45

ACES JOURNAL, Vol. 38, No. 1, January 2023

Combined Application of Partition Clustering Classification and
Gerchberg-Papoulis Optimization Algorithm for Spherical Near Field
Antenna Measurements

Fangyun Pengl, Yuchen Ma?, Yuxin Ren?, Bo Liu!, Xiaobo Liu!, Zhengpeng Wang3 R
Lei Zhao*, Xiaoming Chen!, and Zhiqin Wang?

!School of Information and Communications Engineering
Xi’an Jiaotong University, Xi’an, 710049, China
pfy2014111731 @stu.xjtu.edu.cn, liuboright @stu.xjtu.edu.cn, xiaoming.chen @mail.xjtu.edu.cn

2China Academy of Information and Communications Technology
Beijing, 100191, China
mayuchen@caict.ac.cn, renyuxin @caict.ac.cn, wangzhiqin @caict.ac.cn (author for correspondence)

3School of Electronic and Information Engineering
Beihang University, Beijing, 100191, China
wangzp @buaa.edu.cn

4School of Information and Control Engineering
China University of Mining and Technology, Xuzhou, 100083, China
leizhao@cumt.edu.cn

Abstract — An adaptive sampling and optimized extrap-
olation scheme for spherical near-field antenna testing
is proposed. The method relies on the partition clus-
tering classification algorithm and Voronoi classifica-
tion to divide a small amount of initial data into sub-
classes and cells. The sampling density and rates of vari-
ation between adjacent sampling points are used as an
overall metric function to evaluate the sampling dynam-
ics at each location. Appropriate interpolation is per-
formed in the highly dynamic region to increase the
effective data in the near-field samples. The Gerchberg-
Papoulis algorithm extrapolates the unnecessary interpo-
lation region to improve the near-field sampling accu-
racy. This method uses a small amount of initial near-
field sampled data for near-far field conversion to achieve
the same precision as uniform oversampling. The feasi-
bility and stability of the algorithm are proved from the
actual measurement results.

Index Terms — adaptive sampling, cluster classification
algorithm, extrapolation, spherical near-field testing.

L. INTRODUCTION
Compared with plane and cylindrical near-field test-
ing, spherical near field testing (SNFT) scans the entire
3D near-field spherical information of the antenna under

Submitted On: October 26, 2022
Accepted On: December 26, 2022

test (AUT) with a uniform sampling interval through
a single probe or multiple probes, and can obtain the
complete information of the AUT in the entire 3D
space. Spherical near-field to far-field (NF-FF) transfor-
mation techniques have been widely used to overcome
the impossibility or impracticality of measuring antenna
radiation patterns in the far field. The core of the SNFT
is to use the characteristic that the spherical wave expan-
sion coefficient remains unchanged in the near field (NF)
and the far field (FF) to perform the spherical near-
far field conversion [1H7]]. Recently, the SNFT transfor-
mation technique has been applied to loaded/unloaded
reverberation chambers for antenna pattern reconstruc-
tion [8, 9]]. Nevertheless, calculation of spherical wave
expansion coefficients for NF data with incomplete or
large errors will cause large deviations.

There have been different solutions to the problem
of truncation error and to demonstrate the reliability of
the method in small truncation regions [[10H16]. The
authors in [10] proposed an iterative extrapolation-based
machine learning algorithm to extend the calculation of
the far field to a more accurate region, which employed
an analysis of variance test to check the overall feasibil-
ity of the regression model. The authors in [11] used the
Gerchberg-Papoulis (GP) iterative algorithm to extrapo-
late the part outside the truncation region. The NF sam-
pling points were extended using a Slepian sequence
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that is specially constructed to be orthogonal over a
given truncated sweep circle, achieving more accurate
results than the classical near-far-field transformation
[12]. [13]] adopted the truncation error in the measure-
ment of the planar near-field aperture antenna by the
alternate orthogonal projection method.

The large number of sampling points results in a
long measurement time, which requires more flexibil-
ity in the sampling scheme. Measurements on the coarse
grid were interpolated onto the finer grid using an opti-
mal sampling interpolation (OSI) method to determine
measurements for efficient recovery of non-uniform NF
samples [17H18]]. The compressed sensing (CS) method
determines the minimum number of samples for near-
field sparse recovery, which allows reducing the num-
ber of measurements for all antennas while maintaining
accuracy [194520]. However, the sparse level of NF sam-
pled data and the prior information of the system had
a great impact on the test results and are not suitable
for all antenna tests. Based on measurements with heli-
cal scans, the authors in [21] investigated the applica-
tion of non-uniform fast Fourier transforms in SNFT. A
recently proposed method based on recursive partition-
ing in a multi-level subdomain hierarchy of radiating sur-
faces is applied to arbitrary surface measurements [22].
The authors in [23H25]] described the adaptive method
to reduce the measurement burden spherical near-field
measurements. The fast irregular antenna field transfor-
mation algorithm (FIAFTA) was used to post-process
the near field collected on an irregular grid [26] and the
source reconstruction method was used to calculate the
equivalent current on the surface of the ellipsoid contain-
ing the AUT [23]. These techniques require more time
than fast Fourier near-far field transform methods.

