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Abstract ─ This paper presents a fully deterministic 

iterative algorithm for the far-field synthesis of antenna 

arrays with reduction of the cross-polar component. The 

algorithm synthesizes the excitations as well as the 

positions of the array elements, providing a sparse 

geometry. Starting from an initial set of possible 

positions, the proposed algorithm iteratively solves a 

sequence of convex optimization problems. At each 

iteration a suitable objective function is minimized, 

which allows to reduce the number of radiating elements, 

among those of the initial set, in presence of constraints 

on the far-field co-polar and cross-polar patterns. The 

adopted formulation leads to a second order cone 

problem (SOCP), which is iteratively solved with CVX, 

a Matlab-based modeling system developed at the 

Stanford University and available on the Internet. 

 

Index Terms ─ Co-polar and cross-polar patterns, far-

field synthesis, geometrical synthesis, sparse arrays. 

 

I. INTRODUCTION 
Since many decades, antenna arrays became very 

common in several fields of engineering [1, Ch. 11-13]. 

Due to the presence of a number of radiating elements, 

they offer to the designer additional degrees of freedom 

with respect to a single antenna, thus allowing to meet 

different tasks. 

Initially, the synthesis techniques were analytical 

and suitable for simple geometries, which were fixed a 

priori, such as linear [2, 3], rectangular [4] and circular 

[5, 6] arrays. Subsequently, sophisticated synthesis 

methods were developed, suitable for arrays of arbitrary 

geometries, capable of satisfying additional constraints. 

Some of them are deterministic [7, 8], some others  

are stochastic [9, 10]. Stochastic methods can solve 

complicated non-linear optimization problems, but are 

often costly in terms of computational resources. Thus, 

when available, the deterministic methods should be 

preferred. 

In recent years, the attention of the array engineers 

has moved to geometrical synthesis algorithms, which 

increase the number of the degrees of freedom and, more 

importantly, allow to reduce the number of elements. 

Also in this context, there are deterministic [11] and 

stochastic procedures [12].  

In this paper we present a totally deterministic 

approach to the geometrical synthesis of antenna arrays 

of arbitrary geometry, which also allows to control the 

cross-polar component of the radiation pattern. The 

paper is organized as follows. In Section II the problem 

is formulated and the developed algorithm is described. 

A numerical example is proposed in Section III to prove 

the effectiveness of the method. Finally, conclusions are 

summarized in Section IV. 

 

II. METHOD OF SOLUTION 
Given an antenna array consisting of 𝑁 radiating 

elements, referred to a Cartesian system 𝑂(𝑥, 𝑦, 𝑧), the 

far-field radiation patterns at the generic direction 𝜙 of 

the 𝑥𝑦-plane are: 

 𝐹𝑣(𝐢, 𝜙) = ∑ 𝑖𝑛𝑓𝑛
𝑣(𝜙)𝑁

𝑛=1 , (1) 

where 𝑣 means “𝑐𝑜” or “𝑐𝑟”, 𝐢 = [𝑖1, … , 𝑖𝑁]𝑇 is the 

complex column vector of the excitations, 𝑓𝑛
𝑐𝑜(𝜙) and 

𝑓𝑛
𝑐𝑟(𝜙) are, respectively, the co-polar and cross-polar 

far-field patterns of the 𝑛-th array element. 

Given a desired far-field co-polar pattern 𝐹𝑑(𝜙), 

which identifies a main beam region 𝑀𝐵 and a side lobe 

region 𝑆𝐿, the far-field constraints on the co-polar 

component can be written as: 

 {
|𝐹𝑐𝑜(𝐢, 𝜙) − 𝐹𝑑(𝜙)| ≤ 𝜖   𝑖𝑓 𝜙 ∈ 𝑀𝐵

|𝐹𝑐𝑜(𝐢, 𝜙)| ≤ 𝜌𝑐𝑜(𝜙)         𝑖𝑓 𝜙 ∈ 𝑆𝐿 
, (2) 

where 𝜌𝑐𝑜(𝜙) is a real positive function specifying the 

maximum allowed side lobe level. Analogously, the far-

field cross-polar constraint can be written as: 

 |𝐹𝑐𝑟(𝐢, 𝜙)| ≤ 𝜌𝑐𝑟(𝜙), (3) 

where 𝜌𝑐𝑟(𝜙) is a real positive function specifying the 

maximum allowed cross-polar far-field level. 

