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Abstract ─ This paper proposes a novel crosstalk 

prediction method between the triple-twisted strand 

(uniform and non-uniform) and the signal wire, that is, 

using back-propagation neural network optimized by   

the beetle antennae search algorithm based on chaotic 

disturbance mechanism (CDBAS-BPNN) to extract the 

per unit length (p.u.l) parameter matrix, and combined 

with the chain parameter method to obtain crosstalk. 

Firstly, the geometric model and cross-sectional model 

between the uniform triple-twisted strand and the signal 

wire are established, and the corresponding model 

between the non-uniform triple-twisted strand and the 

signal wire is obtained by the Monte Carlo (MC) method. 

Then, the beetle antennae search algorithm based on 

chaotic disturbance mechanism (CDBAS) and back-

propagation neural network (BPNN) are combined to 

construct a new extraction network of the p.u.l parameter 

matrix, and the chain parameter method is combined to 

predict crosstalk. Finally, in the verification and analysis 

part of the numerical experiments, comparing the 

crosstalk results of CDBAS-BPNN, BAS-BPNN and 

Transmission Line Matrix (TLM) algorithms, it is verified 

that the proposed method has better accuracy for the 

prediction of the model. 

 

Index Terms ─ Beetle Antenna Search (BAS), Back-

Propagation Neural Network (BPNN), chaotic disturbance 

mechanism, crosstalk, triple-twisted strand. 
 

I. INTRODUCTION 
Multi-core stranded wire has the characteristics of 

low loss, low cost and small coupling [1]. Thus, they are 

widely used in modern electronic equipment and systems 

(such as communication systems, aircraft and ships). 

Although it has good performance in reducing radiated 

interference, further research is needed to analyze the 

crosstalk between lines [2-4]. At the same time, with    

the complexity and miniaturization of equipment, 

unnecessary electromagnetic interaction or crosstalk 

between wires will be greatly enhanced, thereby 

reducing the performance of the equipment. 

For the study of cable crosstalk, the traditional 

method is to directly solve its transmission lines equation 

through the transmission lines model to obtain crosstalk 

[5]. However, the cross-sectional position in the   

twisted-wire pair (TWP) is random and unknown. The 

randomness of the cross-sectional position brings 

different p.u.l parameter matrices, so it is difficult to 

predict its crosstalk directly by traditional methods [6, 

7]. 

Recently, many researchers have studied the 

prediction of TWP crosstalk. They focused their research 

on TWP, but relatively little research has been done on 

the crosstalk of triple-twisted strand. In [8], Taylor 

extended the results of uniform parallel lines to TWP, 

which is suitable for non-uniform transmission lines 

model. However, this method relies on the assumption of 

torsion and the accuracy is not high. In [9], Cannas 

proposed to treat non-uniform stranded wires as a 

cascade of uniform cross-sections and used BPNN to 

make predictions. In [10], the random displacement 

spline interpolation (RDSI) was proposed by Dai to 

generate a set of non-uniform wire harnesses to provide 

training samples, and then used the trained BPNN to 

predict the crosstalk, but ordinary BPNN may have high 

error, and its prediction range is narrow. 

According to the theory of cascading transmission 

lines proposed by Paul and McKnight, cascaded multi-

section transmission lines are used to replace the overall 

wiring harness [11-13]. Therefore, as long as the p.u.l 
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parameter matrices at different positions are obtained, 

the crosstalk of the cable can be obtained by the chain 

parameter method. 

In this paper, the coupling model between the 

uniform triple-twisted strand and the signal wire is 

established through the production principle of triple-

twisted strand. Based on this, the Monte Carlo (MC) 

method was used to obtain the coupling model between 

the non-uniform triple-twisted strand and the signal wire, 

and the randomness of the non-uniform triple-twisted 

strand was simulated. In our previous research [14-16], 

neural networks have been shown to express the 

relationship between the transmission lines position and 

the p.u.l parameter matrix. The BPNN algorithm relies 

heavily on its initial weight and threshold parameters, 

but its initial weight and threshold is randomly 

generated, which results in a large difference in the 

results of each simulation and poor robustness [17-19]. 