In this paper, a spherical near-field sampling opti-
mization method based on partition clustering classifica-
tion and GP joint optimization is proposed. Starting from
a small amount of sampled data, the clustering method
is used to quantify the dynamic changes of the AUT
NF electric field. There is a trade-off between sampling
density and variation between adjacent sampling points
according to different criteria. The new data is interpo-
lated in the high dynamic change area of the field to
improve the accuracy of the near-field sampling data and
the GP iterative algorithm extrapolates the data to the
unnecessary interpolation area to reduce the truncation
error.

The structure of the paper is as follows. Section
II introduces the theory of spherical wave expansion
and the optimization scheme of spherical near-field sam-
pling. Measurement results are presented in section III.
The superiority of the optimized scheme in improving
the test efficiency is proved. Section IV concludes the

paper.
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II. BACKGROUND THEORY

This section presents the theory of antenna pattern
reconstruction based on a small number of initial sam-
pling points. Firstly, the theory of spherical wave expan-
sion is described. Then, the clustering method is intro-
duced to divide the initial sampling points into sev-
eral subclasses, and the calculation process of introduc-
ing new sampling data by using the GP optimization
algorithm is given. Finally, the near-field data is recon-
structed to obtain the antenna pattern. The detailed mea-
surement process is as follows.

According to the uniqueness theorem and the equiv-
alence principle, the radiation field in the outer space
of the closed surface can be calculated and determined
through the tangential component of the electromagnetic
field on the closed surface including all the radiation
sources. In the SNFT, an equivalent spherical surface
is used to completely surround the AUT, and a passive
region is established outside the spherical surface, as
shown in Fig.[T]

Measurement
sphere

Fig. 1. Schematic of SNFT.

Outside the minimum sphere of the AUT, the electric
field can expand as a weighted sum of spherical wave
functions expressed as:

2 N n
E(r,0,¢) = Z Z Z QSmnF;(r?lzl(rveu(P)v (D
s=1n=1m=—n
where (r, 0, @) are the spherical coordinates, Qg are the
SWCs of the AUT, 1553“)1 are the spherical wave expan-
sion functions, s = 1 and 2 represent transverse elec-
tric (TE) and transverse magnetic (TM) wave modes,
respectively, and m,n are the number of modes of
AUT. N is a truncation number for the spherical wave

expansion empirically obtained from N = [kro] + 10,
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where k is the wave number, ro is the radius of
the minimum sphere surrounding the antenna and the
square brackets indicate the largest integer smaller than
or equal to kro. In equation (I), the spherical wave
expansion functions are known, the SWCs Qy,, can
be solved and the field value at any distance can be
obtained.

In order to obtain the dynamic change of the electric
field data in the near field of the antenna, M;,,;;,; sampling
data are randomly selected from the uniform spherical
near field sampling dataset S as the initial samples set
as S1. The K-means clustering method is used to clus-
ter the M;,;,; sampled data into k subclasses, and each
subclass randomly selects a sample as the cluster center.
Minkowski distance (p = 2 means Euclidean distance)
is used to measure the deviation of each sample value
from the cluster center and each sample is classified into
the subclass where the cluster center with the closest dis-
tance is located. The cluster center of each subclass is
updated to the average value of all points in the subclass,
and the samples are reclassified until the cluster center
of all subclasses no longer changes or the total clustering
error in all subclasses is the smallest. The current total
clustering error in all subclasses is:

k
ai=(Xx ¥ el @
J=1x5€C)ci€C;
where x; is the i-th sample and c; is the cluster center
belonging to the j-th subclass C;.

