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Abstract ─ The purpose of this manuscript is to present 

a compact design strategy for bandpass filters using 

Meander Line Resonators (MLR) in combination with 

Stub Loaded Resonators (SLR). The proposed resonator 

has been designed and analyzed using even-odd mode 

analysis. Open-ended stubs are loaded at an appropriate 

position in the dual-mode resonator to achieve tri, quad, 

and quintuple passbands. To reduce the circuit size and 

create transmission zeros at our desired frequencies, a 

symmetrical meandered shape resonator is loaded with 

open-ended identical stubs which are bent towards each 

other. A design strategy is presented step by step and the 

approach is validated using simulation and experiments. 

 

Index Terms ─ Band-pass filters (BPFs), dual BPF, even 

and odd mode analysis, stub loaded resonators (SLR), 

triple BPF, quad BPF. 
 

I. INTRODUCTION 
Multiband filters are considered as one of the 

essential parts of multi-band transceivers. Planar filters 

are having a vital part in the RF front end to obtain the 

preferred and high-quality signals. In order to provide 

smooth communication by a multiband transceiver, it is 

necessary to have BPFs which have small circuit size and 

high selectivity to avoid any interference with nearby 

frequency bands. Multiband BPF’s have many direct  

and indirect advantages and can be used in different 

applications for various purposes. Different multiband 

BPF’s are developed in this regard having different 

functionalities and different characteristics [1-8]. 

Various dual bandpass filters are designed using 

DGS, SIRs, and SLR [6-17]. Recently, a tri-band response 

is achieved by means of a combination of SLR termed  

as SLDMRs [9]. Two SLDMRs combined with intra-

resonator coupling between inner and outer rings are 

utilized to obtain a triple passband response. However, 

the size of the filter is large, and five transmission zeros 

are achieved. The same technique has been adopted  

in [12] to achieve tri-band performance with good 

selectivity by analyzing the loaded and unloaded quality 

factor. Six transmission zeros are achieved instead of 

five transmission zeros. The use of SIR in multiband 

BPFs is also exploited and several geometries are 

developed in [10, 11]. They utilized higher-order modes 

to create additional passbands. Also, such an approach 

generates an additional loss and greatly increases the 

overall size of the circuit. 

Also, in [11] they presented a very compact 

wideband bandpass filter using a quasi-elliptic resonator 

in combination with DGS. The presented filter is 

advantageous in terms of insertion loss, 3-dB fractional 

bandwidth, and with two transmission zeros. The 

proposed filter was implemented in frequency scanning 

beam array antenna to increase its bandwidth. Also, in 

[16-18], they designed and developed a stop band filters 

based on slot resonators and then integrated within  

the antenna to achieve the corresponding notched band 

performance. Similarly, in [19, 20] they designed a band 

stop filters and then integrated within the antenna. 

However, this time they made the achieved stop bands 

tunable by utilizing active components within the filter. 

Furthermore, in [21] they presented and claimed a 

very compact quintuple band bandpass filter utilizing 

multimode stub loaded resonator. A single symmetric 

resonator is loaded with a short-ended stub in the middle 

along with four pairs of open-ended stubs. The proposed 

bandpass filter operates at GSM-900, LTE2300, WiMAX 
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(3.5 GHz), WLAN (5.4 GHz), and RFID (6.8 GHz). 

Likewise, in [22] quad BPF is accomplished using the 

technique of splitting a single wideband into multiple 

passbands.  

This technique is complex and independent tuning 

of each passband is challenging. In this manuscript, we 

present a compact design strategy for bandpass filters 

using Meander Line Resonators (MLR) in combination 

with Stub Loaded Resonators (SLR). The presented 

resonator is designed and analyzed using even-odd mode 

analysis due to its symmetrical geometry. Open-ended 

stubs are loaded at an appropriate position in the dual-

mode resonator to achieve tri and quad passbands. To 

reduce the circuit size and create transmission zeros at 

our desired frequencies, a symmetrical meandered shape 

resonator is loaded with open-ended identical stubs 

which are bent towards each other. A design strategy is 

presented step by step and the approach is validated 

using simulation and experiments. 

This manuscript is arranged in the following 

manner: Section II deals with the recommended 

resonator analysis and to show the derivation of its 

corresponding even and odd mode frequencies. Section 

III provides the corresponding geometry of the designed 

filters based on the analysis in Section II along with the 

simulated and measured results, which is followed by the 

conclusion in Section IV. 

 
II. RESONATOR ANALYSIS 

A basic SLR comprising of one shorted stub and 

eight open stubs are provided in Fig. 1. It is further 

decomposed into even and odd mode circuits as shown 

in Figs. 1 (b) and (c), respectively. This even and odd 

mode can further be decomposed into five resonant 

circuits as shown in Fig. 1 (d) to Fig. 1 (m), respectively. 

