
Analytical Solution for Line Source Excitation of a PEMC Cylinder Coated 
with Multilayer Anisotropic Media  

A. Shahi, M. Fallah, and A. Abdolali 

Department of Electrical Engineering 
Iran University of Science and Technology, Tehran, 1684613114, Iran 

a_shahi@alumni.iust.ac.ir, m_fallah@elec.iust.ac.ir, abdolali@iust.ac.ir

Abstract ─ An analytical solution is presented for line 
source excitation of a cylinder with perfect electromagnetic 
conductor (PEMC) core which is coated with multilayer 
anisotropic materials. Exact solution is presented using 
analytical relations for scattering from cylindrical 
structures. For multilayer structures, we have to calculate 
the inverse of a matrix which is sparse, thus, we use 
recursive relations to calculate the fields. A recursive 
relation for solving the problem with PEMC boundary 
condition is presented. Finally, some examples are given 
using this method and the results are compared and 
validated with the simulation results and other works. 
The advantage of analytical relation proposed in this 
paper is much less run time compared to numerical 
simulation. 

Index Terms ─ Line source, multilayer structures, perfect 
electromagnetic conductor, scattering RCS, special 
materials/anisotropic. 

I. INTRODUCTION 
Perfect electromagnetic conductor which was 

introduced by Lindell and Sihvola [3] is described using 
the following relations: 

0,H M E
 � 0H M E �M E (1) 

0,D M B� � 0D M B �M B (2) 
where M is the admittance of PEMC: a more general 
form of PEC or PMC, which can be simplified to show 
these boundary conditions.  

PEMC is an ideal boundary, since it can be shown 
that pointing vector has only an imaginary part and no 
real part; thus, no real power flows into PEMC and it can 
be described as: 

( ) 0.n H M E
$

% 
 �) 0) (3) 
PEMC boundary condition has been widely studied 

in several works from realization to a variety of 
scattering problems to applications. In references [6-8], 
the realization of PEMC boundary condition has been 
conducted. A grounded ferrite can be designed to have a 
Faraday rotation and thus show PEMC boundary 

condition. In [9-19], scattering problems containing 
PEMC boundary condition have been worked on. 
Reflection and transmission obliquely incident plane 
wave at the interface of a PEMC was considered in [9]. 
Analytical relations for scattering from a PEMC sphere 
and cylinder have been considered in [10] and [11], 
respectively. Scattering from a PEMC cylinder coated 
with single metamaterial layer was considered in [12]. 
Also, scattering from a PEMC cylinder buried in a 
dielectric half space was investigated in [13]. Scattering 
from two PEMC cylinders was investigated in [14] using 
iterative methods. In [15], a transformation method was 
introduced to solve the problems containing PEMC 
boundary condition and those involving PEMC objects 
in the air were treated. In [16], an extension to PEMC 
was introduced as “good electromagnetic conductor”.
Plane electromagnetic wave propagation in PEMC was 
considered in [17]. In [18] and [19] a PEMC cylindrical 
reflector has been studied and high frequency 
expressions were used. 

Electromagnetic scattering from stratified media is 
the subject of many research and scientific articles [21]. 
By using stratified media, we can obtain some 
advantageous like wideband operation of our structure 
[22] and increased degree of freedom. Specifically, 
scattering analysis of anisotropic stratified medium is the 
subject of interest in many works [23-24]. For example, 
in [24], a stratified anisotropic medium was used to 
achieve invisibility. Therefore, it is interesting to 
investigate the problem of multilayer anisotropic coat 
with different cores including PEMC core. Solution of 
electromagnetic scattering from an anisotropic cylinder 
is studied in many resources. One of which is [20]. 

Most of the PEMC problems have concentrated on 
single PEMC core or single layer coated PEMC. For 
example, in [4], a single anisotropic layer coating a 
PEMC cylinder was considered and scattering of plane 
wave was investigates through this structure. Not many 
papers have investigated the scattering problem of a 
multilayer structure containing PEMC core. In this 
paper, this problem is considered for the cylindrical 
geometry with a simple method.   
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Organization of the paper is as follows: In the first 
section, formulation of the problem is stated, general 
form of the field in each region is introduced, boundary 
conditions are presented and the problem of sparseness 
of a matrix which should be inverted to solve the 
problem is issued.  

