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Abstract ─ Electromagnetic diffraction modelling and 

recent numerical simulation approaches, on the 

canonical 2D non-penetrable wedge scattering problem, 

are reviewed in this introduction paper. 

  

Index Terms ─ Diffraction, electromagnetics, finite 

element method (FEM), geometric optics (GO), 

geometric theory of diffraction (GTD), method of 

moments (MoM), physical optics (PO), physical theory 

of diffraction (PTD), simulation, time domain finite 

difference method (FDTD), wave scattering.  

 

I. INTRODUCTION 
We have witnessed transformation from engineering 

electromagnetics to electromagnetic engineering [1-4]. 

This is merely because of technological developments 

we have had for the last two-three decades. 

Understanding and using electromagnetic theory has 

become a must in many engineering disciplines. One 

important topic is electromagnetic scattering, and 

diffraction is the most critical phenomena that has been 

investigated analytically and numerically for a long 

time [5-36].   

Electromagnetic (EM) scattering from wave – 

object interactions using analytical solutions is limited 

to structures whose surfaces can be described by 

orthogonal curvilinear coordinates. Most of these 

solutions are in the form of infinite series, which are 

poorly convergent when the dimensions of the object 

are greater than a few wavelengths. Many practical 

scattering problems have no closed-form solutions. 

Because of this, high frequency asymptotic (HFA) 

techniques have been used when the dimensions of the 

scattering object are many wavelengths. Both ray-type 

Geometrical Theory of Diffraction (GTD) [5-8] and the 

wave- (i.e., induced-source)-based Physical Theory of 

Diffraction (PTD) [9-11] have received considerable 

attention in the past several decades. A short summary 

on HFA is given in [13].  

Diffraction from a two-dimensional (2D) non-

penetrable wedge is a canonical structure for all these 

HFA methods (see, Fig. 1). The source locations 1 and 

2 belong to single-side (SSI) and double-side (DSI) 

illuminations, respectively. Note that, there is a shadow 

region for SSI where only diffraction fields exist. The 

two critical angles reflection-shadow boundary (RSB) 

and incident-shadow boundary (ISB) separate three 

regions. In Region I, incident, reflected, and diffracted 

fields exist. In Region II, only incident and diffracted 

fields exist. In Region III (i.e., in the shadow region) 

only diffracted fields exist. In the DSI scenario, there 

are two RSBs which separate regions with and without 

reflected fields. 
 

 
 

Fig. 1. Wedge scattering scenarios (1: single side 

illumination; 2: double side illumination). 

 

In the case of acoustic waves, the two boundary 

conditions (BC) appropriate for the non-penetrable 

wedge are acoustically soft (SBC) and hard (HBC) 

wedges. In electromagnetics, they correspond to 

transverse magnetic (SBC TM) and transverse electric 

(HBC TE) cases, respectively. The field components 

used in these two cases, respectively, are the z-

components of electric ( zE ) and magnetic field ( zH ) 

intensities. Mathematically, they are Dirichlet and 

Neumann BCs, respectively. 

Wedge scattering has also been modeled with 

numerical models such as the Finite-Difference Time-

Domain (FDTD) [16,17], Method of Moments (MoM) 
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[18-23], and Finite Element Method [33,34]. The 

following sections summarize these models and 

techniques with characteristic applications. 

 

II. NUMERICAL MODELING OF 

DIFFRACTED WAVES 

A. FDTD approach 

Wedge scattering can be modeled with the FDTD 

method [20-28] and scattered, reflected and diffracted 

fields can be separated in both time and frequency 

domains. Early approaches were based on the separation 

of incident, reflected, and diffracted pulses in the time 

domain using time-gating approach [20-22].  

The methods discussed in [23-29] use multi-step 

techniques in separation of both diffracted and fringe 

fields as pictured in Fig. 2. Here, scenario (a) yields 

total fields; incident, reflected, and diffracted field 

components in Region I; incident and diffracted field 

components in Region II; and only the diffracted fields 

in Region III.  

 

 
 

Fig. 2. Multi-step FDTD-based diffraction approach: (a) 

the wedge scenario, (b) infinite-plane problem, and (c) 

free-space scenario [25].  

 

Scenario (b) in the figure is the infinite-plane 

scenario ( 180  , Plane-1) which yields total fields 

on the upper half plane ( 0    ). Since there is no 

edge or tip, the total fields include only incident and 

reflected fields; and do not contain diffracted fields. 

Finally, scenario (c) yields only the incident fields in 

the free-space. 

The FDTD simulation is run separately for each of 

these three scenarios and time-domain data are recorded. 

Subtracting the time data of the second scenario from 

the first scenario in Region I ( 00      ); and the 

time data of the third scenario from the first scenario in 

Region II ( 0 0        ) will yield diffracted-

only fields all around the wedge [23-25]. 

