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Abstract ─ The bottleneck of the spatial partitioning for 

parallelizing the multilevel fast multipole algorithm 

(MLFMA) lies in higher levels of the tree, at which 

boxes are usually fewer than parallel processors, yielding 

a serious load imbalance. To solve the bottleneck, the 

higher levels of the tree are truncated to generate plenty 

of subtrees, which are distributed among processors to 

facilitate balancing the work load. At the coarsest level, 

the communication volume during translation between 

far-away processors is drastically reduced by adopting the 

far-field approximation. Therefore, the communication 

mainly occurs between nearby processors, which is 

favorable for modern computing clusters. In comparison 

with the parallel strategies that hybridize the spatial 

partitioning with the k-space partitioning, the proposed 

approach is more straightforward and shows good 

scalability. 

 

Index Terms ─ Multilevel fast multipole algorithm 

(MLFMA), parallelization, reduced communication, 

spatial partitioning, subtrees. 
 

I. INTRODUCTION 
The multilevel fast multipole algorithm (MLFMA) 

is widely applied in the electromagnetic scattering 

analysis of electrically large objects. During last decade, 

high performance computing techniques have been used 

in order to boost its performance by designing efficient 

parallel strategies. Due to the use of a tree-like structure 

in the spatial domain and plane-wave expansions in  

the spectral (k-space) domain, the parallelization of 

MLFMA is much more complicated compared with 

other numerical methods such as the method of moments 

(MoM) [1] and the finite-difference time-domain 

(FDTD) method [2, 3]. Generally, researchers use two 

basic strategies when parallelizing MLFMA: the spatial 

partitioning (SP) and the k-space partitioning. When 

going up from the finest level to the coarsest level of the 

tree, the number of spatial boxes gradually decreases 

from 𝑂(𝑁) to 𝑂(1), but the number of plane waves or  

k-space samples, by contrary, increases from 𝑂(1)  to 

𝑂(𝑁) , where 𝑁  is the number of unknowns. When a 

large number of parallel processors are used, it is very 

difficult to achieve good load balance through a simple 

use of one of the strategies. 

Therefore, to achieve high scalability, a commonly 

used method is to combine the aforementioned strategies 

in a hybrid manner [4, 5] or in a more efficient 

hierarchical manner [6–8]. As an efficient alternative, 

the MLFMA with the fast Fourier transform (FFT) was 

parallelized to keep up with the modern computational 

resources with mixed (shared/distributed) memory 

architectures and achieved very high parallel efficiency 

using MPI combined with OpenMP [9]. It takes 

advantage of the high scalability behavior of the fast 

multipole method (FMM)-FFT for the distributed-

memory computations implemented at the coarsest level, 

while the algorithmic efficiency of the MLFMA benefits 

the shared-memory computations at finer levels. Internode 

communications are only required at the coarsest level, 

where all-to-all communications are carried out to 

accomplish the transfer between the two basic strategies. 

It is worth noting that all-to-all communication is one of 

the most demanding and the least scalable MPI collective 

operation, and thus the operation needs to be implemented 

very carefully.  

Although the combination of the two basic strategies 

improves the scalability of the parallel MLFMA, it 

increases the difficulty in algorithm design and results in 

complex coding. Recently, a parallel discontinuous 

Galerkin boundary element method (DG-BEM) has been 

developed [10], which employs a graph partitioning 

library METIS to partition the entire computational 

domain into subdomains with nearly equal number  

of unknowns. The number of subdomains is kept 

proportional to the number of processors with the help of 

METIS, and thus, subdomains as well as unknowns are 

approximately uniformly distributed among processors. 
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This can be referred to as a spatial partitioning 

parallelization strategy. However, independent octrees 

created for all subdomains may have different numbers 

of levels and multipoles because of various diameters of 

subdomains, possibly resulting in unbalanced loads 

among processors. Besides, it is complicated to deal with 

radiation coupling among subdomains due to overlap or 

intersection of these octrees.  

To develop a simpler and more efficient algorithm, 

we remove higher levels of the tree and move the 

coarsest level down to a level where the number of boxes 

is larger than the number of processors, and then 

uniformly distribute those boxes and the consequent 

subtrees among processors, facilitating the load balance. 