This paper combines the CDBAS algorithm and the 

BPNN algorithm to obtain a new p.u.l parameter     

matrix prediction network [20, 21]. Compared with the 

traditional BPNN algorithm, the convergence speed is 

faster and the solution accuracy is higher. Then, using 

the chain parameter model, the near-end crosstalk 

(NEXT) and far-end crosstalk (FEXT) between the 

triple-twisted strand and the signal wire are given. The 

results of numerical experiments verify the effectiveness 

of the method. 

The rest of the paper is organized as follows: In 

Section II, the model of the triple-twisted strand 

(uniform and non-uniform) and the signal wire is 

established. In Section III, the p.u.l parameter matrix at 

any position of the transmission line is obtained through 

CDBAS-BPNN, and the voltage and current at both ends 

of the line are derived. In Section IV, the numerical 

experiments are used to verify the proposed method, 

which proves the accuracy of this method. On this basis, 

the crosstalk results are analyzed, and the terminal 

voltage characteristics under line-to-line coupling are 

obtained. Finally, the results are given in Section V. 

 

II. THE MODEL OF TRIPLE-TWISTED 

STRAND AND SINGLE WIRE 
In this paper, based on the production principle of 

triple-twisted strand, a coupling model of the uniform 

triple twisted-strand and the signal wire is established, as 

shown in Fig. 1. The diameter of the core is D, the height 

from the ground is h, and the distance of the center of the 

triple-twisted strand from the separate single wire is d. 

According to the idea of the cascading method, the triple-

twisted strand is divided into uniform small pieces along 

the axial direction. And the following characteristics are 

assumed: Each transmission line can be considered as      

a parallel transmission line, there is only one mode of 

transverse electric and magnetic wave propagation on the  

transmission line; the geometric shape of the cross-

section can be considered as a circular outline; the 

structure and material of each cable are the same. 

Figure 2 shows the coupling model between the 

non-uniform triple-twisted strand and the signal wire. 

Except for the uneven twisting of the stranded wire, the 

other parameters are the same as those in Fig. 1. This 

paper uses the MC method to randomly simulate a non-

uniform model. The coordinate positions of the triple-

twisted strand (uniform and non-uniform) and the signal 

wire can be expressed as formula (1): 
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where mr, mg and mb represent the position coordinates 

of each point on the triple-twisted strand. ms indicates  

the position coordinates of each point on the signal wire. 

z  represents the rotation angle at the axial position z 

corresponding to the initial position z=0. 

Figure 3 is the change of the cross-section of the 

wire within one revolution of the uniform triple-twisted 

strand. Different sections correspond to different p.u.l 

parameter matrices. 

 

 
 

Fig. 1. Geometric model of uniform stranded wire and 

signal wire. 

 

 
 

Fig. 2. Geometric model of non-uniform stranded wire 

and signal wire. 
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Fig. 3. Changes in the cross-section of the wire harness 

during a uniform rotation. 

 

In the model of single wire and uniform triple-

twisted strand, the rotation angle corresponding to 

different positions is: 

360
z

z

p



 ,                              (2) 

where p is the axial length of the triple-twisted strand 

rotating evenly, that is, the pitch of the transmission line. 

In the non-uniform model, only the twisting degree 

of the triple-twisted strand is non-uniform. Therefore, all 

its cross-sectional models can be obtained in the uniform 

model, but the twisting angles corresponding to different 

positions are different. The MC method can simulate the 

model of non-uniform triple-twisted strand and the angle 

of rotation corresponding to the cross-section. 

 

III. ACQUISITION OF PARAMETER 

MATRIX AND PREDICTION OF 

CROSSTALK 

A. Unit length parameter matrix 

In order to facilitate the study, only the uniformly 

divided model is considered first, and each segment is 

regarded as a parallel transmission line. The micro-element 

conduction model of a multi-conductor transmission line 

per unit length is shown in Fig. 4. rij, lij, cij, and gij, 

respectively represent the elements in the resistance       

R, inductance L, capacitance C, and conductance G 

parameter matrices, where , 1,2,3i j n  . 
 

j
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Fig. 4. Unit length equivalent circuit model of multi-

conductor transmission line. 