The synthesis process that we propose consists in: 

(a) introducing a very dense grid of elements; (b) 

iteratively determining the excitations of these elements, 

while satisfying constraints (2) and (3); (c) finally 

removing those elements that have excitations lower 

than a given threshold. The last step yields the required 

sparse array, consisting of a strongly reduced number of 

elements. In other words, the synthesized excitations and 
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positions of the array elements are those of the 

“surviving” elements. 

The method of solution that we are presenting is an 

evolution of that proposed in [13]. Precisely, Equations 

(2) and (3) are regarded as the constraints of an 

optimization problem aimed at reducing (and possibly 

minimizing) the number of radiating elements. In order 

to exploit techniques that solve convex optimization 

problems, an iterative procedure is proposed which, at 

the 𝒌-th iteration, solves the following weighted norm-1 

minimization problem: 

 𝐦𝐢𝐧
𝒊𝒌

∑ 𝜶𝒏
𝒌|𝒊𝒏

𝒌|𝑵
𝒏=𝟏     subject to (2) and (3), (4) 

where 𝐢𝒌 = [𝒊𝟏
𝒌, … , 𝒊𝑵

𝒌 ]𝑻, and the weights 𝜶𝒏
𝒌 are given 

by: 

 𝜶𝒏
𝒌 = (|𝒊𝒏

𝒌−𝟏| + 𝝐)
−𝟏

, (5) 

where the parameter 𝝐 > 𝟎 is to be chosen slightly 

smaller than the smallest non-zero excitation amplitude 

that one is willing to implement [14]. All the array 

elements with an amplitude |𝒊𝒏
𝒌| ≤ 𝝐 are switched-off, 

and contribute to the evaluation of ‖𝐢𝒌‖
𝟎
, which is 

defined as the number of zero-components of vector 𝐢𝒌. 

With reference to (5), note that a zero excitation at the 

step 𝒌, 𝒊𝒏
𝒌 = 𝟎, might result in a non-zero excitation at 

the successive step 𝒌 + 𝟏, 𝒊𝒏
𝒌+𝟏 ≠ 𝟎. The iterative 

process is stopped when the number of zero elements 

does not change in three consecutive iterations. The 

optimality of the solution is not guaranteed, but 

numerical examples proved the improvements that can 

be obtained with respect to usual fixed-grid synthesis 

algorithms. 

The proposed synthesis procedure can be 

summarized as follows: 

1. Define a regular array structure, which will be 

regarded as the reference array. 

2. Make thicker the initial grid to obtain an array with 

the same geometry but an increased number of 

possible positions. 

3. Choose the parameter 𝜖 and set 𝑘 = 1. 

4. Solve the fixed-grid far-field co-polar synthesis 

problem described by constraints (2) with one of 

the algorithms available in the literature: we used 

the algorithm in [15]. 

5. Set 𝑘: = 𝑘 + 1 and evaluate the weights 𝛼𝑛
𝑘 by (5). 

6. Solve the problem in (4). 

7. If 𝑘 > 2 and ‖𝐢𝑘−2‖0 = ‖𝐢𝑘−1‖0 = ‖𝐢𝑘‖0 stop the 

procedure and consider the vector 𝐢𝑘 as the solution 

to the problem; else go back to step 5. 

In particular, note that the synthesized sparse array 

consists of only those elements for which |𝑖𝑛
𝑘| > 𝜖. The 

step 7 gives the excitations 𝐢𝑘 of such elements. In the 

following section, a numerical example shows the 

effectiveness of the proposed algorithm. 

