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Abstract — To increase the speed of the measurement,
a time-efficient multi-probe system in a reverberation
chamber (RC) is validated. The system consists of 4
printed circuit board (PCB) switches integrating with
128 probe antennas. By using solid-state switches, all
antennas can be switched over in sequence in less than
1 second. Typical characteristics of the RC and the total
radiated power (TRP) of the device under test (DUT)
are performed to verify the validity of this configura-
tion. Compared with the RC using mechanical stirrers,
this system shows its superiority in terms of testing
efficiency.

Index Terms — measurement technique, multi-probe sys-
tem, OTA, reverberation chamber.

L. INTRODUCTION

A reverberation chamber (RC) is an electrically
large shielded room with mechanical stirrers used to
change the field in the chamber [1H2]]. With rotated stir-
rers, a statistically uniform and isotropic environment in
the chamber can be created.

In past decades, the RC has been widely applied
to both electromagnetic compatibility (EMC) measure-
ments and over-the-air (OTA) testing. It can be used to
evaluate the performance of some antennas and devices
under test (DUTs), such as radiation efficiency [3H4],
radiated emission and immunity tests [5], diversity gain
[6], total radiated power (TRP) [7H10], total isotropic
sensitivity (TIS) [[10-411], and various different fields.

In order to achieve a well-stirred RC for accu-
rate measurements, numerous independent samples are
needed. For a typical RC with mechanical stirrers, the
measurement is a time-consuming process because the
stirrers are rotated with steps. Recently, optimized stir-
rers have been designed to improve the stirring perfor-
mance [12]. Meanwhile, the source-stir technique has
been applied to improve testing efficiency [[13H21]]. The
multi-probe system, one of the stir techniques, is gener-
ally used in the RC [[18H21]. By placing several receiving

Submitted On: June 10, 2022
Accepted On: July 22, 2022

antennas (source-stirring) on the wall instead of mechan-
ical stirring, both the calibration and other measure-
ments can be performed quickly. In this paper, we design
a time-efficient multi-probe system with 128 antenna
probes integrated on the 4 PCB switches, which can be
used in the RC to perform measurements. The measure-
ment setup is shown in Fig. [1] Instead of using software
switching controlled by a computer, digital sequences
with a hardware control unit is applied which accelerate
the switching process significantly. Important parameters
of the RC have been measured to validate its configura-
tion.

This paper is organized as follows: The configura-
tion and design of the multi-probe system are given in
Section II. Measurement results such as field uniformity
(FU), quality factor (Q factor), and TRP are detailed in
Section III. Section IV gives the conclusion.

II. DESIGN AND ANALYSIS

As shown in Fig.[I] the multi-probe system is com-
posed of 4 PCB switches considering the size of the
RC. Every PCB switch has 8 single-pole four-throw
(SPAT) solid-state switches and 1 single-pole eight-
throw (SP8T) solid-state switch, which are used to
switch 32 radio frequency (RF) paths. The multi-probe
system controller consists of a digital signal generator
used to send logic control signals to solid-state switches
and a 1 SPAT switch intended for receiving RF signals
from the 4 PCB switches. Antenna (Ant) 1 is connected
to Port 1 of the vector network analyzer (VNA), the out-
put port of the system controller is connected to Port 2.
At each position, we measure S-parameters for 60,001
frequency points in the frequency range of 100 MHz -
6 GHz. The front of the multi-probe PCB switch is illus-
trated in Fig. E] (a). The SMA connectors connected with
receiving antennas are distributed in the four sides of the
PCB. The back of the PCB switch is the control path,
which is shown in Fig. [2| (b). Signals on each path need
to pass through 1 SP8T solid-state switch, 1 SPAT solid-
state switch, and some microstrip lines.
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Fig. 1. Measurement setup: (a) schematic plot. (b) Mea-
surement in multi-probe RC, the inner dimensions of the
RCare1.2m x 0.8 m x 1.2 m.

Fig2 (a)
Fig. 2. The structure of the multi-probe PCB switch: (a)

32 probe antennas integrated on the PCB. (b) The RF
paths of the PCB switch.

Generally, an SP4T solid-state switch needs 2 logic
control input signals and an SP8T solid-state switch
needs 3 logic control input signals. Considering the lim-
ited output terminals of the digital signal generator, we
utilize an 8-bit output shift register to extend the num-
ber of the control signals. Figure[3|shows the system net-
work diagram of the PCB switch. As is shown, the digital
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Fig. 3. The system network diagram of the PCB switch.
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Fig. 4. The schematic diagram of the digital signals to
control the SPAT solid-state switch.

Latch Clock

signal generator sends data and clock signals to 3 shift
registers which are used to control 8 SP4T switches and
1SP8T switch. By toggling the switch state, the RF input
signal can arrive at any of the 32 paths. The schematic
diagram of the digital signals to control the SP4T switch
is shown in Fig. @ Through setting the interval of the
shift clock as 1ms, the data can be output every 2 ms.
Thus, the SP4T solid-state switch can alter 4 times within
8 ms. The control of the SP8T solid-state switch is simi-
lar to this.