Now, the resonant odd and even mode frequencies are 

calculated as in Table 1. 

 
Table 1: Corresponding even and odd mode resonances 

Even Mode Frequencies Odd Mode Frequencies 

1

1 2 3 4 5

(2 1)

4( )
even

s eff
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f

L L L L L L
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1 2 3 4 5

(2 1)
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eff
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f

L L L L L




    

 

2

2 3 4 5 6

(2 1)

4( )
even

s eff

n c
f

L L L L L L




     

 
2

2 3 4 5 6

(2 1)

4( )
odd

eff

n c
f

L L L L L




    

 

3

3 4 5 7

(2 1)

4( )
even

s eff

n c
f

L L L L L




    

 
3

3 4 5 7

(2 1)

4( )
odd

eff

n c
f

L L L L




   

 

4

4 5 8

(2 1)

4( )
even

s eff

n c
f

L L L L




   

 
4

4 5 8

(2 1)

4( )
odd

eff

n c
f

L L L




  

 

5

5 9

(2 1)

4( )
even

s eff

n c
f

L L L




  

 
5

5 9

(2 1)

4( )
odd

eff

n c
f

L L




 

 

 
Table 2: Geometrical dimensions for single/dual/tri-BPF’s (all values are in mm) 

Parameter Value Parameter Value Parameter Value 

Lm 5 Ls 2.25 Wr 2 

Lf 3.25 Ws 1 W1 0.5 

W6 1 W7 4 L1 14.1 

L4 4 L5 7.02 L6 7.07 

G1, G2, G3 0.5 Via 0.5 W4 0.5 

L3 4.6 L8 4 W2 1.75 

W3 2.17 L2 4 L7 5.85 
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Fig. 1. Decomposition of the proposed SLR: (a) Basic 

SLR, (b) even mode circuit, (c) odd mode circuit (d, f, h, 

j, l) even mode equivalent circuits, and (e, g, i, k, m) odd 

mode equivalent circuits. 

 

III. RESULTS AND DISCUSSION 
Designed single, dual, triple, quad, and quintuple 

band bandpass filters are simulated using commercially 

available software ANSOFT HFSS and fabricated as 

well. The filters are also measured, and its frequency 

response is provided in each case. First, the optimization 

of different parameters is performed, and the final 

optimized parameters of the filters are provided in  

Table 2. 

Figure 2 shows the corresponding single BPF with a 

simulated frequency response in Fig. 3. The proposed 

single BPF is designed for 1 GHz center frequency. 

Similarly, Fig. 4 shows the corresponding dual BPF with 

simulated frequency response in Fig. 5. Now the dual 

BPF is designed for 1 GHz and 2.5 GHz and it can  

be well seen from Fig. 5. Three transmission zeros are 

observed in this case. 

 

 
 

Fig. 2. Developed single BPF. 

 

 
 

Fig. 3. Single BPF response. 

 

 
 

Fig. 4. Developed dual BPF. 

 

Figure 6 shows the corresponding tri BPF aimed  

to operate at GSM-900, LTE-2300, and WiMAX (3.5 

GHz). The measured and simulated frequency response 

including S11 and S21 of the developed tri-band BPF is 

also shown in Fig. 7. The developed tri-band BPF is 

aimed for useful wireless applications such as GSM- 

900, LTE-2300, and WiMAX (3.5 GHz). The middle 

frequencies of the developed tri-band BPF are 0.9550 

GHz, 2.2948 GHz, and 3.5246 GHz. The corresponding 

3-dB fractional bandwidth of the corresponding center 
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frequencies is 45.25%, 20.32% and 6.09% for the 1st, 

2nd, and 3rd passbands, respectively. The measured 

insertion loss in the three passbands is 0.32, 0.63 and 

1.38 including losses from the SMA connectors. Six 

transmission zeros are created in the simulated frequency 

response at frequencies 1.43 GHz, 1.68 GHz, 3.008 GHz, 

3.33 GHz, 4.0 GHz, and 5.33 GHz with more than 28 dB 

attenuations in order to get sharp skirt selectivity for the 

passbands. The geometrical dimensions of the tri-BPF 

are mentioned in Table 2. 

 

 
 

Fig. 5. Dual BPF response. 

 

 
 

Fig. 6. Developed tri BPF. 

 

 
 

Fig. 7. Tri BPF response. 