III. NUMERICAL RESULTS 
Starting from the example in [16], we here propose 

a numerical example that shows the improvements that 

can be achieved with the presented algorithm in terms of 

reduction of the number of radiating elements. Note that, 

constraints on the cross-polar far-field pattern were not 

considered in [16]. The array used in [16] is shown in 

Fig. 1 (a) (blue circles). It consists of 𝑁 = 54 radially 

oriented equally spaced Huygens radiators with the 

electrical dipoles parallel to the 𝑧-axis. The co-polar 

pattern was defined as the 𝜗-component of the electric 

far-field on the 𝑥𝑦-plane (𝜗 = 𝜋/2). The 𝜙-components 

of the electric far-field on the 𝑥𝑦-plane were negligible 

with the electrical dipoles parallel to the 𝑧-axis. So, the 

electrical dipoles were 𝜋/20 radians tilted with respect 

to the 𝑧-axis. This is regarded as the reference array. 

As a first step, the method in [16] has been used to 

solve the far-field co-polar synthesis problem. The 

synthesized co-polar pattern and the corresponding 

cross-polar pattern are depicted in Fig. 1 (b). 

In order to implement the iterative procedure above 

described, firstly the inter-element spacing between 

adjacent elements on the reference array was reduced by 

a factor 5, leading to a thicker grid of 𝑁 = 270 possible 

positions. Then, with reference to constraint (2), in the 

𝑀𝐵 region the pattern synthesized with [16] was chosen 

as the desired far-field pattern 𝐹𝑑(𝜙), whereas in the 𝑆𝐿 

region the upper bound of the mask (red line in Fig.  

1 (b)) was chosen as the function 𝜌𝑐𝑜(𝜙). The function 

𝜌𝑐𝑟(𝜙) in (3) was chosen in such a way as to impose a 

maximum value of −20 dB for the cross-polar component. 

According to [13], we set 𝜖 = 10−2 in (5). Finally, 

at each step the optimization problem in (4) was solved 

using [17] in a Matlab code on a laptop with 8GB RAM. 

The iterative procedure stopped after 5 iterations and 

required only 217 seconds to give the results. The 

synthesized sparse array is shown in Fig. 1 (a) (red 

triangles). It consisted of only 39 elements among the 

possible 270 elements. Thus, a reduction of 27,8% of 

radiating elements with respect to the 54 elements of the 

reference array was achieved. The far-field co-polar and 

cross-polar patterns resulted to satisfy both constraints 

(2) and (3) with great accuracy, as is shown in Fig. 1 (c). 

Then, we imposed a more stringent requirement on 

the cross-polar component. Precisely, we chose 𝜌𝑐𝑟(𝜙) 

in such a way as to obtain, with respect to the co-polar 

component, reductions of 20 dB in the 𝑀𝐵 region and 

10 dB in the 𝑆𝐿 region. Also in this case, the proposed 

method gave patterns satisfying constraints (2) and (3) 

with very good accuracy (Fig. 1 (d)). The synthesized 

array consisted of 50 elements (𝑁1 = 19,  𝑁2 = 31, 

reduction of 7.4%). The algorithm required 7 iterations, 

performed in 373 seconds. The results, in terms of 

element positions and excitations, are detailed in Table 1. 
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Fig. 1. (a): Geometry of the arrays. Blue circles: elements of the reference array (𝑁1 = 20, 𝑅1 = 2.8𝜆,  𝑧1 = 𝜆;  𝑁2 = 34, 
 𝑅2 = 4.6𝜆, 𝑧2 = −𝜆). Red triangles: elements of the synthesized sparse array, consisting of 𝑁 = 39 elements  

(𝑁1 = 14,  𝑁2 = 25, the radii and the 𝑧 coordinates are as in the reference array). Patterns synthesized with: (b) the 

method in [16]; (c): the presented method, first example; (d): the presented method, second example. Thick lines: co-

polar pattern (blue), upper (red) and lower (green) bounds of the mask. Thin lines: cross-polar pattern (blue) and the 

function 𝜌𝑐𝑟(𝜙) (red). 

 

Table 1: The results obtained with the proposed approach; positions (𝜑𝑛) and excitations (𝑖𝑛) of the array elements 

(Angles in degrees. The radii and the 𝑧 coordinates of the elements can be deduced from the above text.) 

