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Abstract ─ Based on an equivalent circuit model, the 
least-square curve fitting technique is proposed to 
quickly design optimum values of geometrical 
parameters of a dual-band Jerusalem-cross element for 
arbitrarily specifying any dual resonant frequencies. The 
validity of the least-square curve fitting technique is 
checked by comparing geometrical parameters and dual 
resonant frequencies of six Jerusalem-cross grids 
obtained by the proposed technique with those obtained 
by the improved empirical model and measurement 
method. Design of dual-band Jerusalem-cross slots is 
also conducted by the proposed technique. Simulation 
results of reflection and dual resonant frequencies of 
Jerusalem-cross slots designed by the proposed 
technique are also validated by measurement data. 

Index Terms ─ Dual-band Jerusalem-cross element, 
least-square curve fitting, reflection, transmission. 

I. INTRODUCTION 
Frequency selective surface (FSS) has been 

extensively studied for many decades [1-32]. It has many 
applications in polarizers [1], antenna designs [2-10], 
transmission improvement for signals through energy-
saving glass [11-14], artificial magnetic conductor 
(AMC) designs [15-17], spatial microwave and optical 
filters [18-25], absorbers [26-31], and planar 
metamaterials [32]. The FSS is usually formed by 
periodic arrays of metallic patches or slots of arbitrary 
geometries. A FSS with periodic arrays of metallic 
patches or slots exhibits total reflection or total 
transmission in the neighborhood of the geometric 
resonant frequency, respectively. Typical FSS 
geometries are designed by dipoles, rings, square loops, 
fractal shapes, etc. Most of these FSSs are used to deal 
with reflection and transmission problems at a single 
resonant frequency. It is rather difficult to design FSS 
elements that offer dual-band responses. 

Several numerical methods have been used to design 
FSS parameters such as method of moments (MoM) 
[18], finite-difference time-domain (FDTD) method [33-

35], and finite-element method (FEM) [36]. These 
methods have a tedious computation procedure which 
involves many electromagnetic equations governing FSS 
theory. In recent years, many electromagnetic simulation 
commercial software packages are available for the 
design of FSS parameters, such as Ansoft’s HFSS, 

Ansoft’s Designer, and CST Microwave Studio. These 
commercial software packages are easily used to design 
FSS parameters. However, the design process of a FSS 
element using the commercial software package can be 
divided into preliminary and fine tune steps. In the 
preliminary design steps, various critical geometrical 
dimensions of a FSS element are well investigated 
through parametric study using a full-wave model 
simulation. Based on preliminary study, the final design 
can be achieved through fine tuning the critical 
geometrical parameters to obtain the desired resonant 
frequencies. This is a non-efficient and labor intensive 
process due to trial-and-error tests and heavy 
computational works. Alternatively, the equivalent 
circuit method [37-39] is much simpler than numerical 
methods for the design of FSS parameters. In this 
method, the segments of the FSS structure are modeled 
as capacitive and inductive components in a transmission 
line [37-38]. Limitation of the equivalent circuit method 
is that it can be used only for normal incidence and 
without substrates. 

In this paper, we propose the least-square curve 
fitting technique [40] to quickly obtain optimum values 
of geometrical parameters of a dual-band Jerusalem-
cross element for arbitrarily specifying any dual resonant 
frequencies. In the design process, an equivalent circuit 
model of the frequency characteristic for normal wave 
incidence [38] is introduced to facilitate the optimum 
design of a Jerusalem-cross element. In simulations, the 
transmission and reflection of Jerusalem-cross elements 
are obtained by using the Ansoft high-frequency 
structure simulator (HFSS, Ansoft, Pittsburgh, PA). 
Simulation results of geometrical parameters and dual 
resonant frequencies of Jerusalem-cross grids obtained 
by the proposed technique are compared with those 
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obtained by the improved empirical model and 
measurement method presented in the literature [38]. 
Dual-band Jerusalem-cross slots designed by the 
proposed technique are also presented. Simulation 
results of reflection and dual resonant frequencies of 
Jerusalem-cross slots are validated by measurement data. 
 

