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Abstract — This paper presents a dual-polarized recon-
figurable antenna loading electronically steerable para-
sitic patches. The proposed dual-polarized antenna is
surrounded by four parasitic patches each of which is
mounted by two varactor diodes on the ground. By
tuning the varactors, continuous two-dimensional beam-
steering can be achieved for each of the polarization. A
prototype of the proposed antenna is fabricated and mea-
sured. Excellent agreement between the simulated and
measured results is observed. It is observed that the max-
imum beam-scanning angles in E-plane and H-plane are
greater than £25°, which is suitable for 5G base station
applications.

Keywords — Dual-polarized antenna, reconfigurable pat-
tern antenna, parasitic patch, varactor.

L. INTRODUCTION

With the rapid development of wireless communi-
cation, there are increasing needs for high-speed, low-
latency, and large-capacity wireless communications.
The widely used dual-polarized antenna can effectively
improve the communication capacity through polariza-
tion diversity [IH8]]. Additionally, the pattern recon-
figurable antennas are capable of steering the beam
pointing, reducing noise interference and increasing
signal coverage [9} [10]. Therefore, a dual-polarized pat-
tern reconfigurable antenna can improve channel capac-
ity and mitigate multi-path propagation fading.

Essentially, the pattern reconfigurable antennas can
be achieved by adding active components (e.g., PIN
diode, varactor, MEMS, etc.) on parasitic patches in-
directly [9H12] or radiator directly [13H15]. The di-
rectly loaded manner affects the surface current flow
path, while the indirectly loaded manner tunes para-
sitic patches to realize pattern reconfigurability. The
active tuned parasitic patches are more flexible and trans-
plantable compared to directly loaded manner. The main
reason is that the parasitic patches do not change the
structure of the driven antenna. The parasitic patches
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in the pattern reconfigurable antenna have various struc-
tures, such as rectangle, circle, and octagon, etc. Among
them, the rectangular parasitic structure is the most
commonly used. In the papers [[16] and [20], the rect-
angular parasitic patches are adopted to achieve pattern
reconfigurable antenna. In the paper [9]], the parasitic
patches are octagon structures that can obtain four pat-
tern modes by adjusting the connection state of the par-
asitic patches and the ground. Moreover, there are
very few dual-polarized pattern reconfigurable anten-
nas. In the paper [9], a dual-polarized pattern recon-
figurable Yagi patch antenna was proposed, which can
achieve four-mode patterns in both polarizations. How-
ever, it uses eight PIN diodes to implement two deflec-
tion modes and only one can achieve one-dimensional
beam-steering. In the papers [13] and [21], the di-
rectly loaded manner is used to tune the current of an-
tenna radiators which can achieve pattern reconfigurable
antenna.

In addition, there are many ways to realize a recon-
figurable antenna pattern [[18H24]. An artificial ground
structure was reconfigured with PIN diodes inserted
on the bottom ground to adjust the pattern of the an-
tenna [[18]]. A broadside radiation pattern and a coni-
cal pattern were obtained when it alternatively operates
in the TM10 mode and TMO02 mode of the rectangu-
lar patch [[19]. The optically transparent and compact
dual-band, polarization-angle-independent metasurfaces
have reconfigurable patterns for ambient energy harvest-
ing and wireless power transfer [25, [26].

In this paper, electronically tuned parasitic patches
using varactors are assigned in the surrounding area
of a driven dual-polarized antenna to implement pat-
tern reconfigurability. This work aims to design a
two-dimensional dual-polarized pattern reconfigurable
antenna. We propose a single antenna model that
can explain the pattern reconfigurable principle of the
capacitance-loaded parasitic patches. An antenna pro-
totype is fabricated and measured. Continuously two-
dimensional dual-polarized beam pointing adjustment is
achieved.
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This paper is organized as follows. Section II in-
troduces the design principle of pattern reconfigurable
antenna and the steps to achieve the dual-polarization
pattern reconfigurable antenna. The dual-polarization re-
configurable antenna is introduced in great detail in Sec-
tion III. Section IV describes the pattern reconfigurable
results. The measured results of the dual-polarization
pattern reconfigurable antenna are given in Section V.
The conclusion is given in Section VI.

