improved MoM by using the Richardson 

extrapolation can be seen in Section IV; algorithm 

validation is shown in Section V; Section VI provides a 

summary of this paper. 
 

II. THE UNCERTAINTY ANALYSIS IN EMC 

SIMULATION 
As for the traditional EMC simulation, all the input 

parameters are supposed certain. However, in actual 

situation, some input parameters are uncertain as the 

uncertainty in measurement or limited knowledge. 

Therefore, such parameters should be modeled by the 

random variables. There is no doubt that the uncertainty 

analysis is to calculate the output parameters under the 

influence of uncertain input parameters. 

Maxwell’s equations for a wave propagating in a 

linear isotropic homogeneous material along the z-axis 

in 1D are shown as (1) and (2): 
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where ( , )xE z t  represents the electric field oriented in 

the x direction, at a position z and time t. Similarly, 

( , )yH z t  stands for the magnetic field oriented in the y 

direction at a position z and time t. The symbols  ,   

and   represent the permeability, permittivity and 

conductivity of the medium in which the electromagnetic 

fields propagate. 

Suppose that the medium parameters   and   are 

uncertain as the limited knowledge. It is obviously that a 

random event   should be introduced in the Maxwell’s 

equations. Therefore, the Maxwell’s equations are 

transformed into stochastic differential equations, shown 

in (3) and (4). Furthermore, the output parameters 
xE  

and yH  which we care about are also affected by the 

random event  : 
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Finite random variables can be used to model the 

random event   shown as (5). According to the 

Karhunen-Loeve theory [11], the random variables can 

be obtained which are independent with each other. The 

independence is the basis of the subsequent processing: 

  1 2( ) ( ),  ( ),  ,  ( ) .n         (5) 

As for the MC, the independent random variables 

are sampled according to their distributions, and a mass 

of certain Maxwell’s equations will be obtained. By 

solving every certain Maxwell’s equations, the statistical 

property of the solutions will be the answer of the 

uncertainty analysis. 

Furthermore, in the results of the uncertainty 

analysis, there is no denying that the expectation and the 

variance are two main standards. 
 

III. THE METHOD OF MOMENTS 
The MoM is a traditional uncertainty analysis 

method with high computational efficiency. And it relies 

on first order truncated Taylor series expansions to 

obtain the estimates of the expectation and variance. The 

introduction of MoM is shown at first. 

Suppose that y is the output parameter which we are 

interested in, and 1  is the random variable that is 

modeled by the uncertain input parameters. The Taylor 

series form in the point 1 1 =  of one random variable is 

shown as (6): 
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where 1  means the mean value of 
1 . By using (6), the 

expectation of y  and 2y  will be estimated, shown as (7) 

and (8): 
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where 
1

2

 is the variance value of the random variable 

1 , and ( )E y is the expectation of the output parameter 

y. 

Ignoring the higher order terms, the expectation and 

the variance of y can be obtained easily, shown as (9) and 

(10): 

 1( ) ( ),E y y   (9) 
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Now, the MoM is generalized into multi-dimensional 

random variables. As for the random space shown as (5), 

two random variables  1 2( ) ( ),  ( )       are supposed. 

The results of the expectation and the variance in output 

parameters are shown in (11) and (12): 

 1 2( ( )) ( , ),E y y    (11) 
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where 1 2y( , )   stands for making certain simulation 

with the input parameters 1  and 2  by the use of 

certain EMC solver. The sensitivity from the input 

parameter to the output parameter is shown as (13): 
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where 1  is a small perturbation chosen according to the 

variance of the input parameters [5]. 

From (11) and (12), it is clearly seen that only 

certain simulations in specific points are needed during 

the MoM. Thus, no changing in original solver makes the 

MoM easy to realize. Furthermore, just N+1 times of the 

certain simulations will be enough in an uncertainty 

analysis problem with N-dimensional random variables, 

so the MoM is in a high computational efficiency. In 

another word, the MoM cannot be affected by ‘curse of 

dimensionality’. 

However, ignoring the higher order terms in the 

Taylor series will bring some errors; thus, next section 

presents an improved method which aims to decrease  
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such errors. 

