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Abstract ─ In order to efficiently solve the stochastic 
finite integration technique formulation for electrokinetics,
a recently proposed generalized spectral decomposition 
approach is applied. Compared to the standard approach, 
the proposed method drastically reduces the computational 
burden. The results are validated by comparison with 
those obtained with high order polynomial chaos 
expansion, taken as the reference solution.  

Index Terms ─ Electrokinetics, finite integration 
technique, polynomial chaos expansion, resistance 
welding, uncertainty cuantification. 

I. INTRODUCTION 
The spectral stochastic finite element method 

(FEM) [1] based on the polynomial chaos expansion 
(PCE) is a well-established method and has been applied 
to various electromagnetic problems, e.g., [2]. In order 
to take advantages of the finite integration technique 
(FIT), a well-known alternative to the FEM, in [3] the 
authors presented its spectral stochastic formulation in 
the case of a prototype problem of electrokinetics type.  

The approach in [3] exhibits large computational 
costs both in the storage requirements and in execution 
time, due to the large dimensions of the linear systems to 
be constructed and solved. In order to alleviate these 
drawbacks, in this paper the benefits of a generalized 
spectral decomposition approach to the stochastic FIT 
formulation are shown. Such approach, based on [4], 
allows to reduce the storage requirement to that of about 
one deterministic problem and the computational 
complexity of about one order of magnitude.  

These results are validated considering a simplified 
geometry of a typical system for resistance welding [2, 
3]. Here, three aluminium electrodes over a conductive 
aluminium substrate are considered. The three contact 
resistances are modelled as sheets of depth equal to d and 
conductivities �1, �2, and �3. The conductivity of 
aluminium is indicated with �4. Only the conductive 
region is discretized. Voltages V1, V2, and V3 are imposed 
as Dirichlet boundary conditions and the three currents 
I1, I2, and I3 are computed from the field solution.

II. DETERMINISTIC FIT FORMULATION 
The stochastic FIT formulation starts from a 

deterministic FIT formulation, derived discretizing the 
spatial region of the problem  by a pair of three-
dimensional oriented dual grids,  and . In order to 
manage boundary conditions, following [5] unlike
standard FIT, the pair of two-dimensional oriented dual 
grids,  and  are also introduced, where  is the trace 
of the primal grid  onto the boundary  of  and  is 
its dual. The continuity law for currents is discretized, in 
exact form, as: 

, (1)
in which  and  are the vectors of the fluxes of  
the electric current through the faces of  and 
respectively,  is the volume-face incidence matrix of 
and  is the incidence matrix between the volumes of 

 and the faces of .
The irrotationality of the electric field is expressed, 

in exact form, as: 
, (2)

in which  is the vector with the circulations of the 
electric field along the edges of ,  is the vector of the 
electric potentials at the nodes of  and  is the edge-
node incidence matrix of . As it is well known [5-7], 
for any pair of dual grids .

Ohm’s law, relating the electric field to the electric 
current density by means of the electric conductivity  

, assumed to be strictly positive, is discretized in 
approximate form by means of a discrete material matrix 

, as: 
. (3)

The discrete material matrix  is assumed to be derived 
using the energetic approach introduced in [6] for a 
tetrahedral grid and extended in [7] for generic 
polyhedral grids. As detailed in [6], in this way this 
matrix is symmetric and positive definite. In usual 
electrokinetics problems it can be assumed that the 
electric conductivity is uniform and equal to  in each 
subregion  composed of a distinct material. As a 
result, the discrete constitutive matrix takes the form: 

.(4) 
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Lastly boundary conditions are introduced. For a 
Dirichlet problem, here considered for the sake of 
simplicity, such conditions can be written in exact form 
in terms of the incidence matrix  as follows [5]:

, (5)
in which  is the vector of the electric potential on the 
boundary , hence assumed known.  

After grouping the unknown electric potentials at 
the nodes of , not belonging to , in the  vector 

, it can be written: 
, 

in which  is the matrix mapping the electric potentials 
of  onto the electric potentials of . Then eliminating 
all variables different from , (1)-(3), (5) can be reduced 
to the form: 

, (6)
in the unknown , in which 

, 
. 

In case (4) holds, (6) takes the simplified form: 
, 

in which  
, 

. 
As a consequence of the symmetric, positive 

definite properties of the discrete material matrix ,
also matrix  is symmetric, positive definite. Thus, 
robust sparse numerical methods for symmetric positive 
definite matrices, both direct and iterative, can be used 
for solving (6).