It is worth emphasizing that moving down the coarsest 

level may cause the computational complexity to 

increase higher than 𝑂(𝑁log𝑁). Meanwhile, given the 

fact that communication latencies are higher between 

far-away processes than between nearby processes  

in modern parallel computers, we use the far-field 

approximation to drastically reduce both the 

computational complexity and the communication 

volume between far-away processes during translation  

at the coarsest level. In other words, most of the 

communication volume is kept localized in a 

neighborhood. Note that we map nearby and far-away 

message passing interface (MPI) processes to nearby and 

far-way processors, respectively.  

The proposed method bears some similarity to the 

parallel MLFMA-FFT and DG-BEM, where plenty of 

subtrees or subdomains are generated and distributed 

among processes. However, it differs in the following 

manner: (a) its communication pattern better fits with 

non-uniform network latencies in high performance 

computing clusters; and (b) its computational complexity 

is able to reach as low as the conventional MLFMA 

when the coarsest level and far-field criterion are 

properly chosen.  

This paper is organized as follows: in Section II,  

the improved SP strategy and its implementation are 

described. Next, in Section III, the parallel efficiency is 

investigated, and an application including a multiscale 

ship model is proposed, followed by the conclusion in 

Section IV.  
 

II. PARALLELIZATION 

A. Spatial partitioning based on a truncated tree 

In a typical MLFMA, a tree with 𝑂(log𝑁) levels is 

established by recursively grouping or subdividing the 𝑁 

unknowns, as illustrated in Fig. 1. The one-buffer-box 

criterion is utilized, and the coarsest level 𝐿𝑐 is usually 

set at Level 2 to make the algorithm efficient. Obviously, 

there are not enough boxes at higher levels to be 

distributed to a large number of processes, yielding an 

unbalanced work load among processes at these levels. 

A straightforward method to solve this issue is to move 

𝐿𝑐 down to a level at which the boxes become more than 

the processes. At this new coarsest level, the boxes are 

now enough to be distributed to processes, and the 

interactions between increasing far boxes are taken into 

account by using FMM. As an example, shown in Fig. 1, 

𝐿𝑐 is set at Level 4 instead of Level 2; in this case, there 

are ten coarsest boxes distributed to four processes  

as well as their descendants. It is worth noting that  

the operation of moving down the coarsest level is 

equivalent to truncating the higher levels of a MLFMA 

tree, which generates many subtrees below the coarsest 

level. Given the load balance, it is easier to distribute 

these shallower subtrees than distribute a single deeper 

tree to processes. 

 

 
 

Fig. 1. Illustration of a tree in MLFMA. By moving the 

coarsest level down to Level 4, the boxes denoted by A–

J with their descendants form plenty of subtrees, which 

are distributed to four processes P0–P3. 

 

B. Reduced communication between far-away 

processes during translation 

Nowadays, the communication between processes 

has become an important factor in determining the 

parallel performance of electromagnetic codes, especially 

in supercomputer environments. Even for a relatively 

moderate machine size, messages might travel a large 

number of hops on average [11]. The hop count refers  

to the number of intermediate devices through which 

data must pass between source and destination [12].  

For modern mixed memory computing clusters, 

communications among processors belonging to the 

same computing node are significantly faster than those 

among processors located in different machines [6]. 

Therefore, a desirable task is to map the communicating 

processes using a nearby processors criterion.  

Let us refer the coarsest level boxes, marked in dark 

blue in Fig. 1, as the observation boxes. With one-buffer-

box criterion taken into account, if an observation box 

and its near-neighbor source boxes with their descendants 

are located in the same process, the communication 

during the aggregation and disaggregation phases can  

be completely avoided at the expense of some data 

replication [9]. However, due to the use of FMM at the 
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coarsest level, the communication during the translation 

phase becomes very expensive, especially when one 

process communicates with its far-away neighbors to 

deal with the far interaction boxes.  

