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Abstract ─ In this paper, complementary split ring 
resonators (CSRRs) defected ground structure (DGS) is
introduced to suppress surface waves and to reduce the 
mutual coupling between E-plane coupled two elements 
of a microstrip patch MIMO antenna array. The CSRRs-
DGS is easily etched on the ground plane between the 
array elements. The CSRRs-based DGS acts as a 
bandstop filter between the array elements and operates 
in the same desired frequency band of the array at  
9.2 GHz. Significant reduction of the electromagnetic 
(EM) mutual coupling is achieved between array 
elements with a reduced edge-to-edge spacing of 7.5 mm 
(0.22 λo). Experimental results show that more than  
30 dB isolation between the array elements is obtained 
using an array of CSRR-based DGS. Moreover, the 
antenna array parameters are successfully optimized 
with a numerical experimentation technique using a 3D 
full-wave EM simulator. The design of the proposed 
array is fabricated and measured for verification purposes. 
The proposed design has been simulated and validated 
experimentally. Good agreement is found between the 
simulated and the measured data. 

Index Terms ─ Bandstop filter, CSRRs (complementary 
split ring resonators), DGS (defected ground structure), 
mutual coupling, surface waves. 

I. INTRODUCTION 
In recent years, isolation enhancement in antenna 

array applications poses a strong challenge in the antenna 
community [1,2]. The mutual coupling or isolation 
between closely placed antenna elements is important in 
a number of applications. These include systems 
depending on array antennas and more recently multiple-

input–multiple-output (MIMO) wireless communication 
systems [3,4]. Surface waves cause many disadvantages 
for microstrip antennas such as a mutual coupling effect 
between elements on an antenna array, which exists 
whenever the substrate has a dielectric permittivity 
greater than one (ɛr > 1). In an antenna array, the mutual 
coupling effect will deteriorate the radiation properties 
of the array. To achieve low mutual coupling between 
closely spaced antenna elements and to suppress surface 
waves, several studies have been conducted including 
defected ground structure (DGS) [5-10]. This idea can be
extended to a specific application like reducing scan 
blindness in microstrip arrays. Many shapes and 
configurations of DGS have been studied such as 
rectangular slots [5,6], circle [7], dumbbells [8], polygonal 
[9], and inter-digital capacitor [10]. Each DGS shape can 
be represented as an equivalent circuit model consisting 
of an inductance and a capacitance, which leads to a 
certain frequency band gap determined by the shape, 
dimension and position of the defect [7]. DGS gives an 
extra degree of freedom in microwave circuit design and 
can be used for a wide range of applications.  

Recently, a pioneer research of the complementary 
split ring resonator (CSRR) has been proposed [11]. It 
can be derived from the split ring resonator (SRR) 
structure in a straightforward way by using the concepts 
of duality and complementariness. This CSRR structure 
provides a negative effective permittivity [12]. Because 
of their small size, CSRRs are called sub-lambda 
structures. Due to this fact, a super-compact reject band 
structure can be implemented using CSRRs. The CSRRs 
are etched in the ground plane or the conductor line of 
planar transmission structures, such as a microstrip line 
or a coplanar waveguide (CPW), and provide a negative 
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effective permittivity to the dielectric media [13]. The 
electromagnetic (EM) behaviors of the CSRRs are 
similar to those of the electromagnetic bandgap (EBG) 
structures [14,15]. However, it is difficult to design the 
dimension and to find the equivalent circuits of EBG. 
Although EBG structures, DGS and CSRR can provide 
the similar stop-band characteristics, it may be worth 
pointing out the attenuation property of the CSRR which 
is better than EBG structures and other DGS shapes. It 
seems to be good in cognitive radio (CR) systems to 
reduce the mutual coupling between the sensing antenna 
and communication antenna in cognitive radio MIMO 
applications using a simple technique [16].

In this paper, simple designs of bandstop filter using 
CSRRs-based DGS are proposed to suppress surface 
waves and to reduce the mutual coupling effect between 
E-plane coupled antenna array elements [17,18]. The 
designed microstrip antenna arrays operate at the X-band 
(9.2 GHz). Usually, the array elements are susceptible to
strong mutual coupling due to the surface wave, space 
wave and near field overlapping. The coupling is 
stronger in E-plane coupled antennas than in H-plane 
coupled antennas. Thus, the mutual coupling effect in the 
E-plane direction is mainly investigated in this work.
The CSRRs are etched in the ground plane and occupy a 
small area allowing for small antenna separation in their 
use with compact ground planes. Moreover, the radiation 
properties of the proposed antenna array are also 
observed and discussed. Simulations results based on a 
3D full-wave EM simulator and measurements are 
presented. In Section II, the structure of the bandstop 
filter is discussed. Section III presents and illustrates the 
proposed array design. Section IV is devoted to the 
comparison of the simulated and measured results. 