I1. DESIGN PRINCIPLE

Fundamentally, the pattern reconfigurable princi-
ple of the proposed antenna is to change the surface
current phase of the parasitic patches by loading un-
equal capacitance. The induced current with unequal
phases would reradiate to form the desired patterns. Al-
though numerous studies have discussed the parasitic
patches tuned antennas [27], the mechanism by loading
lumped components on parasitic patches has not been
established.

In this paper, we qualitatively analyze the antenna
which is tuned by capacitance-loaded parasitic patches.
The proposed antenna for each polarization can be re-
garded as the three-point source. The central source
is the driven source and the sibling two are parasitic
sources, as shown in Figure m The driven source is re-
ferred to as the phase center point. Thereby, as the the-
ory of point sources array [28]], the far-field pattern can
be expressed as

E’ _ Ed +E’vpefjk0Dc059 +E’~pej(k0Dcos (9+A(p)7 (1

where Ed and fp are the driven and parasitic source
amplitude at far-field, koDcos® is the phase difference of
parasitic source referring to the driven source, and A
is the tunable phase. Based on these assumptions, pat-
terns of the three-point sources are calculated and shown
in Figure 2] Distance between the driven source and the

parasitic source is D = 0.32 A and ‘E,,‘ = 0.6‘?01’. It

can be seen that the main beam pattern deflects when the
tunable phase changes. This indicates that a pattern re-

To far-field

@ Driven source
@) Parasitic source

Fig. 1. Qualitative analysis for one driven source and two
varactor-loaded parasitic sources.
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Fig. 2. Normalized patterns for different A@ on the par-
asitic source.

configurable antenna can be achieved when we introduce
unbalanced capacitance which results in an unbalanced
phase on either side of parasitic arms.

In this paper, electronically tuned parasitic patches
using varactors are assigned in the surrounding area of a
driven dual-polarization antenna to implement pattern re-
configurability. The unbalanced phase for achieving pat-
tern reconfigurability on the parasitic patches is achieved
by the unbalanced capacitance. The unbalanced capaci-
tance is represented by AC which is the capacitance dif-
ference of each pair of varactors.

The dual-polarization pattern reconfigurable an-
tenna can be decomposed into two single-polarization
patterns reconfigurable antenna. Due to the two polariza-
tions being symmetrical, we only need to analyze how
one of the single polarization antennas realizes the re-
configurable pattern. The single polarization antenna can
achieve the reconfigurable pattern when parasitic patches
are assigned in H-plane and E-plane, respectively, as
shown in Figure Eka) and (b), where the electronically
tuned arms must be parallel to the antenna polarization
direction to control the antenna pattern. In Figure [3{a),
the antenna can achieve the reconfigurable pattern with
different AC in H-plane, as shown in Figure Eka) and (b).
When AC =1 pF and AC = —1 pF, the beam deflec-
tion angles are 36° and —37° in H-plane, respectively.
Similarly, when AC = 0.5 pF and AC = —0.5 pF, the
beam deflection angles are 21° and —21° in H-plane,
respectively. Therefore, the single polarization antenna
can achieve the reconfigurable pattern in H-plane when
the capacitance differences are introduced on parasitic
patches in H-plane. In addition, the antenna can achieve
the reconfigurable pattern with different AC in E-plane,
as shown in Figure[3(b). In Figure fc), when AC =1 pF
and AC = —1 pF, the beam deflection angles are 20° and
—18° in E-plane, respectively. Similarly, in Figure f{d),
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Fig. 3. (a) The reconfigurable pattern of the single-
polarization antenna in H-plane. (a) The reconfigurable
pattern of the single-polarization antenna in E-plane.
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Fig. 4. (a) and (b) The reconfigurable patterns of the
single-polarization antenna with different capacitance
values in the H-plane. (c) and (d) The reconfigurable
pattern of the single-polarization antenna with different
capacitance values in E-plane.