It is noticed that, when a source box is far enough 

from an observation box, only one k-space direction  

of the translator contributes mostly to the interaction of 

the two boxes, whereas the other directions can be 

negligible. That direction points directly from the source 

box to the observation box, as illustrated in Fig. 2. In 

order to use this far-field approximation, the distance 𝑅 

between the two boxes should satisfy [13]: 

  𝑅 > 3𝛾√𝐷𝑥
2 + 𝐷𝑦

2 + 𝐷𝑧
2,              (1) 

where 𝐷𝑥,𝑦,𝑧  is the side lengths of the box and 𝛾 ≥ 1. 

Consequently, the number of k-space samples for a 

translator is reduced from 2𝐿2  to 1, where 𝐿  is the 

number of terms in the addition theorem for FMM and 

proportional to the box size. Thus, if two far interaction 

boxes are distributed to different processes, the 

communication volume is also reduced from 2𝐿2 to 1.  

 

 
 

Fig. 2. Translation between two far interaction boxes J 

(source box) and D (observation box). The red arrow 

denotes the translator component along the direction 

from the source box to the observation box, and the black 

arrows denote other components.  

 

According to the one-buffer-box criterion and Eq. 

(1), for an observation box at the coarsest level, its  

source boxes are classified into three types: near-region, 

resonant-region and far-field boxes, as shown in Fig. 3. 

The contribution from the near-region boxes is computed 

using MLFMA at lower levels, in the case of the resonant-

region boxes, the contribution is computed using FMM, 

meanwhile for the last kind of boxes, the contribution is 

computed using the far-field approximation. When the 

number of boxes 𝑀 is approximately 𝑁0.5 at the coarsest 

level, the computational cost of the method can be as  

low as 0.5𝑁log(𝑁)  comparing with the conventional 

MLFMA, if 𝑁  is very large [13]. However, as the  

value of 𝛾  increases at the coarsest level, more boxes  

are handled using FMM, resulting in increasing 

computational complexity and communication volume 

among processes. To achieve low complexity and high 

performance, a relatively small 𝛾  is preferred for the 

method. Given the above-mentioned factors, the coarsest 

level is commonly selected in such a way in which  
𝑀 ≈ 𝑁0.5, and thus the number of processes 𝑃 is bounded 

by 𝑂(𝑁0.5) . Assume that each process is attributed 

𝑂(𝑁0.5) 𝑃⁄  coarsest boxes and each box has 𝑂(𝑁0.5) k-

space samples. At the coarsest level, the communication 

volume is 𝑂(𝑁) 𝑃⁄  during full translation between two 

processes, whereas it is reduced to 𝑂(𝑁) 𝑃2⁄  by utilizing 

the far-field approximation. It is worth noting that the 

method will be more expensive than the conventional 

MLFMA if 𝑀 ≈ 𝑁0.5, when 𝑁 is small. In this case, the 

coarsest level is usually slightly moved down to a level 

at which 𝑀 < 𝑁0.5. In other words, the method might 

become inefficient if 𝑁 is small or 𝛾 is large.  

 

 

Fig. 3. Illustration of three types of source boxes for 

observation box D at the coarsest level (Level 4). Green 

boxes are near-region boxes, yellow ones are resonant-

region boxes, and blue ones are far-field boxes.  

 

C. Implementation detail 

Distributing the coarsest boxes or subtrees equally 

among processes may fail to provide good load balance 

because the amount of work per box is not constant. This 

distribution scheme can be improved by considering the 

estimated amount of work per box, as was done in [9]. 

For convenience, more sophisticated distributions are 

not taken into account herein.  

In a typical MLFMA with one-buffer-box criterion, 

the number of translators stored at each level can be 

reduced by exploiting the symmetries associated with 

translators [14]. However, as 𝛾 increases in Eq. (1), the 

number of translators required also increases, resulting 

in a larger memory footprint. Hence, translators are 

interpolated at the coarsest level by using Lagrange 

polynomial interpolation with six points and five times 

the required sampling rates [15], whereas at the lower 

levels, the translators are stored in memory with the 

symmetries taken into account.  