III. STOCHASTIC FIT FORMULATION 
The electric conductivity is now assumed to depend 

on a small number  of random variables , that 
can be assumed to be statistically independent and to
form a vector . As a result the constitutive 
matrix (4) depends on  and is indicated by .
Hence, also the coefficient matrix, the right hand vector 
and unknowns in (6) depend on  so that it can be 
written: 

. (7)
A PCE can now be used to approximate the 

unknown vector  in the form: 
, (8) 

in which  are multi-indices of 
elements,  and 

, 
where , with , are polynomials of 
degree not greater than , forming an orthonormal basis 
in the probability space of random variable , with  

. Thus, the functions  are polynomials 
of degrees not greater than , forming a basis of 
dimension: 

(9)

which is orthonormal in the probability space of random 
vector . Equivalently, by defining the column vector 

 and the  matrix ,
obtained by juxtaposing  in lexicographic order, it can 
be written: 

. (10)
The spectral stochastic FIT equations are achieved 

by substituting (10) into (7), multiplying both members 
on the right by  and taking the expected value  

, so that it results in: 
. (11)

Using the  operator [8], (11) can be written as: 
, (12)

a linear system of  equations in the  unknowns 
forming column vector . The coefficient 
matrix  and right-hand vector  of this system of 
equations can be written respectively in the form: 

, 

being  the tensor product.  
In case (4) holds, (11) and (12) can be respectively 

written in the simplified forms: 
, 

, 
being 

. 
a symmetric positive definite matrix and being  the 

 vector with all zeros except the first element equal 
to one.  

As a consequence of the symmetric, positive 
definite properties of the discrete material matrix , the 
coefficient matrix of (12) is symmetric, positive definite. 
Thus, also for problem (12), the robust sparse numerical 
methods specific for symmetric positive definite 
matrices, both direct and iterative can be used. However, 
as with stochastic FEM, difficulties arise with the 
solution of this system of equations when the number of 
independent random variables  and PCE order P
increase, due to the increased dimensionality MN of the 
problem, as a consequence of (9). 

IV. GENERALIZED SPECTRAL
DECOMPOSITION 

An iterative approach, recently proposed in literature 
[4], is here adapted to approximate the solution of (12). 
In this approach, given at step  an approximation 
for  in a form analogous to (10), 

, (13)
a new approximation  is obtained as: 

, (14)
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in which a number  of  vectors  are 
searched for together with a number  of functions  
belonging to the space spanned by the  functions 
expressed as: 
 , (15) 
in which  are coefficients. Let  be an 

 vector. Also let  be an  matrix 
and let it be  an  matrix so that 

 and (13) can be rewritten in the form: 
 , (16) 
 , (17) 

in which  and  have to be determined. In order to 
compute  and , an iterative procedure is adopted. 
Precisely, assuming that  is known,  is computed by 
solving the equations obtained substituting (16) into (11) 
and multiplying on the left by , 

.  (18) 
After applying the  operator, this equation is 

written in the form of the system of  equations: 

, (19) 
in the  unknowns forming the column vector 

. In case (4) holds, Equations (18) and (19) can be 
respectively rewritten in the simplified forms: 

, (20) 
  

. (21) 
Then, assuming  to be known,  is computed by 

solving the equations obtained substituting (16) into 
(11), multiplying on the right by  and using that 

, so that 
 . (22) 
After applying the  operator, this equation is 
written in the form of the system of  equations: 

 
, (23) 

in the  variables forming the column vector 
. In case (4) holds, Equations (22) and (23) can 

be respectively rewritten in the forms: 

, (24) 
  

.  (25) 
Equations (21), (23) are iteratively solved until 

convergence of  in the energy norm. This procedure 
can be stopped after  iterations, typically in the range 1 
÷ 4 [4]. The whole procedure is then repeated, increasing 
 until the residual of (12) when  is less than a 

tolerance, as detailed in Algorithm 1. 
 

Algorithm 1: Approximation of U 
Set i :=0 
Set j :=0 
Set  :=0 
repeat 
   Set j:=j+1 
   Choose  randomly 
   repeat S times 
      Set i:=i+1 (total number of iterations) 
      Orthonormalize rows of   
������Solve (25) for .  
������Orthonormalize columns of �
������Solve (21) for  
   end 
����Update  by (16) 
until convergence�

 
For each step i Algorithm 1 requires the solutions of 

the systems of  Equation (24) and the solutions of the 
systems of  Equation (20). Since the coefficient 
matrices of these problems are ensured to be symmetric, 
positive definite, the same robust numerical methods for 
solving the deterministic problems, both direct and 
iterative, can be used.  

