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Abstract ─ The Cole-Cole (C-C) models have been 

frequently used for a precise description of the dispersion 

characteristics of biological tissues. One of the main 

difficulties in the direct reconstruction of these dielectric 

properties from time-domain measurements is their 

frequency dependence. In order to overcome this 

difficulty, an electromagnetic (EM) inversion technique 

in the time domain is proposed, in which four kinds of 

frequency-independence model parameters, the optical 

relative permittivity, the static conductivity, the relative 

permittivity difference, and the relaxation time, can be 

determined simultaneously. It formulates the inversion 

problem as a regularized minimization problem, whose 

forward and backward subproblems could be solved 

iteratively by the finite-difference time-domain (FDTD) 

method and any conjugate gradient algorithm, respectively. 

Numerical results on two types of stratified C-C slabs, 

with smooth and discontinuous parameter profiles, 

respectively, confirm the performance of the inversion 

methodology. 

 

Index Terms ─ Biological tissues, conjugate gradient 

methods, electromagnetic scattering by dispersive media, 

electromagnetic scattering inverse problems, finite-

difference time-domain (FDTD) methods, regulators. 
 

I. INTRODUCTION 
The electromagnetic (EM) inverse scattering 

problems, which aim to estimate the EM properties from 

the measurements outside the object of interest, have 

attracted increasing attention recently, due to their 

extensive application fields, and some promising results 

[1-3]. Nevertheless, in general, there are two major 

difficulties for these problems: one difficulty is their 

nonlinearity, and the other is the non-uniqueness of their 

solution [4]. 

Methodologically, the EM scattering inverse problem 

may be solved in the frequency domain [5] or the time 

domain [6]. By contrast, the time-domain reconstructed 

results are better than those by applying any single-

frequency technique in the amount of information and 

the resolution of images [1, 6, 7]. Currently, several 

inversion approaches in the time domain for nondispersive 

media have been developed, such as the forward-

backward time-stepping (FBTS) method [8] and the 

Lagrange multipliers technique [9]. However, in the real 

world, the wideband dielectric properties of biological 

tissues are dispersive, which have been widely described 

by the Debye or Cole-Cole (C-C) models, but the precision 

of the former is not better than that of the latter [10]. One 

basic difficulty in the time-domain reconstruction of the 

electrical characteristics is their frequency correlation. 

To date, a few time-domain inversion methods for Debye 

media have been proposed [6, 11]. Unfortunately, for C-

C frequency-dependent media, the existing methods are 

not suitable, and few inverse methods are available 

directly. 
Recently, several finite-difference time-domain 

(FDTD) forward solvers suitable for C-C media have 

been presented [12, 13], which have laid the groundwork 

for the research of inverse solvers for this class of media. 

There are two novelties in this paper. One novelty is to 

present a new inverse EM scattering technique, which is 

to reconstruct the C-C model parameters by means of 

measurements in the time domain directly. And the other 

innovation is to introduce a regularization scheme to 

cope with the ill-posedness of the inverse problem, which 

was not used in references [1, 6, 11]. 

 

II. INVERSE SCATTERING TECHNIQUE IN 

THE TIME DOMAIN 

A. Problem formulation 

Suppose that a problem space V, occupied by some 

biological tissues, is surrounded by a region D, filled 

with a known background medium. Also, it is assumed 

that all the media are linear, isotropic, and nonmagnetic, 

and that the complex-valued relative permittivity, ε
* 

r , of 

the media within V is modeled by the single pole C-C 

electrical dispersion equation as [10]: 

      *

r s 0= j ε + 1+ j


      
  
 

, (1) 

where Δε = εs − ε∞, εs and ε∞ are the static and optical 

relative permittivity, respectively, σs is the static 
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conductivity, τ and α (0 ≤ α ≤ 1) denote the relaxation 

time and the dispersion breadth, respectively, j2 = −1, ε0 

is the dielectric constant of free space, and ω represents 

the angular frequency. 

For simplicity, we assume that α is a priori known 

(it is appropriate for most biological tissues since they 

are not distinctly different in a wide frequency range 

[10]). 