III. MEASUREMENT AND RESULTS

In this paper, we demonstrate the validity of the
proposed configuration using a vector network analyzer
(VNA). Two parameters of the RC: quality factor and
field uniformity are investigated to characterize its per-
formance. The TRP of a DUT has also been measured to
show the test efficiency.

Q factor is an important parameter of the RC, which
is defined as the ratio of the stored power U to the dissi-
pated power P;:

= ey

It is well known that we can also use the time
domain (TD) method to calculate Q factor using the fol-
lowing equation (2):

0 = O, @)
where @ = 27 f is the angular frequency, and Tgc is the
chamber decay constant. Thus, although measurements



are performed in the frequency domain (FD) through the
VNA, we can obtain TD results using the inverse Fourier
transform (IFT) to the FD response. The and Q factor are
demonstrated in Fig.[3]

100 T 1400
o0 1200
80|

1000
70t
@ 800
5 601 (¢]
< 600
50
w0 400
30k 200
20 | | | | | 0
0 1 2 3 4 5 6

Frequency(GHz)

Fig. 5. Measured 7xC and Q factor in the RC.

The FU can characterize the statistical uniformity of
an RC, which is defined as the relative standard devi-
ation of the average values obtained at the nine posi-
tions in RC [2]. We can judge whether the RC has sta-
tistical uniformity according to the tolerance require-
ments given in the IEC Standard [22]]. Due to the limit
of the frequency of the solid-state switch, we measure S-
parameters for 6,001 frequency points in the frequency
range of 100 MHz - 6 GHz. 9 test positions of the work-
ing volume are performed resulting in a total of 1152
measurement samples. The FU in the RC compared with
the tolerance requirements is demonstrated in Fig. [6]
As it shows, the FUs captured from the mean received
power are lower than the tolerance requirements in the
frequency range, which proves that the proposed system
has a good stirring efficiency.
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Fig. 6. The FU in the RC compared with the tolerance
requirements.

Figure [7] shows the TRP measurement scenario in
the RC. In order to explain the calculation process of the
TRP clearly, the equations are represented below in deci-
bel (dB) unit. The reference antenna acts as a reference
source with known total radiated power (TRPget). Once
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Fig. 7. The TRP measurement scenario in an RC.

averaging the received power from the 128 probe anten-
nas ((Prxret)), the chamber transfer function (Trc) can
be obtained in dB unit [23]]:

Trc= (Prxref) — TRPRgef, 3)

when the DUT transmits the signals (TRPpyr), a sim-
ilar procedure has been performed. With the average
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Fig. 8. The received power sequence from 128 probe
antennas in the RC: (a) Ref source. (b) DUT.
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received power of the DUT ({Frxput)), the Trc can also
be written in dB units:

Trc= (Prxput) — TRPpuT, 4)

thus, the TRP of the DUT can be obtained from the equa-
tion (3) and @) in dB units:

TRPpuyt = (PrxpUT) — (PRxRef) + TRPRer.  (5)

We record 128 power samples at 2.4 GHz and cal-
culate the TRP of the DUT to verify the high efficiency
and accuracy of the proposed configuration. The received
power samples in the switching sequence is illustrated in
Fig.[8] As can be seen, the total measurement time is less
than 1 second.

The cumulative density function (CDF) of the
received power is shown in Fig. 0] The measured sam-
ples are normalized to the mean value. When the ref-
erence antenna is the signal transmitter, it can be con-
sidered as a single frequency source. Thus, the received
power samples (Prxref) 1S €xponential distribution. The
received power samples (Prxput) of the DUT is gamma
distribution because of the wideband radiated spectrum
[23H25]. The TRP of the DUT at 2.4 GHz is also cal-
culated and shown in Fig.[T0] With the increasing of the
sample number, the average TRP converges to 4.56 dBm.
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Fig. 9. CDFs of the measured normalized power samples
at 2.4GHz.
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Fig. 10. The average TRP at 2.4GHz, 4.56 dBm.
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IV. CONCLUSION

In this paper, we have proposed a multi-probe RC
system based on a hardware-switching technique. Com-
pared with conventional mechanical stirrers, the hard-
ware cost is increased for small RCs, but the measure-
ment efficiency is improved greatly. The total measure-
ment time from 128 antennas can be shortened to less
than 1 second. Two parameters of the RC and TRP of
the DUT have demonstrated the validity of the proposed
multi-probe system.

To maintain the measurement accuracy in each time
slot, we set the interval of the shift clock to 1 ms. It
should be noted that the test time can be further short-
ened if we decrease the interval of the hardware clock.
However, the total time of 1 second is already short
enough for most measurements and too short a measure-
ment interval could lead to inaccuracy for some measure-
ments (such as received power, throughput, bit error rate,
and error vector magnitude) which require a short time
average.
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