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Abstract ─ A succinct explicit local time-stepping (LTS) 
method for Helmholtz wave equation based discontinue 
Galerkin time domain method has been developed to 
analyze 3-D multiscale electromagnetic problems. In 
the proposed LTS scheme, a simple linear interpolation 
procedure is implemented to calculate the fields in the 
subdomain with the larger mesh size at the time steps 
corresponding to its neighboring subdomains with the 
smaller mesh size, and thus the proposed method can 
be easily generalized to the situation of the multiple 
subdomains with arbitrary time step ratio. With the 
proposed LTS method, the computational efficiency can 
be improved for the analysis of the multiscale problems. 
Several numerical examples including dielectric loaded 
resonance cavity, microstrip filter, and Vivaldi antenna 
are given to illustrate good performance of the proposed 
succinct explicit LTS method. 

Index Terms ─ Arbitrary integral time step ratio, 
discontinue Galerkin time domain, local time-stepping 
(LTS), multiple subdomains, vector wave equation. 

I. INTRODUCTION
In recent years, the discontinuous Galerkin time-

domain (DGTD) methods have been rapidly developed 
for transient simulation of electromagnetic problems 
[1-5]. Compared with the conventional finite difference 
time domain (FDTD) method [6], the DGTD method can 
model the complex structures easily and obtain higher-
order solution accuracy. With the use of numerical fluxes 
defined on the interface between two adjacent elements 
and explicit time integration method [1-5], the DGTD 
methods can lead to block-diagonal mass matrices with 
the block size equal to the number of degrees of freedom 
per element, thus leading to a highly efficient parallel 
solution scheme. 

The conventional DGTD method is based on the 
Maxwell equations, which needs to solve the electric 
field E and the magnetic field H simultaneously. On the 
other hand, due to the use of the numerical flux, the 

conventional DGTD method results in more degrees 
of freedom, which consumes more computational 
resources. Recently, an interior penalty discontinuous 
Galerkin time domain (IPDG-WE) method has been 
developed to solve the complicate EM problems. Built 
on the Helmholtz wave equation, the IPDG-WE method 
[7, 8] only needs to solve one field variable, which can 
achieve significant reduction in computational time 
and memory usage. Moreover, with the introduction 
of the interior penalty fluxes, the IPDG-WE method 
can achieve optimal convergence rate of O(hp+1) and 
meanwhile be free from the numerical dissipation, which 
the conventional DGTD method suffers from [7, 8]. 

The real-life electromagnetic problems generally 
involve various complex objects with multiscale 
geometries. When modelling this kind of the objects, 
the sizes of the discretization meshes are significantly 
different. With either the DGTD or the IPDG-WE 
methods for the analysis of the multiscale problems, the 
time step must be chosen according to the smallest grid 
size in the computational domain due to the CFL stability 
of the explicit time integration scheme, thus resulting 
in a high computational cost. To overcome this stability 
restriction, the implicit time integration methods [9] and 
marching-on-in degree-based approaches [10-12] have 
been developed. However, these methods suffer from the 
larger memory consumption. Except implicit-like time 
integration methods, some explicit local time-stepping 
(LTS) schemes [13-17] have been proposed. By 
implementing the different time steps in the elements 
with the larger and smaller sizes, respectively, the 
computational efficiency can be improved. However, 
most of the local LTS schemes are based on the DGTD 
method [13-16]. Recently, Diaz and Grote [17] 
theoretically studies the LTS methods for second-order 
scale wave equations. No reports have been given about 
the LTS method for the second order Helmholtz wave 
equation based discontinuous Galerkin time domain 
method to model the practical 3D electromagnetic (EM) 
problems. 
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In this paper, we propose a succinct explicit LTS 
method combining the central difference time marching 
scheme in the IPDG method to model the practical  
3D multiscale EM problems. With a simple linear 
interpolation scheme, the proposed LTS method needs 
no additional memory usages and introduces slightly 
computational overhead at the subdomain interfaces. 
Hence the proposed approach is very suitable to the 
multiple subdomains with arbitrary geometry ratio. Some 
practical 3D EM problems are presented to illustrate the 
efficiency and potential of the proposed LTS method. 
 

II. FORMULATIONS 
In this section, the IPDG method is first introduced. 

Then the succinct explicit LTS scheme is developed. 
 
A. IPDG method 

Let Ω be a computational domain which is discretized 
by N nonoverlapping tetrahedrons and terminated by 
boundary Γb, including perfect electric conductor (PEC) 
surface ΓPEC, perfect magnetic conductor (PMC) surface 
ΓPMC and first-order absorbing boundary condition (ABC) 
surface ΓABC. So we have Γb = ΓPEC ⋃ ΓPMC ⋃ ΓABC. We 
denote = ∂   as all the faces in Ω and Γ = Γi ⋃ Γb, in 
which Γi is defined as the interior faces. 