 

The voltage and current of the transmission line 

satisfy the following equation [10]: 

( , ) ( , )
+ ( ) ( , )+ ( ) =0

( , ) ( , )
+ ( ) ( , )+ ( ) =0

z t z t
z z t z

z t

z t z t
z z t z

z t
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 
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 

V I
R I L

I V
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,          (3) 

where V(z,t) and I(z,t) are the voltage and current vectors 

at position z and time t. R(z), L(z), C(z) and G(z) 

represent the unit length parameter matrix at position z, 

which are all symmetric matrices of order n n . 

In the uniform model, since the rotation of the  

triple-twisted strand is uniform, the parameters in the 

parameter matrix X of 0°~120°, 120°~240°, 240°~360° 

are all the same, but the positions are different, as long 

as the corresponding transformation is performed: 

2 2

( ( ))     , [120 ,240 )
( ( ))

( ( ))( )  , [240 ,360 ) 

T

T

z
z

z

 


 

   
  

  

TX T
X

T X T
,   (4) 

where T is the transformation matrix, which is: 

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

 
 
 
 
 
 

T .                          (5)
 

In the non-uniform model, since the cross-section 

can be obtained from the uniform model, the parameter 

matrix X can be obtained from the uniform model. 

 

B. Predicting p.u.l parameter by CDBSA-BPNN 

algorithm 

Due to the geometric characteristics of the stranded 

wire, the RLCG parameter matrix at different positions 

is different. Formula (6) can be obtained from formula 

(4): 

( ) ( )z f X .                             (6) 

It can be seen from formula (6) that different rotation 

angles correspond to different parameter matrices. There 

is a nonlinear mapping relationship between the rotation 

angle and the parameter matrix. Therefore, this paper 

introduces a BPNN algorithm with strong nonlinear 

mapping ability. Because there are many elements in   

the parameter matrix of the triple-twisted strand, as the 

output of the BPNN, the output of the network may be 

trapped in the local minimum. Therefore, the CDBAS 

algorithm is employed to optimize the weight of the 

BPNN. BAS algorithm is sensitive to the dimensionality 

of the optimization target. The dimensionality of the 

weight w composed of wi and wij is large in the model of 

this paper. Thus, the CDBAS algorithm is used for 

optimization. The topology of CDBAS-BPNN is shown 

in Fig. 5. 
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Fig. 5. Topological structure of CDBAS-BPNN. 

 

The input of the network is the rotation angle i         

( 0 120i
  ) of the cross-section i. The output is the 

RLCG parameter matrix value of cross-section i. Since 

the parameter matrix is a symmetric matrix, its upper 

triangle is taken as a row of vectors as the output, the 

number of vector dimension is: 

1+2+3+ +n= n  .                        (7)
 

The number of hidden layers nh is an empirical value 

determined by the number of output layers no, which can 

be as follows: 

 0.5 1 ,   1,2, 10h on n a a    .             (8)
 

The input layer to the hidden layer uses the sigmoid 

function h(x), and the hidden layer to the output layer 

uses the linear function o(x). The input can get a 

nonlinear output through forward propagation, and then 

the CDBAS algorithm is used to back-propagate the 

error f(x) to obtain the global minimum: 

 

 

1

1 x
h x

e

o x x







 

.                           (9) 

The weights wi and wij are determined by the 

CDBAS algorithm. The specific steps are as follows: 

Step 1: Determine optimization goals and build 

search model. 

For N sets of data, the mean square deviation of the 

network output and the actual value is: 
2

2

1 1

1
( ) ( )

2

nN

j j

i j

f x y y
N  

  ,                  (10)
 

where iy  is the actual value of the parameter matrix, and 

f(x) is the optimized objective function. 

List the ownership value as a single row vector x, 

which represents the position of the beetle in the high-

dimensional data space. At a certain time t the position 

of the beetle is: 

=rand( ,1)tx k ,                            (11)
 

where k is the dimension of the weight vector, and rand 

is a k-dimensional column vector that generates a uniform 

distribution. 