 

B. MoM approach 

Diffracted fields can also be obtained with the two-

step MoM approach as introduced in [30-32]. Figure 3 

shows the two (i.e., the wedge and infinite-plane) 

scenarios used for this purpose. 

MoM is a general procedure and frequency domain 

approach for solving linear equations. Many problems 

that cannot be solved exactly can be solved 

approximately by this method. It has been applied to a 

broad range of EM problems since the publication of 

the book by Harrington [37]. A useful tutorial has  

just been published [38]. MoM is a semi-analytical-

numerical model which needs the Green’s function 

solution of the problem at hand.  

 

 
 

Fig. 3. The two-step MoM-based diffraction approach: 

(a) the wedge scenario, and (b) infinite-plane problem 

[30]. 

 

The two-step MoM approach [30] is applied as 

follows. In Fig. 3 (a), incident fields are injected 

analytically, therefore MoM solutions directly yield the 

scattered fields which contains reflected and diffracted 

fields. The MoM solution of the half-plane scenario  

in Fig. 3 (b) yields the reflected fields in the region  
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up to the critical angle =-0. During the MoM 

implementation of the wedge scattering first, incident 

fields upon segments are calculated using the Green’s 

function of the problem and the impedance matrix is 

formed. Then 2N by 2N matrix system is solved and 

source-induced segment currents are obtained. Finally, 

scattered fields on the chosen observation points are 

calculated from the superposition of segment radiations 

using the Green’s function. Total fields are obtained by 

adding the direct wave from the source to the receiver. 

The diffracted-only fields can be obtained using the 

MoM procedure if reflected fields in (
00      ) 

are subtracted. The reflected fields in this region) can 

be obtained with the scenario in Fig. 3 (b).  

 
C. FEM approach 

Field components around the 2D non-penetrable 

wedge can also be extracted via FEM [33-34]. FEM is a 

variational method that is developed for approximate 

solution of boundary value problems governed by 

partial differential equations. It has been widely used 

due to its flexibility in handling arbitrary geometries 

and material non-homogeneities. 

Consider, the wedge problem in Fig. 4 (a). The 

open-region of the computational domain is terminated 

by PML blocks. The dotted observation circle represents 

the positions of receivers all of which will record the 

scattered fields. The three-step diffracted field extraction 

is as follows:  

(i) FEM is run for the structure in Fig. 4 (a) and the 

scattered fields are recorded on the observation circle.  

(ii) FEM is run for the problem in Fig. 4 (b), where 

the right edge of the object is extended over the vertical 

direction, and the scattered fields are recorded only on 

the blue-dotted part of the observation circle. These 

fields correspond to the reflected fields from the top 

face of the wedge. 

(iii) The same is repeated for the problem in Fig.  

4 (c) and fields reflected from the bottom face of the 

wedge are obtained. 

Finally, the diffracted field is obtained by 

subtracting the fields in steps (ii) and (iii) from the 

scattered fields in step (i). 

  

III. NUMERICAL MODELING OF FRINGE 

WAVES 
Electromagnetic and/or acoustic waves interact 

with objects and induce surface currents. These surface 

currents contain both uniform (PO) and non-uniform 

(PTD) currents if there is an edge and/or tip. The non-

uniform currents are called fringe currents and fields 

generated by these currents are called fringe fields. In 

order to calculate fringe waves, one needs to separate 

source-induced non-uniform and uniform currents. 

 

 
 

Fig. 4. FEM-based diffraction modeling: (a) original 

geometry, (b) modified geometry for obtaining the PO 

currents for SSI, and (c) modified geometry for obtaining 

the PO currents for SSI [34]. 

 

Fringe currents can be extracted with all these three 

methods (FDTD [29], MoM [31], and FEM [35]) by 

using similar multi-step procedures. First, standard 

procedures are applied to the wedge problem and surface 

currents are obtained. The currents on the illuminated 

face of the wedge contain both uniform and non-

uniform currents; only non-uniform currents exist on 

the shadow face. Then, infinite-plane scenario is used 

and (since there is no edge or tip type discontinuity) 

only uniform currents are obtained. Subtracting (that 

part of corresponding) infinite-plane currents from the  
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illuminated face wedge currents yields the non-uniform 

currents on the top face. The bottom face of the wedge 

already has non-uniform currents. The scattered waves 

superposed using non-uniform currents then yield the 

fringe waves. 

Note that, the infinite-plane scenario must be 

repeated for the other face of the wedge for the DSI in 

both diffracted and fringe field simulations.   

 

IV. NUMERICAL EXAMPLES  
The tutorial in [15] summarizes HFA models and 

the MATLAB based virtual diffraction tool presented in 

[16] can be used to visualize total and diffracted fields 

around a 2D non-penetrable wedge. The front panel of 

this virtual tool is shown in Fig. 5. 

 

 
 
Fig. 5. The front panel of the WedgeGUI tool [16]. 

 

The top block of the panel is reserved for the 

structure. The wedge figure is shown on the top right. 