II. EQUIVALENT CIRCUIT MODEL OF 
JERUSALEM-CROSS GRIDS 

The equivalent circuit model of Jerusalem-cross 
grids is a very useful technique to quickly predict the 
resonant frequencies of their structures. Figure 1 shows 
a FSS element constructed with Jerusalem-cross grids 
and its geometrical parameters p, w, s, h, and d. Where p 
is the periodicity of a unit cell, w is the width of the 
conductive strip, s is the separation distance between 
adjacent units, h is the width of the end caps of the 
Jerusalem-cross, and d is the length of the end caps of 
the Jerusalem-cross. Based on Langley and Drinkwater’s 

studies [38], for any array of thin, continuous, infinitely 
long, perfectly conducting Jerusalem-cross FSS for 
normal incidence EM waves, the equivalent circuit 
model can be presented as shown in Fig. 2. The series 
resonant circuit L1C1 is used to generate the lower 
resonant frequency f1 (in reflection band), the series 
resonant circuit L2C2 is used to produce the higher 
resonant frequency f2, and the capacitor Ct is used to 
create the transmission band frequency ft. The 
normalized (with respect to the free-space impedance 
and admittance, respectively) inductive reactance XL1 
and capacitive susceptance BC1 of the equivalent circuit 
model are given as follows: 
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The first resonant frequency f1 can be obtained from L1 
and C1 expressed by: 
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The normalized inductive reactance XL2 of the equivalent 
circuit model is given as following: 
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where �� and ����are the wavelength and angular 
frequency of the second resonant frequency f2, 
respectively: 
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The normalized capacitive susceptance BC2 of the 
equivalent circuit model is given as following: 
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�pd, A2+, and A2- are given in (9) and (14), respectively. 
The second resonant frequency f2 can be obtained from 
L2 and C2 expressed by: 

2
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Equations (1)-(20) are valid when p<�2 and p>d, 

where���2 is the wavelength of the second resonant 

frequency f2. In band-stop electromagnetic shielding 

applications, the resonant frequencies f1 and f2 are 

specified first and then all parameters of the unit should 

be determined. However, to simultaneously determine 

all parameters of one Jerusalem-cross unit for arbitrarily 

given resonant frequencies f1 and f2 is not an easy job. In 

the following section, the least-square curve fitting 

technique will be applied to calculate all parameters of 

any Jerusalem-cross element for arbitrarily given dual 

resonant (rejection) frequencies f1 and f2.

Fig. 1. Geometrical parameters of a FSS constructed with 
Jerusalem-cross grids. 

Fig. 2. An equivalent circuit model for Jerusalem-cross 
grids. 

III. LEAST-SQUARE CURVE FITTING 
TECHNIQUE 

The equivalent circuit model of a thin, continuous, 
and infinitely long array of Jerusalem-cross grids is 
presented in Fig. 2. In the band-stop electromagnetic 
shielding design, critical geometrical parameters of 
Jerusalem-cross grids p, w, s, h, and d should be solved 
for arbitrarily given dual resonant frequencies f1 and f2.
Basically, resonant frequencies f1 and f2 are two 
nonlinear functions expressed by (10) and (20) in terms 
of geometrical parameters p, w, s, h, and d. The method 
of differential corrections, together with Newton’s
iterative method [40], can be used to fit the nonlinear 
functions f1 and f2. The differential corrections method 
approximates the nonlinear functions with a linear form 
that is more convenient to use for an iterative solution. 
By estimating approximate values of the unknown 
coefficients (0)

1 ,A (0)
2 ,A (0)

3 ,A (0)
4 ,A and (0)

5 ,A and expanding 
(10) and (20) in a Taylor’s series with only the first-order 
terms retained, we obtain: 
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where A1=p, A2=w, A3=s, A4=h, and A5=d. The 
superscript (0) is used to indicate values obtained after 
substituting the first guess ( (0)

1 ,A (0)
2 ,A (0)

3 ,A (0)
4 ,A  and (0)