To avoid the late-time drifting problem, the IPDG 
method starts from a modified Helmholtz wave equation, 
i.e., 
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in which ej(t) is the time dependent expansion coefficient 
and NE is the number of the vector basis functions. 
Applying the Galerkin’s spatial testing procedure with iN  
into (1), we can have: 
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By using the vector calculus identities and Gauss’s 
theorem to the term ( )1µ−∇× ∇×E  in (3) and introducing 
numerical fluxes, we obtain a weak form as: 
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in which superscript * denotes the numerical flux. Further, 
(4) is rewritten as a strong from, i.e., 
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The numerical fluxes are vital to the accuracy and 
stability of the IPDG method. The well-defined numerical 
fluxes can be obtained as [7, 8]: 
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in which fτ  is an interior penalty parameter defined on 
the interface. The tangential jump  T⋅  and average {}⋅  
across an interface are expressed as, 
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Here the superscripts “-” and “+” denote the local 
element and the adjacent element corresponding to the 
face f, respectively. 

By inserting (6) into (5), the semi-discrete system in 
each element yields: 
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in which ,1 ,2 ,[ , ,...... , ]
kk k k k N Te e e=e     denotes the vector 

of the expansion coefficients of the electric fields in the 
kth element, ,k fe  denotes the coefficient vector in the 
elements adjacent to the kth element, and Nk is the 
number of the unknowns of the kth element. Here 
definitions of the matrices [ ]kM , [ ]kR , mm

k  S  and 
,mn f

k  S  can be found in [5]. 
Employing the central difference method to discretize  
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the time derivatives in (9) and sampling the electric 
fields at integer time steps n t∆  (n = 0, 1, . . ., Nt), we can 
obtain the full-discrete system as 
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B. Succinct explicit LTS method 

In order to develop a multi-domain explicit LTS 
approach for the solution of the multiscale problem, we 
first consider the computational domain discretized by 
nonuniform meshes which can be categorized into two 
subdomains, as illustrated in Fig. 1. In each subdomain, 
the time step is chosen based on the minimal geometric 
sizes of the meshes according to CFL stability condition. 
Assume that ratio of the time steps in the two subdomains 
is p. Specifically, the time-steps in subdomains 1 and 2 are 
chosen as Δt1 and Δt2=pΔt1, respectively. Let p an arbitrary 
positive integral number greater than 1 in this paper. 
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Fig. 1. The interface between two domains with the 
different meshes. 

 
Consider that the subdomain 2 with the larger mesh 

size marches on from tn to tn+1 in a time increment of  
Δt2, while the subdomain 1 with the smaller mesh size 
successively marches on from tn to tn+1 in a time increment 
of Δt1. According to (10), we can know that the fields  
at the time step tn+1 in the elements of the subdomain 2  
can be solved in the conventional way. On the other hand, 
the fields in the elements of the subdomain 1 except  
the elements adjacent to the interface between two 
subdomains are also updated in the traditional way. 
However, the fields at time step tn+k/p (k=2,3,…,p) in the 
elements on the interface of the subdomain 1 are solved in 

a modified way. In order to update the fields in an element 
of the subdomain 1 at time step tn+k/p (k=1,2,…,p-1), the 
fields of the subdomain 2 at the corresponding time step 
must be known. Here a linear interpolation approximation 
method is implemented to solve the fields in the 
subdomain 2 at the time step tn+k/p according to those at 
the time steps of tn and tn+1, i.e., 
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Substituting (11) into (10), the fields in the element of 
the subdomain 1 at the time step tn+(q+1)/p can be solved as: 
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Comparing (12) and (10), we can find that in the 
proposed LTS-based scheme, no extra memory is required 
due to the use of the linear interpolation. 
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Fig. 2. The proposed LTS scheme for four subdomains 
with different meshes. 

 
The proposed method can be easily generalized to  

the case of the multiple subdomains. Without the loss of 
generality, assume that there are four subdomains. The 
ratios of the mesh sizes in the four subdomains are 1: 2: 6: 
12, as shown in Fig. 2. Therefore, the relationship of  
the time steps in the four subdomains becomes 
Δt4=2Δt3=6Δt2=12Δt1, where Δts (s=1,2,3,4) denotes the 
time step of the s-th subdomain. 