 

 First Example Second Example  First Example Second Example 

𝑛 𝜑𝑛 |𝑖𝑛| ∠𝑖𝑛 𝜑𝑛 |𝑖𝑛| ∠𝑖𝑛 𝑛 𝜑𝑛 |𝑖𝑛| ∠𝑖𝑛 𝜑𝑛 |𝑖𝑛| ∠𝑖𝑛 

1 -57.27 0.44 -154.66 -90.00 0.11 -19.08 26 -1.60 0.59 111.51 -52.72 0.38 -109.61 

2 -48.18 0.50 134.86 -82.73 0.19 -141.98 27 -0.53 0.80 76.60 -44.20 0.37 -141.40 

3 -35.45 0.70 28.68 -75.45 0.27 96.96 28 4.79 0.86 91.88 -38.88 0.51 134.37 

4 -33.64 0.51 93.37 -66.36 0.11 -2.56 29 33.55 0.24 145.39 -30.35 0.68 123.16 

5 -24.54 1.84 4.68 -55.45 0.24 -113.26 30 37.81 0.26 139.26 -22.90 0.34 131.91 

6 -11.82 2.17 7.23 -46.36 0.23 129.79 31 41.01 0.37 -172.91 -21.83 0.47 106.97 

7 -0.91 2.99 17.22 -39.09 0.31 52.63 32 47.40 0.17 -88.67 -16.51 0.83 77.43 

8 10.00 2.62 10.61 -30.00 0.43 40.02 33 53.79 0.30 -41.23 -10.12 1.01 94.74 

9 22.73 2.14 -2.30 -20.91 1.10 -11.04 34 60.18 0.18 89.01 -4.79 0.22 139.52 

10 33.64 0.60 62.34 -10.00 1.05 19.40 35 64.44 0.25 161.08 -3.73 0.93 104.07 

11 35.45 0.52 44.09 -8.18 0.94 -31.85 36 74.02 0.14 -21.75 0.53 1.58 104.45 

12 44.54 0.40 140.56 2.73 1.89 29.04 37 80.41 0.08 127.73 6.92 1.69 95.17 

13 59.09 0.20 -128.33 4.55 0.64 -47.67 38 84.67 0.09 -142.48 14.38 0.95 81.94 

14 88.18 0.02 -91.61 15.45 1.45 6.19 39 90.00 0.09 54.98 20.77 0.49 116.59 

15 -90.00 0.11 40.87 22.73 0.65 -48.08 40    28.22 0.50 120.56 

16 -86.80 0.12 -93.77 33.64 0.88 47.17 41    29.29 0.16 136.32 

17 -74.02 0.17 -16.44 42.73 0.35 134.61 42    35.68 0.67 112.26 

18 -62.31 0.29 132.79 55.45 0.30 -118.80 43    39.94 0.34 170.10 

19 -59.11 0.35 55.64 80.91 0.13 144.31 44    46.33 0.16 -107.80 

20 -45.27 0.25 -124.39 -90.00 0.09 76.53 45    51.66 0.40 -79.79 

21 -41.01 0.12 -176.46 -86.80 0.16 -78.17 46    62.31 0.36 120.16 

22 -37.81 0.16 155.68 -82.54 0.10 148.19 47    72.96 0.15 -21.74 

23 -20.77 0.25 111.72 -75.09 0.12 45.20 48    80.41 0.17 101.64 

24 -16.51 0.25 72.79 -61.24 0.10 109.42 49    83.61 0.06 -129.23 

25 -6.92 0.47 94.09 -56.98 0.32 -3.43 50    87.87 0.10 21.88 
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IV. CONCLUSIONS 
The algorithm proposed in this paper is a fully 

deterministic iterative procedure able to synthesize 

sparse arrays of quite arbitrary shapes, including 

conformal ones. Along with the positions of the 

elements, the iterative procedure yields their excitations 

in such a way that a desired far-field co-polar pattern is 

approximated and the far-field cross-polar pattern does 

not exceed a prescribed threshold. 

The optimality of the solution is not guaranteed, but 

a numerical example is provided that shows the 

effectiveness of the presented procedure. 

At the knowledge of these authors, the literature 

does not offer deterministic techniques capable of 

solving the synthesis problem at hand, for arrays of 

arbitrary geometry and with the considered constraints. 
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