In the next section, recursive relations are introduced 
to solve the problem of sparseness of that matrix 
mentioned in the previous paragraph. The last section 
presents the results.  
 

II. FORMULATION OF THE PROBLEM 
In this section, we investigate the analysis of the 

above stated problem. Geometry of the problem is shown 
in Fig. 1. The permittivity and permeability tensors of the 
problem can be shown as: 
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The form of incident electric and magnetic field for 
TM polarization is: 
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And the form of scattered field would be:  
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Also, the form of field distribution in each anisotropic 
layer would be:  
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And the field distribution for cross-pol components 
can be stated as: 
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Here, ρN is radius of the Nth layer. 
Now, we should apply boundary conditions to 

complete the formulation of the problem. Boundary 
conditions involve the continuity of tangential electric 
and magnetic fields at the boundary between two layers 
or between the last layer and free space. Since we have 
two polarizations, as one original polarization and one 
cross polarization, we should write boundary conditions 
for each polarization separately and apply PEMC 
boundary conditions between the field components of co 
and cross-polarized components of the first layer. In 
what follows, we have written boundary conditions in 
each region separately, the first two equations are for 
general polarization and the last two equations are for 
cross polarization. One of the two equations is for the 
electric field and the other is related to the magnetic 
field: 

 

2 (2)0
0 0 0

(1) (2)0

[ ( ) ( ) ( )]
4

[ ( ) ( )],
4

N N

n N n n n N

N N
n eN N n eN N

J k H k a H k

c H u d H u� �
/ /

-&
� � �

-&

!� 
 �

� 

 (17) 

 

(2) (2)0
0 0 0

(1) (2)0

[ ( ) ( ) ( )]
4

[ ( ) ( )],
4

N N

n n N n n N

N N
eN n eN N n eN N

k
H k J k a H k

j
k

Y c H u d H u
j

� �
/ /

� � �
� !! ! 
 �

� ! !

 (18) 

 

(1) (2)0
2 2

(2)0
0

[ ( ) ( )]
4

( ) ,
4

N NN N
n mN N n mN N

n n N

k
c H u d H u

j
k

b H k
j

� �
/ /

�

�

 �

�
 (19) 

 

(1) (2)0
2 2

(2)0
0

[ ( ) ( )]
4

( ) ,
4

N NN N
mN n mN N n mN N

n n N

Z c H u d H u

b H k

� �
/ /

-&

-&
�

� ! !
 �

� !
 (20) 

SHAHI, FALLAH, ABDOLALI: ANALYTICAL SOLUTION FOR LINE SOURCE EXCITATION OF A PEMC CYLINDER 783



1 1

1 1

1 (1) 1 (2)0
1 1 1 1

1 (1) 1 (2)0
2 1 1 2 1 1

[ ( ) ( )]
4

[ ( ) ( )] 0,
4

n e n e

n m n m

M
c H u d H u

k
c H u d H u

j

� �
/ /

� �
/ /

-&
� 


� 
 �
 (21) 

1 1

1 1

1 (1) 1 (2)0
1 2 1 1 2 1 1

1 (1) 1 (2)0
1 1 1 1 1

[ ( ) ( )]
4

[ ( ) ( )] 0.
4

m n m n m

e n e n e

M
Z c H u d H u

k
Y c H u d H u

j

� �
/ /

� �
/ /

-&� ! !


! !� 
 �
 (22) 

Equations (17-20) are boundary conditions between last 
layer and free space. Equations (21-22) are PEMC 
boundary conditions. 

Boundary conditions between the ith and (i+1)th

layers are similar to Equations (17-20) with suitable 
changes. 

After applying the boundary conditions (Equations 
(17-22)), the formulation of the problem is finished and 
we should find unknowns of the problem. Result of 
applying boundary conditions to the problem is a set of 
4N linear equations with 4N unknowns. This system may 
be described as: 

,CX D� (23) 
where X shows unknowns of the problem, C is a matrix 
containing coefficients of unknowns in the set of linear 
equations, and D is a vector of known values of the 
problem. 