After obtaining the cluster classification results, the
initial near-field sampling data is sorted according to the
sample sampling density and the rate of variation of adja-
cent samples, and the top ranking represents the area that
needs to be interpolated. In order to calculate the sam-
pling density, the initial sampling points are represented
by a Voronoi diagram according to the nearest neighbor
principle [27]. Each initial sampling point corresponds
to a cell, and the sampling density is determined by the
area of each cell. Each sampling point is associated with
its nearest neighbor cell, and the sample variation rate is
expressed as the gradient of the field between adjacent
sampling points. So the overall evaluation parameter can
be expressed as:

)y gy Ylm)
Ly S(xy) Y (x,)
3)
where S(x,,) is the area of the mth cell, V (x,,) is the sum
of the absolute values of all gradients around the mth cell
and a, B (satisfying o + 8 = 1) are the weighting coef-
ficients. @ and f are adjusted accordingly according to
the cluster classification results. If the sampling variation
rate in a subclass is too large, in order to better judge
the interpolation requirements of the sampling area, it is
necessary to increase the proportion of sampling density

Gom) = a1+
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in the overall evaluation parameters, that is, increase the
value of a.

According to the judgment criteria, part of the data
to be interpolated comes from the dataset S, and a small
amount of data that is not located in the dataset S» with
uniform sampling interval. A modified Akima piecewise
cubic Hermite interpolation method is used in this part.

In order to reduce the truncation error caused
by the near-far field conversion after zero-filling the
non-essential interpolation area with smooth dynamic
changes, the GP algorithm is introduced to extrapolate
the sampled values. It is a band-limited extrapolation
algorithm that extrapolates the data outside the inter-
val from the known interval, and it is iteratively imple-
mented by using Fourier transform and inverse Fourier
transform. Plane wave spectra (PWS) of spherical near-
field probe sampled data is obtained from truncated NF
measurements using Fourier transforms:

‘ Measured NF data ‘

l

Divide the initial sampling
data into & subclasses

A

Update cluster
centers

Minimal clustering

Evaluate the dynamic changes of the
electric field in the sampling area

!

‘ Add adjacent samples using GP algorithm

|

Compare the Error between the E- fields
obtained from two adjacent iterations

Continue
algorithm
iteration

Error<threshold?

Reconstruction of Antenna Pattern by
Near-Far Field Conversion Algorithm

Fig. 2. Schematic diagram of the proposed method.

Go(6k, ¢x) = fft[g0(Ok, P1)] 4)
where go(6, @) is the cluster-interpolated accessible
near field data. The filter functions in the spectral and
space domain are:
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where @y and Qg are reliable regions of the space and
spectrum. The electric field on the sampling surface
obtained by extrapolation is given by the following equa-
tion:

Zar1(6k, O) = &n(Ok, Ok) + (g0 (O, Px)

_gn(ekv(Pk))h(eka(pk)7 (7)
where

En+1(6k, o) = if f1[HR(Ok, 9)Gn(Ok; x)].  (8)
The PWS of the reliable region is:

G (6, ) = fftlgn(6k, @x)], )

where fft and ifft means Fourier transform and inverse
Fourier transform, n is the value of iteration times,
(6k, @x) is the kth sampling point on the spherical grid
and g, (6, x) is the optimization extrapolation result for
the nth iteration. The error of the near-field data obtained
from two adjacent iterations is expressed as

Mioral

Error = |gn+1(6k, @) — gn (6, @) |7, (10)
=1

where M, is the total effective NF data after extrapo-
lation. After several iterations, the error reaches a stable
convergence point and the iteration terminates.

A schematic diagram of the proposed method is
shown in Fig. 2| where a small amount of sampling data
is used to verify the effectiveness of the clustering tech-
nique and the GP extrapolation algorithm to estimate the
electric field in the extended area.

III. MEASUREMENT RESULTS

A commercial antenna operating at 2.6 GHz, which
is invisible internally, was tested in the spherical
near-field multi-probe anechoic chamber of the China
Academy of Information and Communications Tech-
nology (CAICT). The radius of the SNFT system is
1.6 m, and the minimum spherical radius surrounding the
antenna is 0.156 m, as shown in Fig. 3] Figure [4] shows
the antenna pattern obtained by using commercial soft-
ware to calculate the NF data, which is set as the refer-
ence radiation pattern.

In order to obtain the initial small amount of sam-
pling data, the NF sampling interval is set to 15 degrees
and there is a truncation in the range from 6 = 165° to
0 = 180° degrees due to the influence of the south pole.
To improve the test accuracy, triple uniform oversam-
pling (AB = Ap = 5°) is necessary. The uniformly sam-
pled dataset and triple oversampled dataset are set as Sy
and Sy respectively, and 150 sampling points are selected
from §; as the initial data set S5.
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Fig. 3. The spherical NF measurement environment.
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Fig. 4. Reference radiation pattern at 2.6 GHz.