II. CSRR-DGS BANDSTOP FILTER DESIGN 
Figure 1 shows the top and bottom 2-D views of the 

single CSRR-DGS geometry. The CSRR structure is 
designed to operate at stopband of 9.2 GHz in the same 
desired band of the antenna array. The dimensions of the 
CSRR structure are rin = 0.75 mm, and c = g = d = 0.4 mm. 
The ground plane dimensions are 20×20 mm2. The substrate 
is Rogers Ro 3003 with a thickness of t = 1.524 mm, 
dielectric constant of 3 and loss tangent of 0.0013. The 
CSRR structure is etched in the ground plane below the 
center of the microstrip line, which has a width of  
3.4 mm. The width of the microstrip line is designed to 
match the characteristic impedance of 50 Ω. Figure 1 (c) 
shows the simulated |S|-parameters of the single CSRR. 
The presented bandstop filter was optimized through 
simulations using a commercial 3D full-wave analysis 
software package computer simulation technology (CST)
[19].

The simulation results show a reject band 
characteristic at the transmission zero frequency of  
9.24 GHz as shown in Fig. 1 (c). Using only a single 

CSRR structure in the ground plane, we can obtain a 
wide stop band response with a high rejection level 
which is difficult to achieve with conventional microstrip 
resonators. 
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Fig. 1. Schematic of the optimized CSRR-DGS bandstop 
filter and |S|-parameters results.

III. PROPOSED MICROSTRIP PATCH 
ANTENNA ARRAY WITH CSRRs-DGS 
The proposed geometry of the antenna array with 

CSRRs-based DGS and |S|-parameters are shown in  
Fig. 2. The rectangular patch has dimensions W = 11 mm, 
and L = 8.7 mm, whereas the feeding microstrip has 
length Ltl = 17.5 mm and width Wtl = 3.4 mm which 
ensure a 50 Ω characteristic impedance. The inset length
is Linset = 3.8 mm which in essence provides the necessary 
impedance matching. The substrate used for this array is
the same as that used for the bandstop filter design in 
Section II. The spacing between the elements is chosen 
to be 7.5 mm (0.22 λo). The CSRR structures are designed
to operate at the transmission zero frequency in the same 
band of the antenna array. The chosen dimensions of the 
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CSRR structures for this frequency of operation are  
rin = 0.65 mm, rin1 = 0.8 mm, and c = g = d = 0.4 mm, 
respectively after intensive optimization and co-design 
for the array with the CSRRs-DGS. The bandstop filter 
affects significantly the array mutual coupling and the
isolation between the two elements [17]. However, the 
proposed design with CSRRs has a very small deviation 
in the resonant frequency about 0.3% (29 MHz) compared 
to the conventional array due to the presence of the 
CSRRs DGS in the ground plane. The proposed 
configuration produces a mutual coupling about -61 dB 
better than the conventional array with the same 
dimensions through simulations as shown in Fig. 2 (c).
The total dimensions of the array are a = 40 mm and 
b = 60 mm.
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Fig. 2. Antenna array configurations and simulated |S|-
parameters with and without CSRRs-DGS. 

Figure 3 contains the radiation pattern results of the 
proposed antenna array with and without 3-CSRRs. It is 

obvious that the radiation patterns in the E (yz-plane) and 
H (xz-palne) planes are stable over the operating 
frequency band. In addition the radiation pattern results 
show that there is a slight decrease in the main lobe due 
to the presence of the CSRRs-based DGS, which is 
acceptable compared to the obtained significant isolation 
and mutual coupling reduction. 
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(a) Antenna array directivity without CSRRs-DGS
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 (b) Antenna array directivity with 3 CSRRs-DGS  

Fig. 3. Optimized antenna array radiation pattern results 
with and without 3 CSRRs-DGS at 9.22 GHz. 

Table 1 contains summary of the simulation results 
of the proposed array with single, two, and three CSRRs-
DGS and compared with the conventional array. The 
coupling reduction has been achieved by optimally
positioning the array of two and three CSRRs-DGS 
between the antenna array elements. It is obvious from 
Table 1 that the proposed arrays have a significant and a
good isolation than the array without CSRRs-DGS 
where about 33 dB reduction is achieved using an array 
of three CSRRs-DGS with a less edge-to-edge spacing 
[20], thus leading to the design of compact MIMO 
antenna arrays. In addition to this, using more than three 
CSRRs will not provide better isolation due to the 
internally mutual coupling between the CSRRs that will 
change the resonant frequency of the bandstop filter.  

