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Abstract ─ Particle swarm optimizer is one of the 

searched based stochastic technique that has a weakness 

of being trapped into local optima. Thus, to tradeoff 

between the local and global searches and to avoid 

premature convergence in PSO, a new dynamic quantum-

based particle swarm optimization (DQPSO) method is 

proposed in this work. In the proposed method a beta 

probability distribution technique is used to mutate the 

particle with the global best position of the swarm. The 

proposed method can ensure the particles to escape  

from local optima and will achieve the global optimum 

solution more easily. Also, to enhance the global 

searching capability of the proposed method, a dynamic 

updated formula is proposed that will keep a good 

balance between the local and global searches. To 

evaluate the merit and efficiency of the proposed 

DQPSO method, it has been tested on some well-known 

mathematical test functions and a standard benchmark 

problem known as Loney’s solenoid design. 
 

Index Terms ─ Design optimization, probability 

distribution, quantum mechanics, searched based technique. 
 

I. INTRODUCTION 
Over the last few decades, random optimization  

methods, including evolutionary technique and swarm 

intelligence, such as genetic algorithm (GA), evolutionary 

strategies (ES), genetic programming and evolutionary 

programming (EP) have been used to solve different 

global optimization problems. These techniques are 

inspired by different natural evolutionary phenomena. 

Many efforts have been made to develop a global 

stochastic technique for hard optimization problems. 

Some of the latest updated literature is recorded in the 

following paragraph. 

An adaptive null-steering beamformer based on Bat 

Algorithm for the uniform linear array was presented in 

[1]. The optimization of radome-enclosed antenna arrays 

was proposed to compensate the distortion error of 

radome-enclosed antenna arrays [2].  A radiation pattern 

synthesis of non-uniformly excited planar arrays was 

presented [3]. An updated version of artificial immune 

system algorithm was proposed for electromagnetic 

applications [4]. A new quantum-based approach was 

proposed for the electromagnetic applications in [5]. An 

improved particle swarm optimization was applied to 

electromagnetic devices [6]. A hybrid harmony search 

method and ring theory based evolutionary algorithm 

was presented for feature selection [7]. A newly emerging 

nature inspired optimization algorithms were reviewed 
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in [8]. A pareto optimal characterization of a microwave 

transistor was presented [9]. A multiple black hole 

inspired meta heuristic searching method was proposed 

to optimize the combinatorial testing [10]. In [11], a 

whale optimization technique based on lamarckian 

learning was proposed to solve global optimization 

problems. A quantum inspired particle swarm method 

with enhanced strategy was applied to optimizing the 

electromagnetic devices [12]. An improved quantum 

particle swarm method was applied to solve the 

electromagnetic design problem [13]. 

Thus, a continued research and development is 

needed to search a global optimizer to optimize hard 

engineering design problems. However, according to the 

no free lunch theorem, all these optimizers are problem 

oriented, so, an effort is required to seek a global 

optimizer. In this context, some modification has been 

proposed in this work for the optimization of Loney 

solenoid design. 

Moreover, particle swarm optimization is an essential 

member of a broader class of swarm intelligence. This 

method originated in 1995 by John Kennedy and Robert 

Hart as an imitation of insect’s social behavior [14].  

Since 1995, many efforts have been made to make 

PSO a global optimizer. Consequently, introducing the 

quantum mechanics into PSO, called quantum behaved 

particle swarm optimizer (QPSO) [15]. The numerical 

results on some widely used benchmark problems have 

demonstrated the superiority of QPSO over basic PSO. 

However, there are still many issues in QPSO that  

needs to be addressed. In this context, a new mutation 

phenomenon is applied to the particle with the global 

best position of the swarm that will avoid the premature 

convergence and significantly improves its global 

searching capability. Also, a parameter updated formula 

is proposed that will bring a good balance between the 

local and global searches. Thus, a dynamic quantum-

inspired particle swarm method (DQPSO) is applied to 

Loney’s solenoid design as reported in this work.  
 

II. QPSO APPROACH 
The trajectory analysis [16] illustrates that the PSO 

convergence behavior can be guaranteed if each particle 

converges to its local attractor 
,1 ,2 ,
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of which the coordinates are: 
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local attractor is stochastic of particle i and lies in a hyper 

rectangle with pi and pg are the two ends of its diagonal. 

In quantum potential delta model [15], the position 

of a particle is given by: 
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In [14], a parameter L(t) is defined as: 
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Then the position is updated as follows: 
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where u is a random number within the interval [0,1], 

is the contraction expansion coefficient (CE) parameter 

and is used to control the convergence behavior of the 

QPSO and is represented by: 

 0.5 (1.0 0.5)( ) /Maxiter t Maxiter     . (5) 

This parameter is initially set to 1 and then linearly 

decreased to 0.5. 

To evaluate L(t), the mean best position is defined 

as the average of the personal best position of the swarm, 

i.e., 
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where N represents the swarm size. The parameter L will 

become, 

 ( ) 2 ( ) ( )
i

L t m t x t    . (7) 

Thus, the position of particles will be updated as: 

 ( 1) ( ) ( ) ( ) ln(1/ )i i ix t p t m t x t u      . (8) 

The equation (8) is called the position updated equation 

of the quantum particle swarm algorithm. 