 

IV. THE IMPROVED METHOD OF 

MOMENTS 

As (12) and (13) shown, the derivative needs to be 

estimated in calculating the variance. The bad estimation 

of the derivative may lead to the poor accuracy of the 

MoM. 

The Richardson extrapolation is a method of 

numerical calculation which can improve the accuracy 

of calculating the derivative [7,8]. Furthermore, it can 

improve the accuracy in the variance calculating in the 

MoM. 

According to (13), the error of the derivative 

calculating is in (14) and (15): 
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where 
1( )o  stands for the infinitesimal of higher order 

of 
1.  Thus, the error of the estimation in (13) is
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According to (16), (17) can be got easily by replacing 

1  with 1

2


: 

 ' ''1 1

1 1 1

1
( ) ( ) ( ) ( ).

2 2 2
y N y o

 
        (17) 

Simple calculating process is done with (16) and 

(17), and the final result is shown in (19): 
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Obviously, the result in (15) is the calculating process 

in the MoM, the error is (1)o . On the other hand, the 

result derivative calculating in (19) is 1

12 ( ) ( ),
2

N N


   

and the error is 1( ).o   

In terms of (19), (13) can be rewritten as it is shown 

in (20): 
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By combining (11) and (12), the uncertainty analysis 

results of the improved MoM can be obtained. 

In this section, the Richardson extrapolation has 

been introduced into the MoM in estimating the 

variance. Furthermore, the improvement from (1)o  to 

1( ),o   is clearly seen in mathematics. As for computational 

efficiency, in N-dimensional random variables, 2N+1 

times of the certain simulations are needed. The 

computational efficiency in the improved MoM is 

slightly lower than the MoM, but it is also much higher 

than other methods. Furthermore, the proposed method 

retains all the advantages of the MoM. 

 

V. ALGORITHM VALIDATION 
In this section, a simple example in EMC uncertainty 

analysis is shown in order to observe the improvement. 

The example is published in literature [7]. 

One dimension wave propagation example with 

uncertainty medium parameters is shown as Fig. 1. The 

space step is 
21.5 10 m  and the time step is 

115.0 10 .s  

The number of discrete points in the electric field 

intensity is 151, and it is 150 in the magnetic field 

intensity. The sine excitation source is in the first discrete 

point with the amplitude 
32.7 10 /V m  and the frequency 

91.0 10 Hz . 

 

-3 -34.9 10 ~ 5.1 10 ( / )S m   

1.47 ~ 1.53 ( / )F m 

1 1502 …

r :

r :

 
 

Fig. 1. The model of the example. 

 

Suppose that the dielectric coefficient r  and the 

conductivity r  are uncertain parameters, and they are 

both in uniform distribution. The dielectric coefficient  

is 1.47 ~1.53( / ),F m  and the conductivity is 

-3 -34.9 10 ~ 5.1 10 ( / )S m  . 

The random variables 1  and 2  can be used to 

model such uncertain input parameters, as (21) and (22)  
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shown: 

  *

21 0.02 ,     
r r  (21) 

  *

11 0.02 ,     
r r  (22) 

where, the mean values of the input parameters are 
* 1.5 ( / )r F m    and 

* -35 10 ( / ).r S m     The 

distributions of the random variables are both uniform 

distribution in [-1, 1]. 

The small perturbations 
1  and 

2  are chosen as 

(23) and (24) shown: 

 
*

1 0.02 0.03 ( / ),F m   
r

  (23) 

 
* -3

2 0.02 0.1 10 ( / ).S m    
r

  (24) 

Three uncertainty analysis methods, the MC, the 

MoM and the improved MoM are used in calculating this 

example. The certain simulation solver is the finite 

difference time domain (FDTD). The number of iteration 

times in time is 200. 

Figure 2 shows the results in expectation, and it is 

calculated according to (11). The expectation of the 

magnetic field intensity and the electric field intensity in 

every discrete point is given, which is calculated by three 

different uncertainty analysis methods. 