The search directions of beetle are: 

 

 
2

,1

,1

rand k
b

rand k
 .                        (12)

 

By searching to the left or right, the activity of the 

antennae of the beetle's whiskers can be simulated: 

,t t t t t t

r lx x d b x x d b    ,                  (13) 

where t
rx  is the position of the search area on the right 

whisker side, t
lx  is the position of the search area on the 

left whisker side, d t is the antenna length of the beetle at 

time t. It should be long enough to cover the appropriate 

search range so that it can jump out from the local 

minimum point from the beginning, and then the sensor 

length gradually decreases with the passage of time t. 

Step 2: Generate an iterative model of the position 

of the beetle: 

    +1 1t t t t t

r lx x b sign f x f x


   ,          (14) 

where   is the step size of the search, which illustrates 

the convergence rate of the decreasing function of t.    

The initialization of   should be equivalent to the search 

area.  sign   represents the symbolic function. 

The update rules for search parameters d and   are: 
1

1

0.95 0.01

0.95

t t

t t

d d

 





  



.                     (15)

 

Step 3: Generate chaotic sequence. 

In the BAS algorithm, since the beetle is a single 

individual search, its global search effect is poor, and      

it cannot find the ideal result in a large range. Tent 

mapping is added to form CDBAS, so that it can search 

for the best fitness value in a large range. 

The formula for Tent mapping is [22]: 

 

2 0 1/ 2

2 1 1/ 2 1

n n

n

n n

x x
X

x x

 
 

  
,            (16)

 

where Xn is the n-th dimension variable of the chaotic 

sequence xt+1, 1,2,n k  . xn is a random number 

obeying uniform distribution,  0,1nx  . 

Step 4: Perform chaos disturbance in the position of 

the beetle whiskers. 

Map the chaotic variable back to the position x about 

the beetle: 

 min max minn n n n nnewX X   ,            (17) 

where maxn and minn are respectively the maximum and 

minimum values of the n-th dimension variable newXn. 

Chaotic disturbance to the position of the beetle: 

 1 1 1 / 2t t t

nnewx x step newX x      ,       (18) 

where xt+1 is the position of the beetle that needs chaos 

disturbance, newXn is the amount of chaos disturbance 

generated, newxt+1 is the new position of the beetle after 

chaos disturbance, and step is the step length of the 

beetle. 
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Step 5: Update the optimal position and optimal 

objective function of beetle. 
1

( )

t

best

t

best

x x

f f x

 



.                          (19)

 

The resulting xbest is the weight of the BPNN, and 

fbest is the global optimal error obtained by iteration. The 

specific process is shown in Fig. 6. 
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Fig. 6. CDBAS optimization neural network process. 

 

C. Calculation of crosstalk 

Turn formula (3) into a frequency domain equation: 
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Perform the following modulus transformation, 

     
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The original equation can be reduced to: 
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where r2 is a diagonal matrix of n n , and 
1

V IT T  ,   

so the characteristic impedance ZC and YC admittance 

matrix  at different positions z are: 

         
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Fig. 7. Transmission line chain parameter model. 

 

As shown in Fig. 7, get different chain parameter 

matrix: 

 
   

   

11 12

21 22

z z
z

z z

 
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Φ ,                  (25)
 

where  11 z ,  12 z ,  21 z ,  22 z  are the chain 

parameter subarrays, they are: 
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   
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.       (26) 

Combining the CDBAS-BPNN algorithm to obtain 

the p.u.l at any position z, all the chain parameters  zΦ  

can be obtained by using formula (26). 

The chain parameters of the transmission line are: 

   1 1

1

N

N k N k

k

L z   



 Φ Φ .               (27)
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V V
Φ

I I
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The terminal constraints are: 
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where VS=[0;0;0;VS] is the near-end termination voltage 

source, and ZS is the near-end termination impedance. 

VL=[0;0;0;0] is the far-end termination voltage source, 

and ZL is the far-end termination impedance. 