The K-means clustering method divides the sampled
values into k subclasses, and for each k value, the sum of
the squared distances from every sample to the nearest
cluster center is calculated as the total clustering error.
As shown in Fig. |§| (a), the total cluster error converges
to a stable value at k = 6 and Fig. El (b) shows the clus-
ter classification results for k = 6. Figure [6] shows the
Voronoi diagram cell classification results for the initial
sampling of the NF. Using equation (3), the area of each
cell and the variation rate of adjacent sampling points are
calculated. The cell groups whose base sites are red rep-
resent highly dynamic areas requiring interpolation, and
blue areas represent unnecessary interpolation region.

We use the interpolation method mentioned in the
previous section to obtain the dataset S3 with trun-
cated regions. Dataset S4 is extrapolated from dataset
S3 by GP algorithm. Figure [7] (a) shows the error of
two adjacent iterations of the co-polarization (CP) and
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cross- polarization (XP) of the antenna. When the
GP algorithm iterates 80 times, the error converges.
Figure [/| (b) shows the nomalized iterative error of the
oversampled electric field and the electric field obtained
by the proposed method.

Figure [8] (a) shows the radiation pattern recon-
structed from the dataset S4. Figure [8] (b) shows the rel-

Total clustering error
o kv ow s o~

2

4 6 8
Number of subclasses
(@)

Fig. 5. K-means clustering method. (a) L-curve. (b) Clus-
tering method, k = 6.

(b)

Fig. 6. Voronoi diagram classification for near-field sam-
pling.
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Fig. 7. (a) The nomalized iterative error of CP and XP
components obtained from two adjacent iterations. (b)
Relative error of S4 and Sy in all angles.
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ative error of reference and reconstructed radiation pat-
tern. The relative error can be obtained using:

Relative Error =201og||E| — |E2]|, (11)
where E| and E, are the two electric fields to be com-
pared, respectively. Comparisons of CP and XP com-
ponents in XOY plane and XOZ plane between refer-
ence pattern, the pattern reconstructed by triple oversam-
pling and optimal sampling by the proposed algorithm
are given in Fig. 0] As can be seen, the main lobe of
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Fig. 8. (a) Reconstructed radiation pattern. (b) Relative
error of reference and reconstructed radiation pattern in
all angles.
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Fig. 9. Comparisons of CP and XP components in (a)
XQOY plane, and (b) XOZ plane between reference pat-
tern, pattern reconstructed by triple oversampling and
optimal sampling by the proposed algorithm.



the CP component of the pattern is in good agreement,
but the reconstruction result of the XP has a large error
compared with the reference pattern, especially in XOZ
plane.

It is noted that the possible positioning error in the
actual test affects the pattern recovery. Figures [I0] and
[IT] show the interference errors in XOY plane and XOZ
plane introduced when the radial errors are 5 mm, 10 mm
and 15 mm, respectively, and the 6 angle errors are
0.01 deg, 0.5 deg and 1 deg, respectively. The radial posi-
tion error in spherical NF scanning mainly affects the
phase error in the near field, which is proportional to the
radial error. The 0 angle error between the actual and the
ideal alignment direction of the AUT makes the maxi-
mum gain direction of the probe antenna deviate from
the center of the SNFT system, which changes the test
distance and causes the change of the probe receiving
strength to affect the recovery of the pattern.

Relative Error [dB] ,
g & & &
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(53]
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, ©

=
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o
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100 200
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Fig. 10. The relative errors in (a) XOY plane, and (b)
XOZ plane introduced when the radial errors are 5 mm,
10 mm, and 15 mm, respectively.
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Fig. 11. The relative errors in (a) XOY plane, (b) XOZ
plane introduced when the 0 angle errors are 0.01 deg,
0.5 deg, and 1 deg, respectively.

IV. CONCLUSION

This paper proposes a method to improve the sam-
pling efficiency of spherical near-field testing. Starting
from a small number of near-field sampling points, the
region with high dynamic variation of the electric field
is located through the clustering classification theory for
appropriate interpolation. The GP algorithm is used to
extrapolate the unnecessary interpolation area to further
improve the sampling accuracy and reduce the trunca-
tion error. The multi-probe spherical near-field anechoic
chamber test was carried out on a commercial antenna
working at 2.6 GHz. The feasibility of this scheme is
demonstrated by comparing the reference radiation pat-
tern with the radiation pattern reconstructed by three
oversampling and optimized samplings. The influence of
the test positioning error on the reconstructed pattern is
further discussed.
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