For the sake of communication during translation, 

we build two interaction lists in each process at the 

coarsest level: one for resonate-region boxes and the 

other one for far-field boxes. The former contains box 

indices, and each process sends and receives full 

outgoing plane-wave expansions. Given a large amount 

of the data, we exchange them in blocks to reduce the 

number of communication calls. The latter contains  

box indices and the corresponding k-space directions, 

exchanging them in one block by using one 

communication call. Four directions are used for 

calculating the translator because we use four-point 

interpolation. To minimize latency, the MPI non-blocking 

communication is performed to overlap communication 
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and computation. Note that all communications occur 

during translation, but aggregation and disaggregation 

require no communication.  

During the solution procedure, we can solve the 

equation by using a Krylov space solver. Alternatively, 

we can iteratively solve the equation associated with 

each subtree firstly and then consider the coupling 

among subtrees or coarsest boxes through outer iterations. 

This inner-outer iterative manner has been utilized in 

domain decomposition methods [10]. In addition, the use 

of a few plane waves to compute the coupling between 

two far-field coarsest boxes is similar to using the ray-

tracing method to take account of the coupling [16]. It is 

noted that the proposed method has higher numerical 

accuracy than that in [16] due to the rigorous 

computation of the coupling between near-region and 

resonant-region coarsest boxes.  

To accelerate the iterative convergence rate, a basis-

function neighbor preconditioner is employed rather 

than the commonly used block diagonal preconditioner. 

For a given basis function, its neighbor basis functions 

within a certain distance are collected to create the 

preconditioner [17]. Because the basis-function neighbor 

preconditioner is built independently for each basis 

function, it can be efficiently implemented in parallel. 

 

III. NUMERICAL EXAMPLES 
In order to investigate the strong scalability of the 

proposed method, the scattering analysis of a conducting 

sphere is carried out. Then a ship model is simulated to 

demonstrate the efficiency of the method in computation 

of bistatic radar cross section (RCS). The models are 

formulated by the combined field integral equation 

(CFIE) with a combination factor 0.5 and discretized 

using the RWG basis functions [18]. The parallel 

generalized minimal residual (GMRES) method combined 

with a basis-function neighbor preconditioner is selected 

as the iterative solver. The computational platform has 

16 computing nodes, each of which is configured with 

four 18-core 2.3 GHz CPUs and 192 GB memory. The 

nodes are connected by a 100 Gb/s network.  

 

A. Scattering from a sphere model 

The scattering analysis of a conducting sphere  

of diameter 266.6𝜆  is computed to test the parallel 

efficiency of the algorithm, where 𝜆  is the free-space 

wavelength. The model is discretized into 58327428 

unknowns. In this case, a ten-level MLFMA is used with 

an edge length for the finest box of 0.25𝜆.  

In order to demonstrate the correctness of the 

proposed method, a comparison of the bistatic RCS with 

the analytical solution (Mie series) has been carried out. 

The simulation parameters for the proposed method are 

𝛾 equal to 3 and 𝐿𝑐 set to 4. The residual for iterations is 

set to 0.001. Figure 4 shows the comparison where a very 

good agreement is appreciated. However, if 𝛾 were to be 

reduced, the results would not be so accurate since the 

far-field approximation might be used in some resonate-

region boxes. Readers are referred to [13] for an in- 

depth discussion about the accuracy of the far-field 

approximation. 

The scattering analysis of the conducting sphere has 

been carried out by increasing the number of processes 

and calculating its parallel efficiency. The computational 

time employed in performing one MVP for the proposed 

spatial partitioning (SP) technique is given in Table 1, 

and the memory requirement is approximately 893.04 

GB. According to the definition of speedup and parallel 

efficiency [8], the reference number of process should  

be set to 1. With consideration of the MVP time and 

memory requirement of the algorithm, it is reasonable to 

set a moderately larger number of processes as in [6]. In 

this example, it is set to 32. As seen from Table 1, the 

proposed strategy is able to achieve high parallel 

efficiency comparable to the hybrid and hierarchical 

strategies in [4, 6].  

 

 
 

Fig. 4. Bistatic RCS comparison for a conducting sphere 

of diameter 266.6𝜆  (VV polarization, for vertical 

transmitting and vertical receiving). A ten-level MLFMA 

is used, 𝐿𝑐 is 4, and 𝛾 is chosen as 3.  
 

