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Abstract ─ The perfect-electric-conductor (PEC) 
condition implementation for the novel weakly 
conditionally stable finite-difference time-domain 
(NWCS-FDTD) method is discussed in this paper. 
It shows that the method that the PEC condition is 
directly incorporated within the tri-diagonal matrix 
is more accurate and the burden on the 
computation efficiency is trivial.  The theory 
proposed in this article is validated through 
numerical example.  
  
Index Terms ─ FDTD method, perfect-electric-
conductor (PEC) condition, weakly conditionally 
stable FDTD method.  
 

I. INTRODUCTION 
To overcome the Courant limit on the time 

step size of the FDTD method, unconditionally 
stable methods such as the alternating-direction 
implicit FDTD (ADI-FDTD) scheme [1-6] have 
been studied extensively. Although the time step 
size in the ADI-FDTD simulation is no longer 
bounded by the Courant–Friedrich–Levy (CFL) 
criterion, the method exhibits a splitting error [7, 
8] that is proportional to the square of the time 
step size and the spatial derivatives of the field. 
When field variation and/or the time step size are 
large, the splitting error becomes pronounced. The 
accuracy of the ADI-FDTD method is limited. 

 Based on the theory of the ADI-FDTD 
method, a novel weakly conditionally stable finite-
difference time-domain (NWCS-FDTD) method 
has been developed recently [9]. In this method, 
the CFL condition is not removed totally, but 
being weaker than that of the conventional FDTD 
method. The time step in this scheme is only 

determined by one discretization, which is 
extremely useful for a problem where a very fine 
mesh is needed in one or two directions. 
Compared with the ADI-FDTD scheme, the 
NWCS-FDTD method is with trivial split error, so 
the accuracy of the NWCS-FDTD technique is 
better than that of the ADI-FDTD scheme. By 
defining the field components at only two time 
steps, the NWCS-FDTD method requires the 
solution of four tri-diagonal matrices and four 
explicit updates at each time step. While 
maintaining the same time step size, the CPU time 
for the NWCS-FDTD method can be reduced to 
about 2/3 of that for the ADI-FDTD scheme.  

Compared with the conventional weakly 
conditionally stable finite-difference time-domain 
(WCS-FDTD) method [10, 11], the NWCS-FDTD 
method has less split error, so the accuracy of the 
NWCS-FDTD method is also better than that of 
the conventional WCS-FDTD method. The 
detailed comparison between these two methods 
has been presented in reference [12]. 

In the NWCS-FDTD method, updating of H y  
component needs the unknown Ex  and Ez  
components at the same time step, thus, the 
perfect-electric-conductor condition 
implementation for the Ex  and Ez components 
must be incorporated within the solving of the H y  
component. This paper gives a simple strategy of 
the PEC condition implementation of the Ex  and 

Ez components. It shows that the method that the 
PEC condition is directly incorporated within the 
tri-diagonal matrix is more accurate and the 
computation burden of this method is trivial. The 
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theory proposed in this article is validated through 
numerical example. 

II. PEC CONDITION 
IMPLEMENTATION FOR THE NWCS-

FDTD METHOD 
Considering the PEC condition 

implementation for the Ex  and Ez components, the 
updating of the H y  component become, 
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where, µ is permeability of the medium; n  and 
t∆  are the index and size of time-step; xl  and zl  

are the length factors. At the surface of the perfect-
electric-conductor, the values of the length factors 
are zeros; at other mesh points, the values of xl  
and zl  are equal to 1. 

The updating equations of the Ex  and Ez  
components are same as those in the reference [9],  
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Substituting equations (2) and (3) into 
equation (1), and approximating each derivative in 
space by centered second-order finite differences, 
the updating equation for H y  field is given as, 
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The other updating of the yE , xH and zH
components are according to the scheme shown in 
reference [9] and the implementation of the PEC 
condition for the yE  component is according to 
the strategy presented in reference [3]. 

III. NUMERICAL VALIDATION 
To demonstrate the accuracy and efficiency of 

the proposed theory, a numerical example is 
presented here. A metal plate with dimension 
60mm × 60mm is shown in Fig. 1. Twenty five 
apertures of 2 mm length and 2 mm width are cut 
on the plate. All the distances between the 
apertures are 10 mm. A uniform plane wave 
polarized along the z-direction is normally incident 
on the aperture, and the time dependence of the 
excitation function is as follows, 
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where T  and 0t  are constants, and both equal to 
92 10−× s. In such a case, the highest frequency of 

interest is 1 GHz and the smallest wavelength is 
0.3m. The observation point is set at the front of 
the plate and is 50mm far from the plate.  
 

 
 
Fig. 1. Geometric configuration of the metal plate. 
 