Table 1 is the evaluation result of the simulation 

results in Fig. 2 by using FSV. FSV can provide the 

credibility evaluation result in EMC simulation results. 

Both qualitative and quantitative description can be 

given. Total-GDM, a value to give a quantitative 

description in FSV, manifests the validity of simulation 

result. More details can be found in [12,13]. 

Taking the results calculated by the MC as the 

standard data, the value in Table 1 is the total-GDM 

value between the MC results and another method’s 

results. According to the criterion in FSV [12,13], the 

calculated results in the MoM or the improved MoM are 

both ‘Excellent’. 

Figure 3 shows the results in variance in every 

discrete point, and Table 2 is the calculating results by 

using FSV. In Table 2, the result in the MoM is ‘Very 

Good’ and the improved MoM is ‘Excellent’. 

In other words, the improved MoM is as accurate as 

the MC, and much more accurate than the MoM. Thus, 

the improvement of the improved MoM is obvious. 

At last, the computational efficiency of three 

methods is compared in Table 3. The MoM and the 

improved MoM are in the same level, but the 

computational efficiency of the MC is much lower than 

them. The simulation times in MC are 4000, and the 

results would be proved convergence by using the 

judgment method mentioned in literature [5]. 

In conclusion, a simple example of EMC uncertainty 

analysis is given in the section, and it is proved that the 

improvement of the proposed method is obvious by the 

use of the FSV. And only a little additional calculating is 

needed in the improvement. 

In a word, the improved MoM can reach a high 

accuracy with high computational efficiency. 
 

 
 (a) Magnetic field intensity 

 
 (b) Electric field intensity 

 

Fig. 2. The results in expectation. 

 

Table 1: The total-GDM value of the results in expectation 

Expectation MoM/Improved MoM 

Electric field intensity 0.0062 

Magnetic field intensity 0.0054 

 

 
 (a) Magnetic field intensity 

BAI, ZHANG, WANG, WANG: UNCERTAINTY ANALYSIS IN EMC SIMULATION BASED ON IMPROVED METHOD OF MOMENTS 69



 
 (b) Electric field intensity 

 

Fig. 3. The results in variance. 

 

Table 2: The total-GDM value of the results in variance 

Variance MoM Improved MoM 

Electric field intensity 0.1686 0.0192 

Magnetic field intensity 0.1561 0.0109 

 
Table 3: The comparison of computational efficiency 

 MC MoM Improved MoM 

Simulation time 86.5s 0.06s 0.1s 

Times 4000 3 5 

 

VI. CONCLUSION 
In this paper, a novel method based on Richardson 

extrapolation is presented to make uncertainty analysis 

in EMC simulation, aiming at improving the accuracy of 

the MoM. By using a published example, the improvement 

of the proposed method is obviously shown. In 

conclusion, it is proved that the proposed method not 

only improves the accuracy greatly, but also remains all 

the advantages in the MoM. 

 

ACKNOWLEDGMENT 
This work was supported by the National Natural 

Science Foundational of China under Grant 51507041. 

 

REFERENCES 
[1] M. Wu, et al., “Estimation of the statistical variation 

of crosstalk in wiring harnesses,” IEEE International 

Symposium on Electromagnetic Compatibility, pp. 

1-7, 2008. 

[2] G. Spadacini and S. A. Pignari, “Numerical 

assessment of radiated susceptibility of twisted-

wire pairs with random nonuniform twisting,” IEEE 

Transactions on Electromagnetic Compatibility, 

vol. 55, no. 5, pp. 956-964, 2013. 

[3] D. Srivastava, et al., “Computation of protection 

zone of a lightning rod using method of moments 

and Monte Carlo integration technique,” Journal of 

Electromagnetic Analysis and Applications, vol. 3, 

no. 4, pp. 118-121, 2011. 

[4] P. Manfredi and F. G. Canavero, “Polynomial 

chaos representation of transmission-line response 

to random plane waves,” 2012 International 

Symposium on Electromagnetic Compatibility, pp. 

1-6, 2012. 