 

III. PROPOSED METHOD 
The quantum inspired particle swarm method has 

many issues, especially when dealing with complex 

optimization problems. Because at the start of the search 

process, the diversity of the algorithm is high, however, 

it reduces quickly at the later stage of the evolution 

process. Thus, to improve the QPSO performance in 

terms of the final solution searched and convergence 

speed much effort has been made and different variants 

of QPSO have been developed. However, most of  

these methods are problem oriented. Thus, a continued 

research and development is needed to develop a global 

optimizer to optimize complex design problems. 

The mutation phenomena were brought from the 

evolutionary algorithm to maintain the diversity of  

the population. Thus, it plays a vital role in exploring  

the searching capability of the algorithm. Different 

approaches such as Gaussian, exponential, Cauchy etc., 

and other probability distributions methods are used to 

produce random numbers and improve the position 

updated equation of QPSO. Thus, a new outcome has 

been presented for the mutation operator in QPSO by 

using the beta probability distribution method. The 

proposed DQPSO method will be ensured to keep the 

high diversity and avoid trapping into local optima. The 

flow chart of a proposed DQPSO is given in Fig. 1. 
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A. Introduction of a mutation operation 

A beta mutation mechanism is applied to the global 

best (Gbest) position of the particle to intensifying the 

diversity of the swarm and avoid the particles from being 

trapped into local optima. Hence, it will also improve the 

QPSO performance in terms of the solution quality and 

global searching capability. 

In this method, the beta mutation is combined with 

the Gbest particle as follows: 

 ( )mutated bestG G beta rand  , (9) 

where beta(rand) is the random number generated with 

the beta probability distribution method. 

The proposed mutation strategy will enhance the 

searching capability of the proposed DQPSO method. 

Hence, the mutated particle will explore more searched 

area to achieve the best optimal outcomes and avoid the 

algorithm to trap into local minima.  

 

B. Parameter updating mechanism 

The contraction expansion coefficient (CE)   is the 

control parameter used for tuning the proposed DQPSO. 

It plays a vital role in controlling the convergence speed 

of the proposed DQPSO method. Therefore, different 

researchers have proposed different mechanisms to tune 

this parameter [16]. The general mechanism for this 

parameter is to set to 1 and reduced linearly to 0.5 

initially. It also plays a vital role in maintaining a right 

balance between the local and global searches. However, 

if the parameter is not adjusted correctly then it may 

disturb the local and global searches and the algorithm 

will be trapped into local minima. Thus, to address this 

issue, it is significantly essential to adjust the value of 

parameter properly. 
Therefore, a new dynamic updated strategy for 

parameter is proposed to maintain a good cooperation 

between the exploration and exploitation searches and 

avoid the proposed DQPSO method to stuck into local 

minima: 

 
0.5

1
log( 0.2)mutatedG

  


. (10) 

The relationship between the   and Gmutated parameters 

is shown in Fig. 2. It should be noticed from Fig. 2, that 

if the individual (particle) is far away from the mean best 

position, then one expects a small value of   to help it 

come back; In contrast if the particle is just near to the 

mean best position, then one prefers a high   to force it 

to bounce away. This will bring a good balance between 

the local and global searches and avoid the algorithm to 

trap into local minima. 

 
 

Fig. 1. Flow chart of the proposed DQPSO method. 

 

IV. NUMERICAL RESULTS 
To evaluate the performance and global searching 

capability of the proposed DQPSO algorithm, first  

three benchmarks shifted versions of mathematical test 

functions [17] are used as reported: 

.
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Global optimum: * *
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Fig. 2. Relationship between   and Gbest (mutated). 

 

The proposed DQPSO is then compared with the 

basic QPSO [15], LTQPSO [18] and MQPSO [19] 

methods. 

All these functions are minimization problems and 

the minimum value for each objective function is zero. 

Table 1 presents the average performance comparison  

of different optimizers. Moreover, Figs. 3~5 gives the 

convergence comparison of the proposed DQPSO with 

other optimal methods in a logarithmic scale of the best 

objective function on three well-known test problems 

using the swarm size of 80 with the number of iterations 

is 2000 for the 30-dimension problem. 

It can be illustrated in Table 1 that the proposed 

DQPSO and MQPSO have a good performance on most 

of the shifted version problems. However, the QPSO and 

LTQPSO could not produce better outcomes and falls 

into local minima. Thus, it is concluded that the proposed 

DQPSO improved significantly as compared to other 

tested optimizers. 