The matrix C becomes sparse. The reason is that 
each row has only three or four nonzero elements and 
others are zero. If we show the element of the matrix with 
A and B with subscripts ± and superscripts i, j then A
shows coefficient of electric field boundary condition, B 
shows coefficient of magnetic field boundary condition, 
i is the layer in which fields exist, j is the layer boundary 
whose fields are evaluated, and + and – show direction 
of propagation of field. Consider a simple case where we 
do not have cross-polarized components in the problem. 
Thus, the coefficient matrix becomes as follows: 
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As can be seen, there are so many zeroes in the matrix. 
The first and second rows have three nonzero elements, 
other rows have four nonzero elements, and the rest are 
all zero. For example, for a 3 layer problem, we have 7 
unknowns; so, matrix is of order 7. There are 8 zeroes in 
the first and second rows and each other row has 3 
zeroes. Totally, we have 23 zeroes in this matrix and 26 

nonzero elements. It is obvious that this matrix is sparse. 
As the order of the matrix increases, this problem 
becomes more serious. The problem gets more difficult 
when we have PEMC boundary condition that causes the 
existence of cross-polarized components, which adds to 
the unknowns of the problem by the order of N. 

Calculation of inverse of a sparse matrix is a tedious 
task and we want to prevent this difficulty so we use 
recursive relations instead which is introduced and 
formulated in the following section 

Fig. 1. Geometry of the problem. 

III. RECURSIVE RELATIONS 
In [2], a layered media was considered and solved 

using recursive relations. We get this idea and use it for 
our cylindrically layered media. 

According to Equations (19) and (20), we can obtain 
recursive relations for cross-polarized components as 
follows:  
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It is observed that we have a certain known value for 
2 2/N N

n nd c ; thus, we can express 1 1
2 2/N N

n nd c� �  in terms of 

2 2/N N
n nd c  according to 26 and continue it until getting to 

the first layer and obtain 1 1
2 2/n nd c  which is known. 
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Afterwards, we make a relationship between co and 
cross-polarized components using the following relation 
(obtained from PEMC boundary condition): 
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Now, we move from the first layer to the last layer 
using recursive relations of co-polarized components of 
the field. We express 2 2/n nd c  in terms of 1 1/n nd c  which 
is known according to Equation (30) and continue to 
obtain /N N

n nd c . We use the following recursive relation 
for this task: 
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When we obtain /N N
n nd c , we can use Equations 

(17) and (18) to obtain an as follows: 
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Thus, the problem is solved completely and we know the 
scattering coefficient and consequently scattering pattern 
and total field pattern.  

Similar relations might be written for TE polarization. 
We can briefly describe what we did in this part: 

We started from the last layer and used recursive 
relations of cross-polarized components (Equations (25) 
and (26)) to move through the layers to the first layer. In 
the first layer, we used PEMC boundary conditions 

(Equations (21) and (22)) and made a relationship between 
co- and cross-pol components (Equation (30)). Afterwards, 
we moved through the layers to the last layer using 
recursive relations of co-polarized components (Equation 
(34)) and finally obtained scattering coefficient. Thus, 
our movement was from the last to the first layers in 
terms of recursive relations of cross-polarized components 
and from the first to the last layers in terms of recursive 
relations of co-polarized components. This issue is 
schematically illustrated in Fig. 2.  

Note that, according to Fig. 2, by starting with bn, 
we mean that we use Equation (25) to start moving 
through the layers and there is no dependence on bn. 
 

 
 
Fig. 2. Movements in layers in order to find scattering 
coefficient. Layers are cylindrical. 
 

IV. RESULTS 
In this section, we are going to illustrate the 

numerical results of the formulas presented earlier. Some 
methods are exerted to validate the results. One of them 
is to compare the results of a simple problem solved 
using our method with full-wave software like CST 
microwave studio. A simple problem refers to the one in 
which the core is PEC and the coat material is isotropic. 
Thus, we simulate a PEC cylinder coated with several 
dielectric layers illuminated by plane wave and then 
observe a near-field pattern. Afterwards, we are sure that 
our results are true for simple problems and recursive 
relations are written correctly. Finally, we compare the 
results with those of some of the previous works for 
PEMC core.  

The result seen in CST is electric in TM polarization 
case and magnetic field in TE polarization case evaluated 
on a curve which is a circle concentric with a cylindrical 
structure.  