Our objective is therefore to determine four kinds of 

unknowns, (ε∞, σs, Δε, and τ), for every position within 

V. These C-C model parameters can be explicitly shown 

in the following field equations when activating the ith 

incidence for the time interval [0, T]: 

 
0μi t i   E H 0 , (2) 

s

0 si t i i i i        H E E J J 0 , (3) 

and a fractional auxiliary differential equation (ADE) 

[13]: 

0D εi t i t i

      J J E 0 ,     (4) 

where μ0 is the free-space permeability, Ei, Hi, and Ji are 

the electric field intensity, magnetic field intensity, and 

dispersion current, respectively, J
s 

i is the current density, 

∇  is the Hamilton operator, and ∂t and D
α 

t denote 1st-order 

and αth-order temporal partial differential operators with 

respect to time variable, t, respectively. 
 

B. Constrained minimization problem 

In order to cope with the nonlinearity of the 

aforementioned inverse problem, we formulate it as a 

constrained minimization problem: 

 

   

arg min ,

     s.t. 2 4 ,

F     




pp p
                     (5) 

where the estimated parameters p = [ε∞, σs, Δε, τ]T, and 

the cost functional F is given by: 
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E p E

           

(6) 

In the right hand side of (6), the first term formulates 

inversion error, in which Eij and E
mea 

ij  represent the 

calculated and measured electric fields at the jth receiving 

position due to the ith incident wave, respectively, and I 

and J denote the total number of transmitters and 

receivers, respectively. While the second term, which is 

not contained in references [1, 6, 11], is incorporated to 

regularize the ill-posedness of the inverse problem, in 

which γm (m = 1, 2, 3, 4) are four positive Tikhonov 

regularization factors. 

 

C. Unconstrained minimization problem 

Based on the method of the Lagrange penalty 

function, the above constrained minimization problem is 

turned into an unconstrained minimization one, whose 

augmented cost functional Fa is represented as: 
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(7) 

where ei, hi, and qi are the Lagrange vector multipliers. 

 

D. Fréchet derivatives 

Solving (7) by the variational method [14], we have 

δFa = 0, where δ denotes the first-order variation 

operator. After some calculus of variations similar to  

[1, 6, 11], it can be derived that the fields ei, hi, and ji  

(ji =: −ε0Δε∂tqi) must satisfy the following equations for 

the time interval [T, 0]: 

0μ ,i t i   e h 0                         (8) 

 mea

0 s

1

,
J

i t i i i ij ij

j

  



       h e e j E E 0     (9) 

0D ε ,i t i t i

      j j e 0                  (10) 

and that the Fréchet derivatives (gradients) of Fa with 

respect to pm are denoted as: 

 a 2

0 1
0

1

: δ δ ε d ,
I T

i t i

i

g F t   
  



      e E   (11) 

 
s
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s 2 s
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1
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I T

i i
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      e E      (12) 
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 j E

        

(13) 
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 j J
   (14) 

where 1Dt

 indicates a fractional differential operator, 

whose numerical treatment could be found in [15], the 

direct fields (Ei, Hi, and Ji) and the adjoint fields (ei, hi, 

and ji) can be calculated by using the FDTD method 

based on approximation of the Grünwald-Letnikov 

fractional derivative, from (2)–(4) and (8)–(10), respectively 

[13]. 

 

E. Inversion algorithm 

In this work, we select the Polak-Ribière-Polyak 

conjugate gradient algorithm [16] to solve the derived 

problem. Let the discretized forms of the C-C model 

parameters and gradients be represented by: 
T

1 1 1 1

s s,..., , ,..., , ,..., , ,..., ,N N N N        
    x  (15) 

and 

LIU: TIME-DOMAIN ELECTROMAGNETIC INVERSION TECHNIQUE 9



1 1
s s

1 1

T

,..., , ,..., ,

,..., , ,..., ,

N N

N N

g g g g

g g g g

   

   

 

 







g

             (16) 

respectively. Given that the estimated value of x at the 

kth iteration, xk, is achieved, the next estimated xk+1 is 

updated by: 

1 ,k k k k  x x d                         (17) 

where λk is the step size, and the direction dk is given by 

[16]: 
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g

d g g g
g d

g g
     

  (18) 

where gk denotes the estimated value of g at the kth 

iteration. 