 

Table 1: Mean (first row) and variance (second row) of 

different optimizer for 30-dimension problems 

Algorithms 1 ( )f x  2 ( )f x  3 ( )f x  

QPSO 
5.9342×10-6 

2.8627×10-10 

0.1376 

3.8629×10-2 

3.0716×10-2 

4.8620×10-3 

LIQPSO 
1.23924 

0.38211 

5.09190 

0.52149 

2.9314×10-2 

7.6824×10-4 

MQPSO 
1.1339×10-7 

2.7820×10-13 

7.8273×10-2 

5.7432×10-5 

5.8461×10-3 

1.6560×10-7 

DQPSO 
3.4182×10-9 

1.5086×10-17 

8.2016×10-4 

5.2791×10-8 

6.2041×10-5 

5.3942×10-10 

 

V. LONEY’S SOLENOID BENCHMARK 

PROBLEM 
To validate the proposed DQPSO performance for 

electromagnetic design. It is used to solve the Loney’s 

solenoid problem. The literature has several references 

to optimization techniques that have been applied to 

Loney’s solenoid design [20]-[22]. 

Loney’s solenoid is a standard nonlinear benchmark 

problem in magnetostatics inverse problems [20]. Figure 

6 show the upper half plane of the axial cross section  

of the system. Loney’s solenoid problem’s key point is 

to find the position and size of two correcting coils to 

produce an approximate constant magnetic field in the 

interval of the axis. 

 

 
 

Fig. 3. Convergence plots of different optimization 

methods solving function f1. 
 

 
 

Fig. 4. Convergence plot of different optimization 

methods solving function f2. 
 

 
 

Fig. 5. Convergence plot of different optimization 

methods solving function f3. 

 

The Loney’s solenoid problem has two variables, 

which are s and l, and the optimization problem is aiming 

to find the global minima of f (s, l), i.e., 

 min ( , )f s l . (14) 

The objective function f can be formulated as: 

 
max min( , )

0

B B
f s l

B


 , (15) 

where Bmax and Bmin represent the maximum and 

minimum value of the magnetic flux density within the 
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interval (−z0, z0), respectively; and B0 is the magnetic 

flux density at z0 = 0. 

In particular, three different “areas” can be 

recognized in the domain of f with values of 
84 10f    

(high level region), 
8 83 10 4 10f
      (low level 

region), and 
83 10f    (very low-level region—global 

minimum region). The very low-level region is a small 

ellipsoidal shaped area within the thin low-level valley. 

In both very low- and low-level small changes in one of 

the parameters can give rise to changes in objective 

function values of several orders of magnitude. 

 

 
 

Fig. 6. Upper half plane of the axial cross section of 

Loney’s solenoid problem. 

 

Table 2: Comparison of different optimizer for Loney 

solenoid problem 

Optimizer 

8
( , ) 10f s l 


 

Minimum 

(Best) 
Mean SD Maximum 

LTQPSO 3.7416 8.5294 3.8926 14.7682 

QPSO 3.6792 5.2867 2.2496 8.7293 

MQPSO 3.5728 6.5934 1.7454 8.6719 

QBSO 3.3990 3.5749 0.7295 4.7614 

DQPSO 3.3876 3.4982 0.9837 4.7428 

 

Table 3: Best solution for Loney solenoid problem 

Optimizer 

Parameters 
Computation 

Time 

s(cm) l(cm) 
8

( , ) 10f s l 


  

LTQPSO 14.60984 15.8997 3.7416 1729 

QPSO 13.9675 5.4006 3.6792 1688 

MQPSO 13.2813 3.3107 3.5728 1667 

DQPSO 11.8301 1.6496 3.3876 1598 

 

For a fair comparison, this case study is solved  

using the proposed DQPSO method, original QPSO [15], 

LTQPSO [18], MQPSO [19] and the results obtained  

by the QBSO method [22] is taken from literature for 

comparison. 

Moreover, each optimizer is run independently 30 

times with the corresponding number of maximum 

generations is 200. The optimal outcomes of different 

algorithms are tabulated in Table 2. 

It can be concluded from the outcomes of Table  

2 that the proposed DQPSO outperforms LTQPSO, 

QPSO, MQPSO and QBSO methods on minimum (best) 

objective functions values.  

 

 
 

Fig. 7. Comparison of different optimal methods solving 

Loney Solenoid design. 

 

Since the iterative number is an appropriate 

parameter to measure the computational time, and one 

can evaluate the computational efficiency using this 

parameter as shown in Table 3.  

One can also analyze from the statistics of Fig.  

7, that QPSO has the weakness of slow convergence 

behavior and is pertinent to trap into local optima. 

Though DQPSO has a fast convergence behavior, it  

is easy to avoid the local optimum. Thus, it can be 

illustrated that the proposed DQPSO avoids a possible 

local stuck and tradeoff between local and global 

searches. The new mechanism of mutation methodology 

and dynamic parameter can enhance the diversity of 

population and solution quality. As a result, the proposed 

DQPSO performance is much better than other tested 

optimizers. 
 

VI. CONCLUSION 
An improved version of quantum inspired particle 

swarm method has been presented in this work for the 

optimization of loneys solenoid design. The proposed 

dynamic QPSO was tested on some shifted version 

benchmark functions and loneys solenoid problem. The 

numerical outcomes and statistical analysis illustrate the 

merit and efficiency of the proposed DQPSO method as 

compared to other tested optimizers. Thus, the proposed 

method has significantly improved its solution quality 

and achieved an optimal solution for the tested problems. 

However, for future work, the proposed DQPSO method 

will be applied to other engineering design problems. 
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