when AC = 0.5 pF and AC = —0.5 pF, the beam deflec-
tion angles are 13° and —11° in E-plane, respectively.
Therefore, the single polarization antenna can achieve
the reconfigurable pattern in E-plane when the capaci-
tance differences are introduced on parasitic patches in
E-plane. According to the above analysis, the single po-
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Fig. 5. The single polarization pattern reconfigurable
antenna layout and the dual-polarization pattern recon-
figurable antenna layout with two-dimensional beam-
steering.

larization antenna can realize the reconfigurable pattern
in two-dimensional directions by loading two electri-
cally tuned parasitic patches in the E-plane and H-plane,
respectively.

For E-plane or H-plane reconfigurable pattern, two
parasitic patches are needed at least, which are placed
on scanning plane. Hence, four parasitic patches
are arranged to achieve the two-dimensional reconfig-
urable pattern in a single polarization antenna. There-
fore, the two-dimensional dual-polarization pattern re-
configurable antenna is made of two orthogonal single-
polarized antennas that have two-dimensional pattern re-
configurability, as shown in Figure[5] For a £45° dual-
polarization antenna, the E-plane of +45°-polarization
is the H-plane of —45°-polarization. Therefore, the E-
plane parasitic patches of +45° polarization and the H-
plane parasitic patches of the —45° polarization are in
the same area where the +45° and —45° polarization can
share a parasitic patch. These shared parasitic patches
have the electronically tuning parts along each polariza-
tion direction. Therefore, the dual-polarization antenna
has pattern reconfigurability in two-dimensional direc-
tions by shared parasitic patches, as shown in Figure[3}

III. ANTENNA DESIGN
As mentioned before, the indirectly loaded pattern
reconfigurable antennas are composed of a driven an-
tenna and parasitic patches. And the two-dimensional
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Fig. 6. Topology of the proposed antenna. (a) Perspec-
tive view, (b) dual-polarized antenna, and (c) varactor-
tuned parasitic patches with DC bias lines (the four
patches are labeled as I, II, III, and IV anticlockwise).

beam-steering scheme of dual-polarized antennas is also
analyzed in the previous section. In this section,
the specific design scheme of the dual-polarization an-
tenna with a two-dimensional reconfigurable pattern is
presented.

The geometrical topology of the proposed antenna
is shown in Figure[6{a). It can be seen that it has a £45°
dual-polarized dipole antenna and four parasitic patches,
which are tuned by eight varactors. The orthogonal u-
and v-directions are defined to represent the ¢ = +45°
and ¢ = —45° polarization directions, respectively.

Detailed geometrical structure of the dual-polarized
antenna located at the center is shown in Figure [6(b).
The printed dipole antennas have compact configurations
for dual-polarized operations. The structure of the two
dipole antennas is almost the same except for substrate
shape and feed lines. The substrate for the printed dipole
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Table 1 Parameter values (A at 3.4 GHz)

Parameters | Values Parameters Values
1 1 mm w3 3.5 mm
t 2 mm Wy 44 mm
3 1 mm 51 18 mm
I 5 mm $2 5 mm
153 4 mm L 75 mm
I3 23 mm D 28.3 mm
n 10 mm P1 23.5 mm
w1 1 mm D2 10.6 mm
%) 3 mm D3 4.3 mm

antennas is FR4 (g, = 4.4, tand = 0.02). For each polar-
ization, the dipole is integrated with a balun which con-
nects to a 50-Q SMA connector [26]].

The parasitic patches, reflective ground plane, and
direct circuit (DC) bias lines are shown in Figure [c).
The four capacitance-loaded parasitic patches are etched
on an FR4 substrate, which is assigned along with two
polarizations. It can be seen that patches I and III lie in
the u-plane, while patches II and IV lie in the v-plane.
To realize a two-dimensional dual-polarized pattern re-
configurable, two arms along u- and v-directions, which
are mounted by varactors, are designed on each parasitic
patch.