5A ),
for the unknown parameters in (10) and (20). Equations 
(21) and (22) are two linear functions of the correction 
terms 1Δ ,A 2Δ ,A 3Δ ,A 4Δ ,A  and 5Δ ,A  and hence the least-
square curve fitting method can be used directly to 
determine these correction terms. The correction terms, 
when added to the first guess, give an improved 
approximation of the unknown coefficients, i.e., 
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where (1)
1f and (1)

2f as well as their derivatives are 
obtained by substituting the values of (1)

1 ,A (1)
2 ,A (1)

3 ,A  
(1)
4 ,A  and (1)

5A  in (10) and (20), respectively. Again, the 
correction terms 1Δ ,A 2Δ ,A 3Δ ,A 4Δ ,A and 5ΔA are 
determined using the least-square curve fitting method. 
The procedure is continued until the solution converges 
to within a specified accuracy. The criterion of best fit of 
the technique of least-square curve fitting is that the sum 
of the squares of the errors be a minimum expressed by: 
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where the term errors 2
1iε  and 2

2iε  mean the difference 
between the measured (observed) values of the first and 
second resonant frequencies 1 ( )Mf i and 2 ( )Mf i and 
computed values from (23) and (24) for the ith case, 
respectively. N is the total number of cases. Substituting 
(23) and (24) into (25), the result yields: 
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A necessary condition that a minimum for the error 
function S exists is that the partial derivatives with 
respect to each of the correction terms 1Δ ,A 2Δ ,A 3Δ ,A

4Δ ,A and 5ΔA  be zero. For example, in the first iteration: 
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where j= 1, 2, 3, 4, and 5. Equation (27) can be expressed 
as a matrix equation. One can easily solve for the 
correction terms 1Δ ,A 2Δ ,A 3Δ ,A 4Δ ,A  and 5ΔA  in 
(28) by Gaussian elimination method. 

Equation (28) is a very sensitive equation because 
the partial derivatives of resonant frequencies f1 and f2 
with respect to each of the parameters A1=p, A2=w, A3=s, 
A4=h, and A5=d still can generate nonlinear functions 
such as square root, natural logarithm, sine, and cosine. 
Therefore, the values of parameters p, w, s, h, and d 
should be limited to an acceptable range in the Newton’s 
iterative process. In order to obtain a stable iterative 
process, the parameters p, w, s, h, and d are automatically 
checked and set to 0.75�2<p<��2, 0.1�2<w<�"#��2, 
0.03�2<s<�"#��2, 0.03�2<h<�"#��2, and 0.4�2<d<�"#$�2 
in each iteration, respectively: 
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The partial derivatives of resonant frequencies f1 and 
f2 with respect to each of the parameters can be obtained 
by the following two equations: 

3
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where A1=p, A2=w, A3=s, A4=h, and A5=d. The partial 
derivatives of inductances and capacitances L1, L2, C1,
and C2 are with respect to each of the parameters p, w, s,
h, and d as shown in APPENDIX. 

IV. VALIDATION OF LEAST-SQUARE 
CURVE FITTING 

In order to validate the least-square curve fitting 
technique, dimensions of six Jerusalem-cross grids with 
thin, infinitely long, and perfectly conducting strips 
listed in the literature [38] are checked by the proposed 
technique. Simulation results of transmission for six 
Jerusalem-cross grids generated by the least-square 
curve fitting technique are studied by the commercial 
software package HFSS. Comparisons of two specific
resonant frequencies f1 and f2 obtained by the least-
square curve fitting technique, improved empirical 