Assume that all elements march on from the time step  
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tn. The fields in the elements of the subdomain with the 
larger mesh size are first updated to its next time step, and 
then those with the smaller mesh size are stepped into  
the corresponding next time step successively. In this 
scenario, the linear interpolation method (11) can be 
implemented to solve the fields in the element of the 
subdomain with the larger mesh size at the time step 
corresponding to those of the subdomain with the smaller 
mesh size. And then (12) can be used to solve the fields in 
the elements of the subdomain with the smaller mesh size. 
It is worthwhile pointing out that the proposed LTS 
scheme can be applicable into the situation in which those 
elements adjacent to the certain element belong to more 
than two subdomains. Besides, in the proposed LTS 
method the arbitrary integral time step ratio between 
different subdomains can be valid. 

In order to obtain a good speed up for the proposed 
LTS approach, a reasonably grouping strategy should be 
used. For a multiscale problem, the tetrahedrons with the 
different sizes are used to discretize the computational 
domain. All the tetrahedrons are first classified into 
different levels, i.e., Level=Int(10h/hmax), where h denotes 
the minimum edge length of each tetrahedron, hmax is the 
largest one among h, and Int (x) is a function to map a 
real number x to the largest integer not greater than  
x. Next, the tetrahedrons belonging to the neighboring 
levels are grouped into a subdomain according to the 
following criterions: 
1. The number of the tetrahedrons which are adjacent 

to the interface between two subdomains is as small 
as possible; 

2. The number of the tetrahedrons in the subdomain 
corresponding to the larger level is as many as 
possible; 

3. The ratio of the time step between two neighboring 
subdomains is as large as possible. 
It is worthwhile pointing out that we should use the 

above three criterions in a trade-off way to obtain a good 
speedup of the LTS method. 
 

III. NUMERICAL RESULTS AND 
ANALYSIS 

A. Dielectric ring in a resonant PEC cavity 
As the first numerical example, a resonant PEC 

cavity with a dielectric ring shown in Fig. 3 is studied  
to demonstrate the accuracy and conservative energy 
property of the proposed method. The relative permittivity 
of the resonant ring is 2.06. The geometrical sizes of the 
computational region and the resonant ring are given in 
Fig. 3. The origin of coordinates is chosen as the center 
of the computational domain, and the center point of the 
resonant ring is set as (-45.25 mm, 0 mm, -21.5 mm). A 
dipole source is located at (-105 mm, -20 mm, 11.25 mm) 
and the observation point is chosen as (155 mm, 20 mm, 
11.25 mm). 

The computational region is meshed into some 
tetrahedrons with the average side length of λ/10 at 3 
GHz, while the dielectric ring is discretized by using  
the refinement meshes with the average side length of 
λ/30 in order to get an accurate result. Therefore, there 
are 15,739 disjoint tetrahedrons in total and 3,463 
tetrahedrons in the refinement region. In this example, 
all tetrahedrons are divided into ten different levels and 
are grouped into two subdomains. Ratio of the numbers 
of the discretized elements in two subdomains is shown 
as shown in Table 2. According to the CFL stability,  
the time steps of the two subdomains are chosen as 
0.4×10-12 s and 1.6×10-12 s, respectively. A dipole source 
along the z-axis is used to generate a transient modulated 
Gaussian wave with a frequency band covering from  
0.5 GHz to 5 GHz. Here the mixed 2nd order vector 
bases are adopted. 
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Fig. 3. Geometry of the resonant ring cavity. 
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Fig. 4. Transient Ez component at the observation point. 
 

The transient field Ez at the observation point is 
solved by the proposed method and plotted in Fig. 4. It 
can be seen from Fig. 4 that there is no numerical 
dissipation of the solution during a long simulation 
period more than 10 μs, and thus the proposed LTS-
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based IPDG-WE method has energy conservation 
characteristic. 

As shown in Table 1, the first eight resonance 
frequencies are extracted from the obtained time domain 
signals and compared with the results solved by the 
global time stepping (GTS) scheme and the high 
accuracy FDTD method [19]. The results by proposed 
LTS method agrees well with those by the GTS scheme 
and the in the reference. The computation performances 
of the LTS method and the GTS method are compared in 
Table 2. According to Table 2, the proposed LTS method 
can achieve 2.26 times speedup without the increase of 
the memory usage. 