The model of the varactor used in this design is
Skyworks SMV 1430 whose junction capacitance ranges
from 0.31 to 1.24 pF as reverse voltage changes from 30
to 0 V. Package series inductance is 0.45 nH. The varac-
tors are soldered in the 0.5-mm gap of parasitic patches
arms. A F4B substrate (g, = 2.5; tand = 0.005) separates
the ground layer and feed networks. The radio frequency
(RF) connectors and DC feed lines are integrated into the
bottom layer as shown in Figure [6[c). Four radial stubs
are designed to choke RF signals.

For simplicity, we label the varactor by direction
combined with the patch index. For example, the pattern
of the dipole in the u-plane (+45° polarization) can be
steered to scan in u-plane by using u; and uy;; varactors,
while as uj; and uyy varactors are used, the pattern can
scan in v-plane. In other words, there are four tuned arms
to steer the radiation pattern of each polarization. A pair
of varactors steer the pattern scanning in E-plane and the
other pair of varactors steer the pattern scanning in H-
plane. All the structural parameters are listed in Table I}
Central operating frequency of the proposed antenna is
3.4 GHz.

IV. PATTERN RECONFIGURABLE RESULT

Ansys HFSS 15.0 is applied to simulate the pro-
posed antenna. The varactor is simulated by a capacitor
in series with an inductor using lumped RLC boundary
conditions. The varactor is characterized by the varying
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Fig.7. Simulated gain patterns deflection in E-plane and
H-plane at different frequencies when AC varies. (a), (c),
and (e) Patterns in E-plane. (b), (d), and (f) Patterns in
H-plane.

capacitance value of the capacitor. Here, the capacitance
difference of each pair of varactors is defined as AC for
simplicity. As shown in Figure[7] the simulated gain pat-
terns, which take into the mismatch loss account, with
different deflection angles are presented for different AC.
Both E-plane and H-plane simulated results are plotted.
It can be seen that the tilt patterns show similarly recon-
figurable results within the working frequency band. In
this case, only Port 1 is excited and Port 2 has similar
results. Varactor pair of u; and uyj; controls the pattern
tilt in E-plane, while u;; and ujy control the pattern tilt in
H-plane, which can be controlled independently. Pattern
tilt angles at 3.5 GHz are 0°, 16°, and 27° in E-plane,
while in H-plane, they are 0°, 13°, and 22° for different
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Fig. 8. Tilt angle and peak gain in (a) E-plane and (b)
H-plane versus AC at different frequencies.

AC, as shown in Figure[7] The peak gains are 7.69, 7.58,
and 7.21 dBi in E-plane, while in H-plane 7.69, 7.37,
and 6.63 dBi, respectively. It should be noted that for the
same AC, the pattern deflection angles are not identical
in E-plane and H-plane.

For the detailed variation of the pattern tilt angle ver-
sus AC, we simulated the proposed antenna under differ-
ent AC when Port 1 is excited, as shown in Figure @
From the results, it suggests that pattern deflection an-
gle increases with AC. Meanwhile, peak gain decreases
due to scanning loss and mismatch loss. At 3.5 GHz, the
proposed antenna possesses a maximum deflection an-
gle of 35° and its peak gain drops to 6.5 dBi accordingly
in E-plane, as shown in Figure [8f(a). Similar results can
be obtained for H-plane deflection that the proposed an-
tenna possesses a maximum deflection angle of 28° and
its peak gain drops to 6.21 dBi accordingly at 3.5 GHz, as
shown in Figure[§[b). Similar results can be obtained for
Port 2 which is a +45° polarization antenna. The differ-
ent deflection angles of the E-plane and H-plane patterns
are caused by the different coupling of the antenna to
the E-plane and H-plane. Through the above simulation
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Fig. 9. Fabricated two-dimensional dual-polarized pat-
tern reconfigurable antenna. (a) Fabricated antenna pro-
totype. (b) Measurement scene.

results, it can be analyzed to get that we proposed an-
tenna possess two-dimensional dual-polarization pattern
reconfigurability.