The wedge exterior angle, incident distance/angle are 

supplied on the top left. The user also selects either of 

the Soft and Hard BCs; total and diffracted fields in this 

block. A pop-up menu allows the user to choose a plane 

wave or a line source excitation. For each source type 

the methods used in simulations are given with tick 

boxes. Multiple selection is possible. An example 

generated with this tool is given in Fig. 6. Here, total 

and diffracted fields for both SBC and HBC cases are 

shown. 

The next examples belong to numerical techniques. 

In Fig. 7, electromagnetic scattering around a 60-wedge 

with non-penetrable boundaries is shown. 

Here, MoM results are compared with HFA results. 

On the left, total fields around the wedge is presented. 

On the right, only diffracted fields are plotted. The 

angle of incidence is 60; this corresponds to SSI.  

As observed in the total fields plot, strong 

interference occurs between incident and reflected fields 

and lobes are formed. The total field on the shadow 

region only contains diffracted fields. As observed in 

the diffracted fields plot, maximum diffraction occurs 

along the two critical angles.  

 

 
 

Fig. 6. EM scattering around a 30-wedge, (Left) total 

fields, (Right) diffracted fields (r=5, kr=31.4). 
 

 
 

Fig. 7. EM scattering around a 60-wedge, (Left) total 

fields, (Right) diffracted fields (TE/HBC case). The 

receivers are located on a circle around the wedge with 

radius r=2. Plane wave excitation is used [30]. 

 

Figure 8 belongs to the same wedge with similar 

comparisons but for DSI. Here, 0=150 and r=2. The 

results belong to HFA, MoM, and FDTD simulations. 

As observed, there is a perfect agreement among the 

results. 

Fringe waves represent the part of the total edge-

diffracted waves generated by source-induced fringe 

surface currents. These waves can be generated directly 

using fringe currents. Fringe fields around a 60-wedge 

for both SBC and HBC cases are plotted in Fig. 9. Here, 

only PTD and MoM results are given for a clear 

visualization.  
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Fig. 8. EM scattering around a 60-wedge, (Left) total 

fields, (Right) diffracted fields (TE/HBC case). Plane 

wave excitation is used [30]. 

 

 
 

Fig. 9. Fringe fields vs. angle around a 60-wedge. 

(Top) TM/SBC case, (Bottom) TE/HBC case. A line 

source excitation is used [31]. 

 

The last example in Fig. 10 belongs to fringe fields 

around a 30-wedge with non-penetrable hard boundaries. 

All the methods are used here. As observed, PTD, MoM, 

FDTD, and FEM results agree very well; the incorrect 

result belongs to MTPO [36]. 

Note that, the free virtual tools presented in [26] 

(based on FDTD method), [30] and [32] (based on 

MoM) can also be used to visualize EM scattering 

around the 2D non-penetrable wedge comparatively. 

 

V. CONCLUSION 
Understanding electromagnetic wave scattering is 

critical in many applications, especially in designing 

reliable surveillance systems and low visible air and 

surface targets. This used to be done using approximate 

analytical models such as GO, GTD, UTD and PO, 

PTD, widely known as high frequency asymptotics.  

 
 

Fig. 10. Fringe fields vs. angle around a 30-wedge 

(TE/HBC case). 

 

The GO can model reflections and refractions  

but fails to account for the field intensity in shadow 

regions. GTD describes diffraction everywhere except 

at and near incidence and reflection shadow transitions; 

UTD removes the discontinuities along these shadow 

boundaries. However, GO/GTD/UTD fails near caustics. 

The PTD supplements PO to provide corrections that 

are due to diffractions at edges of conducting surfaces. 

Ufimtsev suggested the existence of nonuniform (fringe) 

edge currents in addition to the uniform physical optics 

surface currents.  

Note that, GO/GTD/UTD is simple to apply, can 

be used to solve complicated problems that do not have 

exact solutions, provides physical insight into the 

radiation and scattering mechanisms from the various 

parts of the structure and can be combined with other 

techniques, such as MoM, to form a hybrid method. On 

the other hand, PO/PTD provides correctly only the 

first asymptotic terms for main components of the 

scattered field in 3D problems, allows constructing 

relatively simple solutions of various practical problems, 

provides uniform asymptotics for the scattered field 

which are valid both in the ray regions and in the 

vicinity of foci and caustics, clarifies the physical 

structure of the scattered field, establishes the diffraction 

limit of reduction of scattering by absorbing coatings, 

and can be utilized to develop efficient hybrid 

techniques. 

Parallel to the use of high speed, huge memory 

computers, novel numerical models have also begun to 

be used in scattering modeling. Recent studies have 

focused on the identification and isolation of diffracted 

and fringe wave components using well-known 

numerical models such as FDTD, MoM, and FEM. The 
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use and success of these numerical models are promising 

in modeling and simulation realistic objects in 3D.    
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