At the kth iteration, the relative mean square error e 

between the true parameters x and estimated ones xk is 

defined as: 

 
22

: .ke k  x x x                    (19) 

The above inverse problem is solved iteratively until 

a predetermined error threshold eth is reached or a 

predefined iteration number kpre is finished. The basic 

steps of the inversion algorithm are illustrated in Fig. 1. 

 

Begin End

Input Output

Initialization
e > eth

k < kpre

k = k + 1

Forward (FDTD) SolverInverse (CG) Solver

Yes
No

 
 

Fig. 1. Basic flow-chart of the proposed inversion 

technology. 

 

III. NUMERICAL RESULTS AND 

DISCUSSION 
In this section, two simple one-dimensional (1-D) 

numerical examples, similar to [1, 6], are provided to 

examine the performance of the newly-elaborated 

approach. The geometry of the examples is shown in Fig. 

2, in which either side of a 4d-width objective region is 

surrounded by a known background medium (air) where 

d = 10 mm, and all their electrical properties depend only 

on z coordinate, where the positive direction of z axis is 

from left to right, and z = 0 is on the left plane of the left 

background medium. 

The objective region consists of layered C-C 

medium with a parameter of α = 0.8. In the background 

medium, a bistatic detection system is applied where two 

transmitters (I = 2), denoted by T, are symmetrically 

placed at distance equal to d/2 from both sides of the 

objective region, while two receivers (J = 2), denoted by 

R, are placed at symmetrical distance equal to d/4 from 

both sides of the objective region. An ultra-wideband 

pulse of the excitation source for transmitters is selected 

the same as [12]: 

        22

csin 2π 4 exp 4 ,s t f t a a t a     (20) 

where a = 1.26×1010, and central frequency fc = 3 GHz. 

 

Stratified Cole-Cole MediumCPML CPMLAir Air

d d4 d

d / 4 d / 4

d / 2 d / 2

z

Transmitter Receiver

Problem Space

 
Fig. 2. Geometry model of 1-D problem. 

 

The FDTD method is applied to compute the direct 

and adjoint fields [13]. The FDTD solution space, which 

is bounded by the five-cell convolution perfectly matched 

layer (CPML) [17], consists of 120 homogeneous cells 

with spatial size Δz = 0.5 mm and time step Δt = 0.5Δz/c0, 

where c0 is the speed of light in free space. Therefore, the 

total number of unknowns is 320. In this work, the 

necessary measurement data came from the similar 

FDTD simulation with T = 1500Δt, but its cell size is 

twice finer than the one used in the inverse solver to 

avoid the “inverse crime”. 

Besides, it is assumed that the location and width of 

the reconstruction region are a priori known, that a set 

of values (6.0, 0.5 S·m−1, 20.0, and 7.0 ps), which are the 

average values of the C-C model parameters (ε∞, σs, Δε, 

and τ) within the objective region, is selected as an initial 

guess of the inversion algorithm, and that the specific 

stopping condition for the iterative algorithm is that 

reconstruction errors are not declining or kpre = 30. 

In the first example, the spatial distribution profiles 

of the four parameters within the entire objective region 

are smooth (sinusoidal or cosinusoidal), whose (peaks, 

valleys) for ε∞, σs, Δε, and τ are (10.0, 2.0), (0.9 S·m−1, 

0.1 S·m−1), (30.0, 10.0), and (8.0 ps, 6.0 ps), respectively. 

Firstly, the regularization term is not applied in the 

noiseless case (i.e. ,set γm= 0 with m = 1, 2, 3, 4). After 

30 iterations, the estimated optical relative permittivity, 

static conductivity, relative permittivity difference, and 

relaxation time are obtained as shown in subfigures (a)–

(d) of Fig. 3. In these subfigures, the solid black lines, 

small red dots, and small blue circles depict the true 

distributions, start values, and end values, respectively 

(similarly for the later cases). 
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Fig. 3. The reconstructed distributions of: (a) optical 

relative permittivity, (b) static conductivity, (c) relative 

permittivity difference, and (d) relaxation time for a 

stratified Cole-Cole slab with smooth model parameter 

profiles, using noiseless data without regularization,  

at the 30th iteration. For comparison purpose, its 

corresponding original distributions with smooth profiles, 

and homogeneous initial guess are given, too (similarly 

for later cases). 