Applying the FDTD method to compute the 
time domain electric field component Ez  at the 
observation point, to simulate the apertures 
precisely, the cell size around the aperture must be 
small. We choose x z∆ = ∆ = 0.5 mm around the 
apertures. The cell size y∆ is set to be 25mm 
which is 1/12 of the smallest wavelength of 
interest. The computational region is 60 30 60× ×
meshes. To satisfy the stability condition of the 
FDTD algorithm, the time-step size for the 
conventional FDTD is t∆ ≤ 1.17ps. For the 
NWCS-DTD scheme, the maximum time 
increment is only related to the space increments

y∆ , that is, t∆ ≤ 83.33 ps. The outer boundary of 
computational region is truncated by using the 5 
layers CPML absorbing boundary condition. 

There are two methods to implement the PEC 
boundary condition for the Ex  and Ez  components 
in the NWCS-FDTD scheme, referred as NWCS-
FDTD-1 and NWCS-FDTD-2, respectively. In 
NWCS-FDTD-1 scheme, it solves the yH
component by using equations (13) and (14) in 
reference [9], then set the tangential electric field 
values at the boundary to be zeros directly after 
the xE  and Ez  components are updated by using 

equations (2) and (3). The NWCS-FDTD-2 
method is also to set the tangential electric field 
values at the boundary to be zeros directly, but the 
component yH  is implicitly updated by using 
equation (4).  

To demonstrate the high computational 
efficiency and accuracy of the NWCS-FDTD 
method, we perform the numerical simulations for 
a 5 ns time history by using the conventional 
FDTD, NWCS-FDTD-1 and NWCS-FDTD-2 
methods, and compare the computation times and 
accuracy of these methods. In the conventional 
FDTD method, the time-step size keeps a constant 
of 1.17 ps. While in the NWCS-FDTD method, we 
use time-step size 83.33 ps. 

Figure 2 shows the electric field component Ez  
at observation point calculated by using the 
conventional FDTD, NWCS-FDTD-1 and NWCS-
FDTD-2 methods. It can be seen from this figure 
that the result calculated by the NWCS-FDTD-2 
method agrees well with the result calculated by 
the conventional FDTD method, but a large 
deviation of the NWCS-FDTD-1 method from the 
conventional FDTD method is observed. It is 
apparent that the NWCS-FDTD-2 method has 
higher accuracy than the NWCS-FDTD-1 method 
with same time step size, which is due to that in 
the NWCS-FDTD-2 method, the implementation 
of the PEC boundary condition for the Ex  and Ez
components is incorporated within the solving of 
the H y component by using equation (4).  

To complete this simulation, the computation 
times for the conventional FDTD method, NWCS-
FDTD-1 method and NWC-FDTD-2 method are 
761.58, 30.08, and 31.12 seconds, respectively. 
Due to the large time step size applied, the CPU 
time for the NWC-FDTD-2 and NWC-FDTD-1 
methods are almost 1/25 of that for the 
conventional FDTD method. The computation 
time of the NWC-FDTD-2 method is a little more 
than that of the NWC-FDTD-1 method, because in 
the NWC-FDTD-2 method, the updating of the 
H y component need to multiply the length factors, 

but the burden is trivial in comparison with the 
computation time of the conventional FDTD 
method.  

It should be noted that the PEC modeling 
accuracy is inversely proportional to the CFLN 

563CHEN, WANG, TIAN: PEC CONDITION IMPLEMENTATION FOR THE NOVEL WEAKLY CONDITIONALLY STABLE FDTD



value which is defined as the ratio of the time step 
size of WCS-FDTD and FDTD methods. In [9], 
the CFLN value is only 16. The PEC modeling 
inaccuracy is not obvious. So in that reference, 
there was little evidence of PEC modeling 
inaccuracy. While, in this paper, CFLN=71, the 
PEC modeling inaccuracy of WCS-FDTD-1 
method becomes significant. In such case, the 
component yH  must be updated by using 
equation (4).  

 

 
Fig. 2. The comparison of the results calculated by 
using the conventional FDTD, NWCS-FDTD-1, 
and NWCS-FDTD-2 methods. 
 

 

IV. CONCLUSION 
Two strategies for the PEC condition 

implementation for the NWCS-FDTD method are 
compared in this paper. It shows that only the 
method that the PEC condition is directly 
incorporated within the solution of the H y
component is accurate. The computational 
complexity of this method and the burden on the 
computation efficiency are trivial, which is 
validated by numerical example. 

The NWCS-FDTD-2 method is useful for all 
problems where a very fine mesh is needed in one 
or two directions, regardless of whether the PEC 
condition exists. For the PMC condition, the 
implementation method is similar to the scheme 
described in reference [3]. 
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