Using iterative methods the coefficient matrix is not 
directly constructed, but the product of the coefficient 
matrix with column vectors are computed. Since (20) 
and (21) are equivalent, the left-hand-side of (21) can be 
more efficiently computed as: 
 . 
Similarly since (24) and (25) are equivalent, the left-
hand-side of (25) can be more efficiently computed as: 
 . 

In order to reduce computational complexity, while 
maintaining satisfactory convergence properties, small 
values of  are chosen. While in [4] only the case R=1 is 
considered, here it is shown that small values of R greater 
than 1 can be more effective choices. It is noted that for 
small numbers  of random variables and relatively low 
PCE orders , as in the cases considered here,  is 
usually much smaller than , so that the only 
computationally demanding problem is problem (25) in 

 variables. The orthonormalization of the rows of  
and of the columns of  is performed in order to ensure 
robustness, as detailed in [4]. 

 
V. NUMERICAL RESULTS 

The 3D problem shown in Fig. 1 is chosen as a test 
case. Conductivities �1, �2, and �3 are modelled as 
uniformly distributed random variables, in the range  
1.41 MS/m – 11.3 MS/m. Voltages are imposed with 
values V1=V3= 1 V and V2=0. Only the conductive 
region, without the surrounding air region, is discretized.  
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Homogeneous Neumann’s boundary conditions are used 
everywhere, with the exception of the three electrodes at 
which Dirichlet’s boundary conditions are used, as 
indicated in Fig. 1.  

A set of primal tetrahedral grids is generated. 
Among these a tetrahedral grid with n=6441 nodes is 
chosen whose further refining introduces variations in 
the potential distribution lesser that 1% in the energy 
norm. The energetic approach to FIT is used for 
constructing discrete material matrices. In particular, the 
basis functions introduced in [6] for tetrahedral grids are 
adopted. 

The PCE of the electric current I1 is estimated in  
the case P=7. In the PCE intrusive approach the 
computational time for solving (12) by the Conjugate 
Gradient (CG) algorithm is about 152 s on a 2.3 GHz 
Intel Core i7 with tolerance equal to 10-9. Memory 
storage requirement is about 120 MB. 

In Fig. 2, the probability density function (pdf) of 
the current I1 computed following the GSD approach 
(Algorithm 1) and the one obtained with the standard 
PCE intrusive approach are compared. In [3] the 
computation of the same pdf is carried out in about 10 
hours by means of 105 Monte Carlo simulations using the 
same computer, validating previous results. A good 
agreement among the three methods is observed. 

The convergence of the approximations to the 
solution U provided by Algorithm 1 for various choices 
of R and S is shown in Figs. 3-8, when the relative error 
is defined as: 

. (22)

Fig. 1. 2D section of the test case. Depth is equal to s,
with s =10 mm and d = 1 mm. 

Fig. 2. Probability density function of the current I1. 

Fig. 3. Relative error (22) vs. number of iterations i of 
Algorithm 1 when R=1, for different values of S. 

Fig. 4. Relative error vs. number of iterations i when 
R=4, for different values of S. 

From these results it follows that for each choice of 
R the best results in terms of efficiency are obtained for 
S=1; furthermore R=4 appears as the optimal value. The 
computational times for this case (S=1 and R=4) are 
reported in Figs. 6-7. The corresponding memory storage 
requirement is about 1.5 MB, comparable to the 1.3 MB 
memory storage requirement of a single deterministic 
electrokinetic problem. 

Fig. 5. Relative error vs. number of iterations i when S=1, 
for different values of R. 
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Fig. 6. Relative error vs. computational time of Algorithm 
1 when S=1, for different values of R. 
 

 
 
Fig. 7. Relative error vs. computational time of Algorithm 
1 when R=4, for different values of S. 
 

 
 
Fig. 8. Relative error for increasing values of R when 
j=1. 
 

VI. CONCLUSION 
In this paper it is shown how a generalized spectral 

decomposition approach can be applied to the spectral 
stochastic formulation of FIT based on PCE. As an 
application example, a typical system for resistance 
welding is analyzed. The results show that the proposed 
approach allows to drastically reduce the storage 
requirement and the computational time of the spectral 
stochastic formulation of FIT based on PCE. 
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