 

Figure 8 shows the corresponding quad BPF aimed 

to operate at GSM-900, LTE-2300, WiMAX (3.50 GHz) 

and WLAN (5.40 GHz). The frequency response of the 

measured and simulated results of quad-band BPF is 

given in Fig. 9. It is obvious that the measured and 

simulated frequency response agrees very well. The 

developed quad-band BPF is tuned for useful wireless 

applications which are GSM-900, LTE-2300, WiMAX 

(3.50 GHz) and WLAN (5.40 GHz). The operating 

frequencies of the quad-band BPF are 0.946 GHz, 

2.2079 GHz, 3.59 GHz, and 5.4663 GHz. The percentage 

3-dB fractional bandwidth all passbands are 42.64%, 

21.31%, 7.074%, and 7.414%, respectively. The measured 

insertion loss of all the four passbands at their center 

frequencies including SMA connectors are 0.31 dB,  

0.56 dB, 1.59 dB, and 1.63 dB respectively. Seven 

transmission zeros are generated with more than 28 dB 

attenuation at 1.39 GHz, 1.60 GHz, 2.98 GHz, 3.36 GHz, 

4.11 GHz, 5.05 GHz, and 5.88 GHz in order to get high 

selectivity pass-band filter response. The corresponding 

dimensions of the quad BPF are tabulated in Table 3. 

 

Table 3: Geometrical dimensions for quad BPF’s (all 

values are in mm) 

Parameter Value Parameter Value Parameter Value 

Lm 7 Ls 2 Wr 2 

Lf 3.25 Ws 1 W1 0.5 

W6 0.8 W7 0.95 L1 15.1 

L2=L4 4 L5 7.5 L6 6.575 

W8 0.5 W9 1 W10 2.75 

G1, G2, G3, 

G4 
0.5 Via 0.5 W4 1 

W2 1.75 W3 2.17 L7 5.85 

L3 4.6 L8 4.2 L10 2.75 

 

 
 

Fig. 8. Developed quad BPF. 

 

Figure 10 shows the corresponding quintuple  

BPF aimed to operate at GSM-900, LTE2300, WiMAX 

(3.5 GHz), WLAN (5.4 GHz) and RFID (6.8 GHz). The 

resonance frequencies of the designed filter are 

calculated by using the equations mentioned in Table 1. 

It is seen that there is a slight difference between 

calculated and aimed frequencies. However, it is 

optimized using parametric analysis to obtain the exact 

resonance frequencies as desired. The designed quintuple 

BPF is also measured and its frequency response is 

provided. The simulated vs. measured S21 response are 

shown in Figs. 7 and 8, respectively. Good matching can 
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be seen between the simulated and measured response of 

the proposed filter. Figure 11 shows that the proposed 

quintuple band bandpass filter is tuned to frequency 

bands, GSM-900, LTE2300, WiMAX (3.5 GHz), 

WLAN (5.4 GHz) and RFID (6.8 GHz). The operating 

mid frequencies of quintuple band bandpass filter are 

0.96 GHz, 2.22 GHz, 3.58 GHz, 5.41 GHz, and 6.64 

GHz with corresponding 3dB FBW of 36.03%, 20.95%, 

7.27%, 8.57%, and 3.37%. The measured insertion loss 

is 0.38dB, 0.59dB, 1.47dB, 1.53dB and 2.4dB at GSM-

900, LTE2300, WiMAX, WLAN and RFID frequency 

bands, respectively. The geometrical dimensions of the 

quintuple-BPF are mentioned in Table 4. The step by 

step fabricated prototypes of all filters are shown in Figs. 

12 (a-c). 

 
 

Fig. 9. Quad BPF response. 

 

Table 4: Geometrical dimensions for quintuple BPF’s (all values are in mm) 

Parameter Value Parameter Value Parameter Value 

L1 32.25 L2 2.75 L3 0.85 

L4 3.5 L5 2.875 L6 13.975 

L7 10.2 L8 7.75 L9 5.75 

W1 1.75 W2 1 Lf 3.25 

W3 0.5 Ls 1.25 G1-G5 0.5 

Ws 1 W4 0.5 W5 0.75 

Wf 1.7 Lm 3   

 
 

Fig. 10. Developed quintuple BPF. 

 

 
 
Fig. 11. Quintuple BPF response. 

 
(a) (b)  (c) 

 

Fig. 12. Fabricated filters: (a) Tri BPF, (b) quad BPF, 

and (c) quintuple BPF. 

 

IV. CONCLUSION 
Design strategy for compact bandpass filters using 

Meander Line Resonators (MLR) in combination with 

Stub Loaded Resonators (SLR) is presented. The 

proposed resonator is analyzed using the even-odd mode 

analysis. Open-ended stubs are loaded at an appropriate 

position in the dual-mode resonator to achieve tri, quad, 

and quintuple passbands. To reduce the circuit size and 

create transmission zeros at our desired frequencies, a 

symmetrical meandered shape resonator is loaded with 

open-ended identical stubs which are bent towards each 

other. A design strategy is presented step by step and the 

approach is validated using simulations and experiments. 
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