Therefore, a PEC cylinder coated with 5 dielectric 
layers illuminated with TM and TE-polarized plane 
wave is simulated. Comparison is made between our 
code and CST simulation and then presented in Fig. 3. 
As can be seen from Fig. 3, comparisons show that our 
method has great accuracy and is thus reliable. The next 
step is to compare the results with other works. 

In [4], Montaseri et al. solved the problem for one 
layer case. Here, we compare our results with those of 
their work. Two general cases are considered: Isotropic 
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and Anisotropic. In each case, co and cross-pol results 
are compared. 

The results in [4] are for the plane wave case. 
Normalized scattering cross-section with the following 
form is considered: 

0

2
( )

0

2 ,jnco
n

n
a e 	 	�

0 1


.
�

��.

� �  (40) 

0

2
( )

0

2 ,jncross
n

n
b e 	 	�

0 1


.
�

��.

� �  (41) 

where an is scattering coefficient for co-polarized 
component, bn is scattering coefficient for cross-polarized 
coefficient, and φ0 is angle of plane wave incidence. 

In Figs. 4 and 5, isotropic dielectric cylinder coating 
a PEMC cylinder scattering is evaluated. 

In Figs. 6 and 7, isotropic dielectric cylinder coating 
a PEMC cylinder scattering is evaluated.

Finally, we present the field pattern of line source 
from a 2-layer anisotropic structure with PEMC in the 
first layer. It is illuminated with electromagnetic fields 
of a line source and results are shown in Figs. 8 and 9 for 
co- and cross-pol, respectively. 

Fig. 3. Comparison between analytical relation stated in 
the paper and CST full-wave simulation for 5 layer 
dielectric cylinder with radiuses of layers described as 
0.1λ, 0.2λ, 0.3λ, 0.4 λ, 0.5 λ with dielectric constants  
εr = 2, εr = 3, εr = 4, εr = 5, εr = 6 illuminated by a plane 
wave with angle of π/2 relative to x-axis. Near field is 
observed at: (a) TM polarization and (b) TE polarization.  

Fig. 4. Normalized co-polarization scattering cross section 
with parameters ε1 = ε2 = ε3 =9.8, μ1= μ2= μ3=1, φ0 = π/2, 
Mη0 = ±1, a = λ/6, b = λ/3.

Fig. 5. Normalized cross-polarization scattering cross 
section with parameters ε1 = ε2 = ε3 = 9.8, μ1 = μ2 = μ3 = 1,
φ0 = π/2, Mη0 = ±1, a = λ/6, b = λ/3.

Fig. 6. Normalized co-polarization scattering cross-section 
with parameters ε1 = ε2 = ε3 = 9.8, μ1 = 1, μ2 = 19, μ3 = 6,
φ0 = π/2, Mη0 = ±1, a = λ/6, b = λ/3.
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Fig. 7. Normalized cross-polarization scattering cross-
section with parameters ε1 = 9.8, ε2 = 16, ε3 = 7, μ1 = 1, 
μ2 = 19, μ3 = 6, φ0 = π/2, Mη0 = ±1, a = λ/6, b = λ/3. 
 

 
 
Fig. 8. Co-pol case with parameters described as ε11 = 6.4, 
ε12 = 9.8, ε13 = 5.3, ε21 = 7, ε22 = 1.1, ε23 = 4, μij = 1, i = 1,2,  
j = 1,2, r0 = λ/6, r1 = λ/3, r2 = λ/2, Mη0 = ±1, ρ0 = 20λ,  
φ0 = π/2. 
 

 
 
Fig. 9. Cross-pol case for the structure described in Fig 
8. 

V. CONCLUSION 
In this paper, we analyzed line source scattering 

from a multilayer cylinder with a PEMC boundary 
condition at the first layer. Formulation of the problem 
was stated and boundary conditions were obtained. For 
the multilayer problems, the-inverse of a matrix that was 
sparse was calculated. Thus, we introduced a novel 
recursive method for the calculation of scattering 
coefficient for PEMC boundary condition. Finally, we 
illustrated the validation of the results using CST 
microwave studio and comparison with previous works 
and one case of multilayer problem was evaluated. 
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