V. MEASUREMENT RESULTS

The fabricated prototype of the proposed antenna is
shown in Figure [O(a). Simulated and measured reflec-
tion coefficients for different AC are shown in Figure[I0}
Note that Port 1 AC represents the capacitance differ-
ence of u; and uyy;, while Port 2 AC represents the ca-
pacitance difference of v;; and v;y. It can be observed
that the measured results agree with the simulated ones
as AC changed. However, the measured reflection coeffi-
cients of the two ports are not overlapped exactly. A pos-
sible explanation for this might be the variation of actual
capacitance of the varactor and designed data obtained
from the manufacturer’s datasheet.

The antenna is measured in a multi-probe anechoic
chamber, as shown in Figure [9(b). Four voltage con-
trollers that can continuously generate 0—30 V voltage
are applied to bias the varactors for two-dimensional
beam-steering. The measured and simulated E-plane
patterns within the working frequency band as Port 1 ex-
cited are shown in Figure [T} For simplicity, only the
deflection pattern under a certain capacitance difference
on the E-plane is given. We tuned the voltage controller
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Table 2 Comparison of this work with some existing

works
Ref. DP | PR PR dim. BW (%)
3] Yes | No NA 44.5%
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[24] No | Yes 1 20.8%
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Fig. 11. Simulated and measured E-plane gain patterns
for AC = —0.47 pF and AC = 0.47 pF at different fre-
quencies with Port 1 excited. (a), (c), and (e) Patterns at
3.3,3.4, and 3.5 GHz for AC = —0.47 pF. (b), (d), and (f)
Patterns at 3.3, 3.4, and 3.5 GHz for AC = 0.47 pF.

to set AC of u; and uy; as —0.47 and 0.47 pF. From
the comparisons, we can clearly see that measured pat-
terns are deflected to the intended directions for each fre-
quency. At 3.3 GHz, peak gains, which are 5.80 and 5.92
dBi, occur at 8 = —16° and 0 = 18° when AC is equal to
—0.47 and 0.47 pF, respectively. At 3.4 GHz, peak gains,
which are 5.89 and 5.81 dBi, occur at 8 = —14° and 6 =
16° when AC is equal to —0.47 and 0.47 pF, respectively.
At 3.5 GHz, peak gains, which are 5.74 and 5.96 dBi, oc-
cur at 8 = —24° and 6 =28° when AC is equal to —0.47
and 0.47 pF, respectively. There exists a discrepancy of
beam pointing and gain-loss between simulated and mea-
sured results. They are caused by fabrication errors and
measurement tolerance. The back lobes of the measured
patterns are larger than simulated ones. This may be due
to the support platform. The measured efficiency of the
antenna is above 50%, a little lower than that of the sim-
ulated one. Nevertheless, the measured results validate

Note: DP: Dual polarization; PR: polarization
reconfigurability; PR dim.: PR dimension; BW:
bandwidth.

the good performance of the proposed antenna. In addi-
tion, the measured cross-polarization discriminations are
higher than 12.5 dB, which satisfies the requirement of
communication.

In Table [2] the proposed antenna is compared with
some existing works. It can be seen that only [9] and the
work of this paper are about the reconfigurable pattern
of dual-polarization antennas, and the bandwidth of this
paper is wider. In addition, only the proposed antenna
has a two-dimensional dual-polarization pattern recon-
figurable ability. And the antenna can achieve continu-
ous steering.

VI. CONCLUSION

A dual-polarized pattern reconfigurable antenna has
been proposed and fabricated in this paper. This antenna
is capable of continuously steering patterns in E- and H-
planes by using varactors tuned parasitic patches. The
proposed parasitic patches topology can be transplanted
to other frequency bands. Two-dimensional pattern de-
flection exceeds 50°. Measured reflection coefficients
are less than —10 dB from 3.3 to 3.5 GHz for two ports
when continuously steering the beam pointing. Valida-
tion of the prototyped antenna indicates that the proposed
varactor-tuned parasitic patches can effectively direct the
pattern of the driven antenna, which is coincident with
the qualitative analysis.
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