 
Table 1: The first eight resonant frequencies of the 
resonant PEC cavity, unit (GHz) 

Scheme FDTD GTS LTS 
1st mode 1.2605 1.2503 1.2521 
2nd mode 1.5076 1.5062 1.5061 
3rd mode 1.8341 1.8303 1.8310 
4th mode 2.1607 2.1564 2.1582 
5th mode 2.5513 2.5431 2.5451 
6th mode 2.6123 2.6092 2.6103 
7th mode 2.8229 2.8213 2.8231 
8th mode 3.0243 3.0202 3.0225 

 
B. Microstrip filter 

In the second example, a microstrip filter is analyzed 
by using the proposed method, as shown in Fig. 5. The 
relative permittivity of the substrate is 10.4 and the 
thickness is 1.27 mm. Two lumped ports are used in this 
example. The computational region terminated by the 
ABC boundary is set as 64 mm × 89.61 mm × 41.27 mm. 
The average size of the meshes in the whole region is 
chosen as λ/10 at 3 GHz and the regions corresponding 
to the narrow microstrip line are discretized by using  
the meshes with a higher spatial resolution. Hence, we 
have 52,948 tetrahedrons in total. The tetrahedrons are 
classified into ten different levels and then are grouped 
into 5 subdomains. Ratio of the mesh numbers in the 5 
subdomains is 0.20:0.10:0.53:0.14:0.003, and therefore 
the time steps of the 5 subdomains are 0.28×10-13 s, 
0.56×10-13 s, 1.12 ×10-13 s, 2.24×10-13 s and 4.48×10-13 s, 
respectively. The mixed 2nd order edge basis is used in 
this example. The S-parameters are calculated by the 
proposed LTS method and compared with the results  
by the GTS and FEM methods, as shown in Fig. 6.  
Good agreement between each other can be observed. 
Table 2 demonstrates comparison of the computational 
performance between the LTS and the GTS methods. 
The LTS method consumes less CPU time with the same 
memory usage. 
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Fig. 5. Geometry of a microstrip filter. 
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Fig. 6. S-parameters of the microstrip filter. 
 
C. Vivaldi antenna 

In the final example, a Vivaldi antenna is considered. 
The Vivaldi antenna is shown in Fig. 7, whose tapered 
slot is patterned with PEC ground plane on the top of  
the dielectric substrate. The relative permittivity of the 
substrate is 3.38 and the thickness is 1.524 mm. The 
geometrical parameters of the Vivaldi antenna are as 
follows: w1 = 80 mm, w2 = 0.5 mm, l1 = 14.5 mm,  
l2 = 12.9 mm, l3 =12.6 mm, l4 = 70 mm, l5 = 3.2 mm,  
r =12 mm. The curves of the tapered slot are built by an 
exponential function of e0.044x. One end of the slot is open 
to air and the other is ended with a circular slot. On the 
bottom of the substrate, there is a shorted 50 Ω microstrip 
feed line. A lumped port is used to excite the Vivaldi 
antenna. 
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Fig. 7. Geometry and mesh of the Vivaldi antenna. 
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The computational domain is terminated by a 
perfectly matched layer (PML) which acts like an 
anechoic chamber absorbing all radiated energy. The 
whole region is meshed using a tetrahedral mesh with an 
approximate size length of 5 mm (λ/10 at 6 GHz), while 
the tapered slot is discretized by the meshes with the  
side length of 0.5 mm to guarantee the solution accuracy. 
The total number of the elements is 176895. Here 4 
subdomains are used according to the side length of the 
tetrahedron, as shown in Table 2. The time step sizes  
of the 4 subdomains are set as 0.2×10-13 s, 0.8×10-13 s, 
1.6× 10-13 s and 3.2×10-13 s, respectively. Mixed 2nd 
order vector bases are utilized to expand the unknown 
fields. The S-parameter calculated by the proposed LTS 
method has a good agreement with those by the GTS and 
the FEM methods, as shown in Fig. 8. The performance 
comparison between the LTS and the GTS methods has 
been given in Table 2. A 6 times speedup is obtained by  

using the LTS-based method. 
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Fig. 8. S11 of the Vivaldi antenna. 

Table 2: Performance comparison of LTS method and GTS method in the numerical examples 

Examples Method 
Ratio of the Numbers of 
Elements in the Different 

Subdomains 

Ratio of Time Steps  
in the Different  

Subdomains 

Memory 
(MB) 

Speedup 
Ratio 

A 
LTS 0.22: 0.78 1: 4 711 

2.26 
GTS ------ ------ 711 

B 
LTS 0.20: 0.10: 0.53: 0.14: 0.003 1: 2: 4: 8: 16 2332 

2.23 
GTS ------ ------ 2332 

C 
LTS 0.12: 0.26: 0.52: 0.10 1: 4: 8: 16 9988 

6.00 
GTS ------ ------ 9988 

VI. CONCLUSION 
In this paper, a succinct explicit LTS scheme for 

IPDG-WE method is presented to model 3-D multiscale 
electromagnetic problem. With a simple linear 
interpolation scheme, the proposed LTS method can be 
easily implemented in the situation of the multiple 
subdomains with arbitrary integral time step ratio. Good 
energy conservative property is achieved. Some numerical 
examples are given to illustrate good accuracy and 
speedup ratio without the increase of the memory usage 
for the solution of 3-D multiscale electromagnetic 
problems. 
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