model [38], and measurement [38] are listed in Table 1.
Obviously, the six sets of dimensions obtained by the 
improved empirical model are different from those 
obtained by the least-square curve fitting technique. But 
it is found that simulation results of the resonant 
frequencies f1 and f2 for the six sets of parameters 
generated by the least-square curve fitting technique 
make a good agreement with those obtained by the 
empirical model and measurement available in the 
literature [38]. Table 1 illustrates that the set of 
dimensions of a Jerusalem-cross grid for any specific 
dual resonant frequencies f1 and f2 is not unique. Table 2 
shows the comparison of computational time obtained by 
the least-square (LS) curve fitting technique and HFSS 
implemented with genetic algorithm (GA) [41] for 
design of Jerusalem-cross parameters in a personal 
computer. It is illustrated that the proposed method 
provides a fast solution for design of Jerusalem-cross 
parameters. The frequency responses of transmission of 
the six Jerusalem-cross grids, their dimensions obtained 
by the least-square curve fitting technique, are also 
shown in Figs. 3-8. These Jerusalem-cross grids have a 
transmission of more than -30 dB at resonant frequencies 
f1 and f2. The average bandwidths obtained at resonant 
frequencies f1 and f2 are more than 12% with a 
transmission of -10 dB. 

Table 1: Comparisons of resonant frequencies f1 and f2 obtained by the least-square (LS) curve fitting technique (Figs. 
3-8), improved empirical model (IEM) [38], and measurement (M) [38] for different Jerusalem-cross grids for normal 
wave incidence 

No.

Dimensions (mm)
[38]

Dimensions (mm)
(LS) f1 (GHz) f2 (GHz)

p w d h s p w d h s M
[38]

IEM 
[38]

LS M
[38]

IEM 
[38]

LS

1 5.82 0.8 4.05 0.4 0.3 7.05 1.06 3.63 0.23 0.24 14.1 14.0 14.9
(Fig. 3) 41.5 42.7 40.5

(Fig. 3)

2 5.82 0.8 4.6 0.42 0.27 7.11 0.82 3.9 0.73 0.28 12.8 12.8 12.6
(Fig. 4) 38.3 38.0 37.6

(Fig. 4)

3 6.5 0.9 4.95 0.3 0.21 7.86 0.92 4.5 0.86 0.3 11.6 11.3 10.9
(Fig. 5) 33.7 34.2 33.6

(Fig. 5)

4 5.84 1.42 4.5 0.32 0.38 5.96 0.82 3.70 0.39 0.53 17.3 17.0 17.0
(Fig. 6) 43.0 41.8 41.9

(Fig. 6)

5 6.3 1.18 4.8 0.39 0.41 6.7 0.94 4.15 0.41 0.40 14.3 14.2 14.5
(Fig. 7) 38.3 38.2 37.4

(Fig. 7)

6 5.98 1.18 4.6 0.42 0.38 7.00 1.0 3.75 0.35 0.34 14.9 15.0 14.8
(Fig. 8) 40.1 40.0 40.1

(Fig. 8)
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Fig. 3. The frequency response of transmission of the 
sample No. 1 listed in Table 1. 
 

 
 
Fig. 4. The frequency response of transmission of the 
sample No. 2 listed in Table 1. 
 

 
 
Fig. 5. The frequency response of transmission of the 
sample No. 3 listed in Table 1. 
 

 
 
Fig. 6. The frequency response of transmission of the 
sample No. 4 listed in Table 1. 
 

 
 
Fig. 7. The frequency response of transmission of the 
sample No. 5 listed in Table 1. 
 

 
 
Fig. 8. The frequency response of transmission of the 
sample No. 6 listed in Table 1. 
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Table 2: Comparison of computational time obtained by 
the least-square (LS) curve fitting technique and HFSS 
implemented with genetic algorithm (GA) for design of 
Jerusalem-cross parameters 