 

As can be seen in Fig. 3, the proposed method for 

the non-regularized 1-D problem is convergent when 

noise is not considered, and that all the model parameters 

of the C-C dispersive media are reconstructed precisely. 

Secondly, it is assumed that the measured fields are 

corrupted by the additive white Gaussian noise (AWGN) 

with a signal-to-noise ratio (SNR) of 20 dB. The same 

procedures as the previous case are repeated, where  

no regularization scheme is adopted yet. Numerical 

experiments show that the reconstruction errors are not 

decreased just after 14 iterations. The estimated optical 

relative permittivity, static conductivity, relative 

permittivity difference, and relaxation time are obtained 

as illustrated in subfigures (a)–(d) of Fig. 4 at the 14th 

iteration, where the estimated relative mean square error 

is about 0.25. 

From Fig. 4, it is obvious that all the estimated 

distributions are poor, especially for the optical relative 

permittivity and relaxation time. 

Finally, suppose that the simulated measurement 

field data are corrupted by the AWGN with a SNR of  

20 dB, too. To test the performance of the regularized 

inversion algorithm, four of regularization factors (γ1, γ2, 

γ3, and γ4) are chosen to be (0.01, 0.001, 0.01, and 

0.0001), respectively. It is noteworthy that these factors 

could be not optimal. The estimated optical relative 

permittivity, static conductivity, relative permittivity 

difference, and relaxation time are obtained as given in 

subfigures (a)–(d) of Fig. 5 at 30th iteration. 

 

 
 

Fig. 4. The reconstructed distributions of: (a) optical 

relative permittivity, (b) static conductivity, (c) relative 

permittivity difference, and (d) relaxation time for a 

stratified Cole-Cole slab with smooth model parameter 

profiles, applying noisy data (SNR = 20 dB) without 

regularization, at the 14th iteration. 

 

 
 

Fig. 5. The reconstructed distributions of: (a) optical 

relative permittivity, (b) static conductivity, (c) relative 

permittivity difference, and (d) relaxation time for a 

stratified Cole-Cole slab with smooth model parameter 

profiles, using noisy data (SNR = 20 dB) with 

regularization, at the 30th iteration. 

 

Figure 5 shows that the recreated model parameters 

of the C-C dispersive media are satisfactory, even based 

on the noise-contaminated data with a SNR of 20 dB, 

which could benefit from the additional regularization 

terms. 

In addition, the relative mean square errors versus 

the number of iterations, for the first and last cases, are 

presented in Fig. 6, where the final values of the errors 

are approximately 0.052 and 0.057, respectively. 
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Figure 6 indicates clearly that the proposed method 

is convergent, and the relative mean square errors are 

decreased with the increase of the number of iterations 

in two cases, and that the final error in the last case is 

slightly larger than that in the first case. 

 

 
 

Fig. 6. In the iterative inversion methodology, relative 

mean square errors versus the number of iterations. 

 

The second example is to reconstruct an 

inhomogeneous C-C slab with discontinuous (step-shaped) 

model parameter profiles, consisting of six layers. The 

width of the second and fifth layers is all 10 mm, and that 

of other layers is all 5 mm. The parameters (ε∞, σs, Δε, 

and τ) of the first and third layers are all (8.0, 0.3 S·m−1, 

25.0, and 6.5 ps), those of the second layer are (10.0,  

0.9 S·m−1, 30.0, and 6.0 ps), those of the fourth and sixth 

layers are all (4.0, 0.7 S·m−1, 15.0, and 7.5 ps), and those 

of the fifth layer are (2.0, 0.9 S·m−1, 10.0, and 8.0 ps). 