The resulting crosstalk is: 

10 s

10 s

NEXT 20log ( (0) )

FEXT 20log ( ( ) )

V

L V



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V

V
.             (30) 

 

IV. VERIFICATION AND ANALYSIS 

A. Verification of CDBAS-BPNN algorithm 
In order to verify the effectiveness of the proposed 

method, this paper uses the model shown in Fig. 1. The 

distance between the triple-twisted strand and the signal 

wire is d=10mm, and the height of center wire from 

ground is h=8mm. The relevant parameters of the wire 

are shown in Table 1. 

 

Table 1: Basic parameters 

Name Value 

Wire diameter 0.8mm 

Insulation layer thickness 0.6mm 

Wire material Copper 

Insulation material PVC 

Wire length 1m 

 

 
 

Fig. 8. CDBAS-BPNN iteration diagram. 

 

The initial reference cross-sectional model is the 

cross section of 0° in Fig. 3. Using ANSYS simulation 

software to extract the parameter matrix, only need to 

consider the parameter matrix extraction of 0 ~ 120°, the 

parameter matrix of other angles can be obtained by 

formula (4). The RLCG matrix values are sampled every 

4° between 0 ~ 120°, and there are 30 groups in total, 

which are used as training data for the CDBAS-BPNN 

algorithm. The number of hidden layers of BPNN is set 

to 8 and the number of CDBAS iterations is set to 100. 

The units of R, L, C, and G are Ω/m, nH/m, pF/m, and  

mS/m, respectively. Figure 8 is the iterative process of 

the average error of the parameter matrix of the BAS-

BPNN and CDBAS-BPNN algorithms. The average errors 

E of BAS-BPNN and CDBAS-BPNN are 1.85x10-3 and 

1.51x10-3, respectively. It can be seen that the prediction 

accuracy of CDBAS-BPNN is better. 

 

B. Analysis of crosstalk results 
TLM method is used in the CST Cable Studio 

software to perform numerical simulation on the model 

of the triple-twisted strand and the signal wire [22]. Its 

layout in CST is shown in Fig. 9. Both ends of the triple-

twisted strand are connected with 50Ω resistors, and     

the signal wire is connected to a signal source with an 

amplitude of 1V and a frequency varying from 0.1MHz 

to 1GHz. 

The crosstalk results of #1, #2, and #3 of the uniform 

model are shown in Figs. 10, 11, and 12, respectively. 

The red solid line is the result obtained by the proposed 

method in this paper. The black dotted line is the result 

of CST simulation and is used as a reference value. The 

blue dotted line is the method of BAS-BPNN mentioned 

in reference [15], which is called the old method. The 

transmission line is divided into 1200 segments, and the 

CPU time spent by each group is 75.41s (the old method 

calculates the payment time is very close), while the CST 

calculation takes 2.41 minutes, which can reduce a lot of 

calculation time. 
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Fig. 9. CST simulation layout of the triple-twisted strand 

and the signal wire. 

 

  
 

Fig. 10. Uniform #1 crosstalk. 
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Fig. 11. Uniform #2 crosstalk. 
 

 
 

Fig. 12. Uniform #3 crosstalk. 

 

In the low frequency range (0.1MHz < f <100MHz), 

the results of the two methods are basically the same as 

the reference value, but the old method still has a certain 

difference, which is about 1 to 2dB worse than the 

reference value. In the middle and high frequency range 

(100MHz < f < 1GHz), the old method starts to deviate 

from the reference value, especially in the high 

frequency range, the old method and the reference value 

began to have serious deviations, but the proposed 

method and the reference value can still maintain a good 

agreement. 

It can be seen from Table 2 that the results are very 

consistent with the CST simulation results, the smallest 

average error is 0.06%, and the largest average error is 

3.77%. However, the curve in the high frequency range 

(500MHz < f <1GHz) is less consistent than the curve in 

the low frequency range (0.1MHz < f <100MHz). 