Table 1: Strong scalability for one matrix-vector product 

in simulating the sphere when 𝐿𝑐 is 4 and 𝛾 is 3 

CPU 

Cores 

MVP 

Time (s) 
Speedup 

Parallel 

Efficiency (%) 

32 756.44 1.00 100.00 

288 94.13 8.04 89.29 

576 54.56 13.86 77.02 

1152 32.89 23.00 63.89 
 

It is noted that the maximum number of processes is 

limited by the number of boxes at the coarsest level in 

the proposed strategy. In this example, the maximum 

number of processes is 1152, which is slightly smaller 

than the number of boxes 1160. In order to improve the 

scalability of the proposed strategy, the coarsest level 

should be moved down to lower levels, where more 

ACES JOURNAL, Vol. 34, No. 1, January 201914



coarsest boxes can be obtained. This is equivalent to 

transfer from coarser-grained parallelism to finer-grained 

parallelism, facilitating load balance and scalability. 

However, it is possible that moving down the coarsest 

level might increase the computational complexity of  

the algorithm. To ensure high numerical accuracy  

and efficiency of the method, one has to set suitable 

parameters 𝐿𝑐 and 𝛾, as discussed in Section II. B.  
 

B. Scattering from a multiscale ship model 

The second example consists of the scattering 

analysis of a conducting ship model. The model is 167 m 

long, 19 m wide and 34.7 m high, as shown in Fig. 5.  

The bistatic RCS is computed at 1 GHz to verify the 

accuracy of the proposed SP strategy. The number of 

unknowns is 21772044 in this case. Figure 6 illustrates 

the results for this analysis where a comparison with  

the parallel MLFMA has been carried out [8]. Both 

results present a good agreement. The proposed method 

converges to 0.01 with 51 iterations, and it takes 920.12 s 

and needs 306.38 GB memory in total when 𝑃 = 1152. 

The time for computing one MVP is 16.00 s and the 

parallel efficiency relative to 32 cores is 60.28% (the 

MVP time is 347.21 s when 𝑃 = 32).  
 

 
 

Fig. 5. Conducting ship model with dimensions of 167 m 

× 19 m × 34.7 m. 
 

 
 

Fig. 6. Bistatic RCS comparison for the ship (VV 

polarization) at 1 GHz. A plane wave of frequency  

1 GHz is incident at 𝜃inc = 55.5° and 𝜙inc = 0°, and the 

observation directions are set as 0° ≤ θscat ≤ 90° and 

𝜙scat = 0°. An eleven-level MLFMA is used. 𝐿𝑐  is 7, 

and 𝛾 is chosen as 4. 

We then consider the scattering analysis of the ship 

at a higher frequency 2.3 GHz. The electrical length of 

the ship is 1280.3𝜆  and discretization of its model 

generates 115444341 unknowns, which is approximately 

five times the unknowns at 1 GHz. The total solution 

time is 4121.94 s and the memory requirement is 

1495.09 GB when 1152 cores are used. The time for 

carrying one MVP is 72.81 s, approximately five times 

the MVP time at 1 GHz. In addition, the memory 

requirement is also about five times the memory at 1 

GHz. This implies that the complexity of the present 

method is approximate 𝑁log(𝑁). The bistatic RCS curve 

is plotted in Fig. 7.  
 

 

 

Fig. 7. Bistatic RCS comparison for the ship (VV 

polarization) at 2.3 GHz. The incident angle and the 

observation directions are the same as those in Fig. 6. A 

twelve-level MLFMA is used. 𝐿𝑐 is 7, and 𝛾 is chosen as 

4. 
 

IV. CONCLUSION 
The scalability of the spatial partitioning strategy  

for parallelizing MLFMA is improved from 𝑂(1)  to 

𝑂(𝑁0.5) processes by properly setting the coarsest level. 

Because of the important role of communication in 

determining performance of parallel algorithms, the  

far-field approximation is employed to reduce the 

communication volume between far-away processes 

during translation at the coarsest level, and hence, most 

of the communication volume occurs between nearby 

processes that are mapped to nearby processors. The 

proposed algorithm can be referred to as a network 

topology aware algorithm. In addition, the proposed 

strategy can be combined with the k-space partitioning 

strategy to achieve better scalability.  
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