Table 2 shows a comparison for different approaches 
and configurations that were reported and implemented 
to reduce the mutual coupling. The proposed array 
exhibits a better isolation and compact size compared to 
Ref. [10] and Ref. [20] in terms of nearly the same edge-
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to-edge separation. Compared to other techniques, the 
proposed array has a significant improvement in the 
isolation. 

Table 1: Performance comparison of the proposed antenna 
arrays with the conventional  

Antenna 
Structure

Results
Mutual 

Coupling 
(dB)

Improve-
ment
(dB)

Direct-
ivity
(dBi)

Realized 
Gain
(dB)

Conventional -28 - 10.23 10.2
Proposed array 

with CSRR-
DGS

-38 10 9.67 9.37

Proposed array 
with 2

CSRRs-DGS
-42 14 9.7 9.4

Proposed array 
with 3

CSRRs-DGS
-61 33 10 9.87

Table 2: Performance comparison of the proposed antenna 
array with other approaches in the literature  

Ref. 
No. Approach

Size of
the Array 
in mm2

Improve-
ment
(dB)

Edge-to-
Edge 

Spacing

[4] Meta-
material 300×300 20 0.125 λo

(30 mm)

[5] High order 
DGS filter 75×50 20 0.2 λo

(10.4 mm)

[8] Dumbbell 
DGS 140×100 6.19 0.5 λo

(18.8 mm)

[10]
Inter-digital 

DGS
capacitor

60×50 17 0.25 λo
(9.5 mm)

[14] Uniplanar-
EBG 78.3×78.3 10 0.5 λo

(26 mm)

[20] Slotted 
CSRR 78×60 10 0.25 λo

(15 mm)
Pro-

posed
CSRR
DGS 60×40 33 0.22 λo

(7.5 mm)

IV. EXPERIMENTAL RESULTS AND 
DISCUSSION 

The proposed antenna array has been fabricated and 
measured to validate experimentally the approach to 
achieve a significant isolation and mutual coupling 
reduction. The photographs of the top and bottom layers 
of fabricated antenna array with CSRRs-based DGS are 
shown in Fig. 4. The |S| parameters measurements were 
carried out using the Agilent N5227A PNA vector 
network analyzer and the calibration was done with the 
Agilent N4691B-Ecal module in the RF and microwave 
laboratory at E-JUST. While the pattern measurements 
were done at Kyushu University. The Experimental 

results show a significant reduction in the mutual
coupling of 30 dB between the array elements. 

The fabricated antenna array provides a measured 
mutual coupling of -24 dB and -54 dB at the center 
frequency of 9.22 GHz for the array with and without 
CSRRs as shown in Figs. 4 (c), and (d), respectively.  In 
addition, there is a very slight and tolerable shift between 
the simulated and measured resonant frequencies is 
found due to the fabrication tolerance. Furthermore, a 
good agreement between the resonant frequency and the 
bandstop frequency is observed for the array with and 
without the CSRRs-DGS. 

The measured and simulated normalized radiation 
patterns of one side element of the proposed antenna 
array with and without CSRRs-DGS at 9.22 GHz in the 
E and H-planes are presented in Fig. 5. While the other 
array element is terminated with a 50 Ω load. Obviously, 
these results do not show any significant difference 
between the main lobes patterns. As shown in the plots, 
the applied technique using CSRRs-DGS has a minor 
effect on the radiation pattern. Moreover, an excellent 
agreement is observed. 

(a) Photograph of the fabricated antenna array 
(Top view) 

(b) Photograph of the fabricated antenna array 
(Bottom view) 
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Fig. 4. Photograph of the fabricated array, simulated and 
measured |S| parameters without and with CSRRs-DGS. 
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Fig. 5. Measured and simulated E and H-planes radiation 
patterns for single element of the proposed array with 
and without CSRRs-DGS at 9.22 GHz.

V. CONCLUSION 
In this paper, a design of compact antenna array with 

low mutual coupling has been presented, fabricated and 
measured for the validation purposes. The approach for 
isolation improvement is proposed by inserting a

bandstop filter composed of an array of three CSRRs-
based DGS between the two elements antenna array. In 
this simple design, the isolation has been significantly 
improved and the experimental results show that the 
proposed antenna array can improve the isolation 
between array elements by 30 dB. Furthermore, the
measured radiation patterns are stable over the operating 
frequency band with and without the CSRRs. The 
measured and simulation results are in a good agreement. 
Thus, the proposed antenna array with this better 
isolation is suitable for MIMO communications. 
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