 

Table 2: Average error (%) of the uniform model 

f/MHz 
 CDBAS-BPNN BAS-BPNN 

Wire #1 #2 #3 #1 #2 #3 

0.1~100 
NEXT 0.07 0.59 0.10 3.92 4.69 4.69 

FEXT 0.06 0.08 0.28 4.02 4.60 4.28 

100~500 
NEXT 3.77 2.01 2.79 7.96 10.2 13.6 

FEXT 0.25 1.44 2.47 10.7 12.6 5.70 

500~1000 
NEXT 1.17 2.69 3.01 17.5 15.9 27.3 

FEXT 0.75 1.51 2.23 17.3 18.8 16.1 

 

The crosstalk results of the non-uniform model are 

shown in Figs. 13, 14, 15 respectively. The red solid line 

is the result obtained by the method in this paper, and the 

CPU time spent by each group is 82.35s, and the CST 

calculation takes 3.36 minutes. The black dotted line is 

the result of CST simulation and is used as a reference 

value. The blue dotted line is the result of the old method. 

In the low frequency range (0.1MHz< f <100MHz), the 

results are basically similar to the uniform model. In the 

intermediate frequency range (100MHz< f <500MHz), 

the method proposed in this paper is more consistent 

with the reference value than the old method. In the  

high-frequency range (500MHz< f <1GHz), the near-end 

crosstalk obtained by the method in this paper is 

basically consistent, but the far-end crosstalk is slightly 

larger than the reference value. 

 

 
 

Fig. 13. Non-uniform # 1 crosstalk. 

 

 
 

Fig. 14. Non-uniform # 2 crosstalk. 

 

 
 

Fig. 15. Non-uniform # 3 crosstalk. 

 

It can be seen from Table 3 that the smallest average 

error is 0.05% and the largest average error is 9.30%. 

However, in the high frequency range (500MHz <f 

<1GHz), the NEXT curve of the triple-twisted strand      

is more consistent than the FEXT curve result. The 

possible reason is that the non-uniform model is 

repeatedly iterated, which makes the far-end crosstalk 

result fluctuate greatly. 
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Table 3: Average error (%) of the non-uniform model 

f/MHz 
 CDBAS-BPNN BAS-BPNN 

Wire #1 #2 #3 #1 #2 #3 

0.1~100 
NEXT 0.06 0.22 0.43 6.01 5.58 5.74 

FEXT 0.22 0.32 0.43 6.07 5.91 6.06 

100~500 
NEXT 0.77 1.27 0.89 4.94 3.78 4.29 

FEXT 2.90 2.57 3.04 2.80 2.53 3.31 

500~1000 
NEXT 4.07 2.67 2.23 3.61 2.66 4.34 

FEXT 8.14 8.22 9.30 2.36 1.99 2.44 

 

Comparing the uniform model and the non-uniform 

model, it can be seen that the non-uniform results 

fluctuate more in the high-frequency range, while the 

uniform results fluctuate less in its range. This is the 

performance of the randomness of the non-uniform 

model in the results. The result corresponding to each 

frequency point in the non-uniform model will cause a 

large error in the actual measurement. It is difficult to 

make a small change in the corresponding frequency 

range like the result in a uniform model, and the 

measurement accuracy is high. 

 

V. CONCLUSION 
For the coupling model of triple-twisted strand and 

signal wire, this paper proposes a p.u.l parameter matrix 

prediction process based on CDBSA-BPNN algorithm. 

Combined with the chain parameter method of the 

transmission line, a new method to predict the crosstalk 

between the triple-twisted strand and the signal wire        

is proposed. Numerical experimental results show that 

the method has good applicability and effectiveness, 

especially in the low-frequency and intermediate-

frequency bands with high consistency. The results also 

show that the use of a non-uniform model can reduce the 

difference in crosstalk between strands, but will cause 

the crosstalk results to suffer greater fluctuations in       

the high-frequency range. The estimation results of the 

crosstalk between the triple-twisted strand and the signal 

wire can provide important guiding significance and 

reference value for the electromagnetic compatibility 

design in engineering practice. However, this paper does 

not consider the effect of frequency on the p.u.l parameter 

matrix and the triple-twisted strand. Therefore, there is 

still a lot of research space after this paper. 
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