V. JERUSALEM-CROSS SLOTS 
In order to improve EM transmission, aperture types 

of FSSs may be used to provide a better signal 
transmission at specific frequencies while also providing 
an isolation capability for unwanted EM noises. With all 
conducting and non-conducting areas interchanged, a 
Jerusalem-cross slot (a complementary Jerusalem-cross 
grid) can be used to reverse the transmission and 
reflection coefficients of the Jerusalem-cross grid [38]. 
We arbitrarily specify two pairs of dual resonant 
frequencies of (2.45, 5.8) and (3.96, 7.92) GHz to design 
two Jerusalem-cross slots by the least-square curve 
fitting technique. The Jerusalem-cross slots are 
constructed on a copper foil with a thickness of 0.05 mm. 
The specific frequencies of (2.45, 5.8) and (3.96, 7.92) 
GHz are in the Bluetooth (2.4-2.48 GHz), wireless local 
area network (IEEE802. 11a, upper band 5.725-5.825 
GHz), and ultra-wideband (low-frequency band 3.168-
4.752 GHz and high-frequency band 6.336-9.504 GHz) 
applications. Simulation results of reflection at 
frequencies (2.45, 5.8) and (3.96, 7.92) GHz will be 
investigated by checking the reflection with better than 
10 dB return loss for the two Jerusalem-cross slots. The 
simulation results of frequency response of reflection 
will also be checked by measurement data. Measurement 
data of reflection of the two Jerusalem-cross slots are 
obtained by using an Anritsz37369C Vector Network 
Analyzer and a pair of horn antennas operating at 
frequencies of 1-18 GHz as shown in Fig. 9. The 
frequency responses of reflection of the first and second 
Jerusalem-cross slots with parameters (p=40.0 mm, 
w=5.4 mm, s=4.5 mm, h=2.1 mm, d=29.0 mm) and 
(p=28.5 mm, w=5.6 mm, s=3.8 mm, h=1.2 mm, d=21.6 mm) 
are shown in Figs. 10 and 11, respectively. From Figs. 
10 and 11, it is shown that simulation results of 
frequency responses of reflection make a good 
agreement with those obtained by measurements. Figure 
10 shows that the first Jerusalem-cross slot has a 
reflection of more than -30 dB at frequencies of 2.45 and 
5.8 GHz. Simulation and measurement results of 
bandwidths at frequencies of 2.45 and 5.8 GHz have an 
average value of 15% with a reflection of -10 dB. From 
Fig. 11, the second Jerusalem-cross slot has a reflection 

of more than -40 dB at frequencies of 3.96 and 7.92 GHz. 
Simulation and measurement of bandwidths at 
frequencies of 3.96 and 7.92 GHz have an average value 
of 14.5% with a reflection of -10 dB. These bandwidths 
are enough to effectively transmit the Bluetooth, wireless 
local area network, and ultra-wideband signals. 

Fig. 9. Measurement setup. 

Fig. 10/ The frequency response of reflection of the first 
Jerusalem-cross slot. 

Fig. 11. The frequency response of reflection of the 
second Jerusalem-cross slot. 

No. LS HFSS with GA
1 3 s 1 day 7 hr 27 m 21 s
2 8 s 2 day 18 hr 28 m 13 s
3 6 s 3 day 16 hr 45 m 17 s
4 13 s 4 day 13 hr 24 m 49 s
5 4 s 1 day 19 hr 14 m 29 s
6 9 s 3 day 23 hr 58 m 38 s
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VI. CONCLUSION 
In this paper, we propose the least-square curve 

fitting technique to quickly obtain optimum values of 
geometrical parameters of a dual-band Jerusalem-cross 
grid with thin, infinitely long, and perfectly conducting 
strips. Based on circuit model, the least-square curve 
fitting technique can provide a quick and accurate design 
of a dual-band Jerusalem-cross grid for arbitrarily 
specifying any dual resonant frequencies. The validity of 
the proposed technique has been checked by comparing 
two specific resonant frequencies f1 and f2 with those 
obtained by the improved empirical model and 
measurement method. The proposed method provides a 
fast solution for design of Jerusalem-cross parameters. 
The proposed technique can also be used to optimally 
design a dual-band Jerusalem-cross slot for arbitrarily 
specifying any two resonant frequencies. However, the 
proposed technique presented in this paper does not 
include the substrate. It is expected that the presence of 
the dielectric substrate will shift the resonant frequencies 
downwards. In the future works, the shifting factor will 
be further studied on the transmission and reflection of 
an energy-saving glass coated with a metallic oxide layer 
on one side of ordinary float glass which is widely used 
in modern building. 
 

APPENDIX 
This Appendix illustrates the partial derivatives of 

inductances and capacitances L1, L2, C1, and C2 with 
respect to each of the parameters p, w, s, h, and d as 
following: 
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