[5] R. S. Edwards, A. C. Marvin, and S. J. Porter, 

“Uncertainty analyses in the finite-difference time-

domain method,” IEEE Transactions on 

Electromagnetic Compatibility, vol. 52, no. 1, pp. 

155-163, 2010. 

[6] Y. Bagci, et al., “A fast Stroud-based collocation 

method for statistically characterizing EMI/EMC 

phenomena on complex platforms,” IEEE 

Transactions on Electromagnetic Compatibility, 

vol. 51, no. 2, pp. 301-311, 2009. 

[7] B. Jinjun, Z. Gang, et al., “Uncertainty analysis in 

EMC simulation based on Stochastic collocation 

method,” 2015 IEEE International Symposium on 

Electromagnetic Compatibility, pp. 930-934, 2015. 

[8] R. W. Walters and L. Huyse, Uncertainty Analysis 

for Fluid Mechanics with Applications, no. 

ICASE-2002-1, NASA/CR-2002-211449, REC 

Warangal, 2002. 

[9] S. A. Richards, “Completed Richardson extrapolation 

in space and time,” Communications in Numerical 

Methods in Engineering, vol. 13, no. 7, pp. 573-

582, 1997. 

[10] P. J. Roache, Patrick and P. M. Knupp, “Completed 

Richardson extrapolation,” Communications in 

Numerical Methods in Engineering, vol. 9, no. 5, 

pp. 365-374, 1993. 

[11] M. Loeve, Probability Theory, Springer-Verlag 

Berlin and Heidelberg GmbH & Co.K, 1978. 

[12] IEEE Standard for Validation of Computational 

Electromagnetics Computer Modeling and 

Simulations, IEEE STD 15971-2008, pp. 1-41, 

2008. 

[13] IEEE Recommended Practice for Validation of 

Computational Electromagnetics Computer 

Modeling and Simulations, IEEE STD 15972-

2010, pp. 1-124, 2011. 
 

 

 

 

Jinjun Bai received the B.Eng. 

degree in Electrical Engineering and 

Automation from the Harbin Institute 

of Technology, Harbin, China, in 

2013. 

He is currently working toward 

the Ph.D. degree in Electrical 

Engineering at the Harbin Institute 

of Technology, Harbin, China. His research interests 

70 ACES JOURNAL, Vol. 31, No. 1, January 2016



include uncertainty analysis methods in EMC simulation 

and the credibility evaluation of uncertainty analysis 

results in EMC simulation. 

 

Gang Zhang received the B.Sc. in 

Electrical Engineering from China 

University of Petroleum, Dongying, 

China, in 2007, and the M.Sc. and 

Ph.D. degrees in Electrical 

Engineering from Harbin Institute 

of Technology (HIT), Harbin, China, 

in 2009 and 2014, respectively. 

He is now with the Faults Online Monitoring and 

Diagnosis Laboratory at Harbin Institute of Technology. 

His research interests include analysis of electromagnetic 

compatibility, electromagnetic simulation, and the 

validation of CEM. 

 

Lixin Wang received the B.S. 

degree in Electrical Engineering 

from Nankai University, Tianjin, 

China, in 1988, and the M.S. and D.Sc. 

degrees in Electrical Engineering 

from Harbin Institute of Technology 

(HIT), Harbin, China, in 1991 and 

1999, respectively. 

He is currently a Professor of Power Electronic and 

Electric Drives at the HIT. He conducts research with 

Faults Online Monitoring and Diagnosis Laboratory, 

HIT, on a wide variety of topics including electromagnetic 

compatibility at the electronic system level, aircraft 

electromechanical fault diagnosis expert system and 

prediction and health management (PHM) of Li-ion 

battery. 

 

Tianhao Wang received the B.Eng. degree in Electrical 

Engineering and Automation from the Harbin Institute 

of Technology (HIT), Harbin, China, in 2014. 

She is currently working toward the M.Sc. degree in 

HIT and involving in the research of uncertainty analysis 

method of random cables. 

BAI, ZHANG, WANG, WANG: UNCERTAINTY ANALYSIS IN EMC SIMULATION BASED ON IMPROVED METHOD OF MOMENTS 71