After 30 iterations of the algorithm with 

regularization (regularization factors are the same as the 

first example) based on a noisy scenario (SNR is the 

same as the first example, too), the estimated optical 

relative permittivity, static conductivity, relative 

permittivity difference, and relaxation time are obtained 

as shown in subfigures (a)–(d) of Fig. 7. The error at the 

30th iteration is about 0.16. 

Figure 7 shows that even when the distributions of 

the C-C model parameters for a slab are discontinuous 

and the simulated measurements are added a noise with 

a SNR of 20 dB, the inversion algorithm is still 

convergent, and the reconstructed results are acceptable. 

Note that the final error in the discontinuous case is 

noticeably larger than that in the smooth one. 

Theoretically, the initial guess applied in the 

inversion algorithm could be also important to its 

imaging performance. For this reason, the inversion 

algorithm is applied to the third case of the first example, 

the only difference is that the initial guess is replaced 

with the C-C model parameters of the known 

background medium (air), (1.0, 0.0 S·m−1, 0.0, and  

8.0 ps). The reconstructed optical relative permittivity, 

static conductivity, relative permittivity difference, and 

relaxation time are presented in subfigures (a)–(d) of Fig. 

8. The error at the 30th iteration is approximately 0.063. 

 

 
 
Fig. 7. The reconstructed distributions of: (a) optical 

relative permittivity, (b) static conductivity, (c) relative 

permittivity difference, and (d) relaxation time for a 

stratified Cole-Cole slab with discontinuous model 

parameter profiles, using noisy data (SNR = 20 dB) with 

regularization, at the 30th iteration. 

 

 
 
Fig. 8. The reconstructed distributions of: (a) optical 

relative permittivity, (b) static conductivity, (c) relative 

permittivity difference, and (d) relaxation time for a 

stratified Cole-Cole slab with smooth model parameter 

profiles, using noisy data (SNR = 20 dB) with 

regularization, at the 30th iteration. 

 

Figure 8 shows that the reconstructed C-C model 

parameters are also acceptable, based on the new initial 

guess. Thus, the proposed method is robust to initial 

guess. 

The whole solution program codes written in 

MATLAB (R2011b, win64-bit) are iteratively executed 
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on a PC with a four-core i5-2320 CPU, each iteration 

taking, on average, about 2.87 s. 

As previously mentioned, the nonlinearity and ill-

posedness are two major difficulties in the solution of the 

inverse problem. Indeed, in order to bridge over the first 

difficulty, two similar multi-frequency time-harmonic 

imaging approaches, the frequency-hopping approach 

[18] and the simultaneous inversion one [19], have been 

proposed. While the time-domain technique presented in 

this paper is a natural extension from several frequencies 

to an entire frequency range, which could produce 

imaging results with higher resolution and accuracy. 

When this time-domain technique is, however, applied 

to large scale problems such as high-dimensional ones, 

their high computational cost will become a new 

difficulty, which may be overcome by either of the multi-

frequency methods. 

For the second difficulty, the Tikhonov regularization 

scheme used in this work is one of remedies, in which 

the reasonable regularization parameters (factors γm) for 

a particular problem can be determined by several 

regularization parameter-choice techniques such as the 

L-curve method [20]. Naturally, it will add additional 

computational cost to the problem. Besides, other 

regularization schemes, such as the total variation (TV) 

regularization [21], can also be adopted to remedy the ill-

posedness of the inverse problem. 
 

IV. CONCLUSION 
This paper estimates four frequency-dependent 

parameters in the single pole Cole-Cole electrical 

dispersion equation via a time-domain optimization 

method. The first contribution in the developed inversion 

technique is direct reconstruction of four sorts of 

parameters for the C-C dispersive media from the  

time-domain measured data. The second one is that 

comparative studies on the same 1-D problem in three 

different cases are carried out. The numerical results 

demonstrate that the proposed technique is feasible for 

quantitative determination of the parameters of the 1-D 

example, and it provides a valuable tool for microwave 

imaging of biological tissues. The further work is to 

investigate multidimensional reconstruction problems as 

well as else regularization schemes. 
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