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Abstract ─ This paper describes an iteration-free 

numerical approach for the analysis of the monostatic 

Radar Cross Section of arbitrary scenarios. The proposed 

method is based on a combination of the Sparse 

Approximate Inverse of the near-field coupling matrix 

and the Multilevel Fast Multipole Algorithm, and allows 

to bypass the iterative solution process maintaining a 

good degree of accuracy. 

Index Terms ─ Computational electromagnetics, inverse 

matrices, moment method, radar cross section. 

I. INTRODUCTION
The computation of the Radar Cross Section (RCS) 

of complex objects has raised the interest of the 

academic and industrial sectors due to a wide range of 

applications involved. Efficient RCS computation 

methods can be used in approach systems, automatic 

vehicle identification and traffic management, collision-

avoidance systems, meteorology, military applications 

and others. However, the calculation of the RCS of 

electrically large and complex objects is often restricted 

to the use of high-frequency methods [1] due to the 

relaxation of their computational requirements compared 

to full-wave techniques such as the Method of Moments 

(MoM) [2]. The use of high-frequency approaches 

imposes certain geometrical restrictions in order to 

guarantee accurate results that may not be fulfilled in 

some cases. Hybrid techniques [3,4,5] have typically 

been proposed in order to mitigate this limitation. 

There has been a surge in the development of 

efficient full-wave approaches based on the MoM 

that allow to address larger problems. Some of these 

techniques rely on the idea of avoiding the storage of the 

full coupling matrix and, instead, retain only its near-

field matrix, computing the interactions between distant 

elements using efficient matrix-vector products [6,7]. 

One of the most popular approaches within this group [6] 

is the Multilevel Fast Multipole Algorithm (MLFMA), 

based on the aggregation of the fields radiated by the 

currents over regions of the geometry to form multipole 

expansions that can then be translated to different points 

and disaggregated in order to account for distant 

interactions. A different strategy is based on the 

reduction of the number of unknowns using an extended 

set of basis and testing functions called macro-basis 

functions, which, in turn, can be seen as aggregations of 

the low-level functions used by the conventional MoM 

[8,9]. 

The prediction of monostatic RCS values of 

complex scenarios using rigorous approaches is an 

especially demanding task in terms of CPU-time, since 

it requires the solution of the matrix system for as many 

excitations as observation directions, although some 

methods have been developed in order to decrease this 

number using a low-rank reduction of the set of 

excitations [10], or the approximation of close angular 

monostatic values using bistatic computations [11]. A 

fast numerical approach developed using the two-

dimensional RCS via the MLFMA combined with a low-

rank spectral preconditioner and the compression of the 

excitation vectors using ACA is described in [12]. An 

alternative application of ACA for the fast computation 

of the monostatic RCS is shown in [13]. In [14] the 

authors propose a fast technique for the analysis of the 

monostatic RCS using Interpolative Decomposition (ID) 

and the skeletonization of the excitation matrix. The 

same algorithm is used for the analysis of wide angular 

sweeping in [15], overcoming the high memory 

requirements of the skeletonization by applying an 

algorithm parallelized using the Message Passing 

Interface (MPI) paradigm. In [16,17] extrapolations 

based on the Asymptotic Waveform Extraction technique 

(AWE) are presented for an efficient monostatic RCS 

computation. A Bayesian Compressive Sensing method 

for monostatic scattering analysis is detailed in [18]. The 

Best Uniform Approximation method combined with the 

Singular Value Decomposition (SVD) is proposed in 

[19] to reduce the CPU-time required for monostatic

RCS computations.

We propose in this work a novel approach for the 

fast computation of the monostatic RCS based on the 

combination of the Sparse Approximate Inverse (SAI) of 

the near-field coupling matrix, which allows to obtain an 
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approximation of the currents produced by the near-field 

interactions between basis functions, and the MLFMA in 

order to take into consideration the far-field interactions. 

This strategy allows to bypass an iterative solution 

process, which generally involves most of the computing 

time when using a conventional full-wave solver. The 

accuracy obtained, as seen in the test cases provided,  

can be considered good for many applications while 

allowing to analyze problems that fall out of the scope of 

high-frequency techniques. 

 

II. COMPUTATION OF THE SPARSE 

APPROXIMATE INVERSE 
The Sparse Approximate Inverse is generally used 

for the generation of preconditioners in MoM-based 

approaches [20,21,22]. In this document we propose an 

alternative application, using the SAI matrix to obtain 

directly an initial current distribution due to the near-

field interactions between basis functions. Following the 

conventional application of the MLFMA we assume a 

partitioning of the scenario in terms of cubical regions 

with a typical side length of λ/4. 

As a starting point for the description of the analysis 

technique it is convenient to consider the MoM matrix 

equation:  
[𝑍][𝐽] = [𝑉],                             (1) 

where [Z] is a non-sparse coupling matrix, [J] denotes 

the current density distribution to be determined and [V] 

is the excitation vector. It is possible to separate matrix 

[Z] into two parts, containing respectively the near- and 

far-field interactions: 

([𝑍𝑁𝐹] + [𝑍𝐹𝐹])[𝐽] = [𝑉].                   (2) 

Matrix [ZNF] contains the coupling terms between 

basis functions located in the same or in adjacent regions, 

which are, in turn, the coefficients with more significant 

magnitude. This allows to make the following 

approximation in order to compute its approximate 

inverse: 

[𝑍𝑁𝐹][𝐽] ≈ [𝑉],                           (3) 

and, assuming that [M] is an approximation of the 

inverse of [ZNF], the following relation stands after 

performing the right multiplication of both sides by [M] 

in (3): 
[𝐽] ≈ [𝑀][𝑉].                            (4) 

In order to find [M] we impose a sparsity pattern, i.e., 

restrict the positions of the non-null coefficients of [M], 

and use a Linear Least Squares (LLS) approximation to 

determine the best solution that satisfies such constraint. 

It is common to use the same block structure of [ZNF]  

for [M] [21], although we have proposed an enlarged 

version of this structure based on a sparsity distance 

parameter [22]. The SAI matrix is computed, therefore, 

minimizing the norm of the difference between the 

identity matrix [I] and the product of [M] and [ZNF]: 

𝑚𝑖𝑛‖[𝐼] − [𝑀][𝑍𝑁𝐹]‖.                     (5) 

 

The Frobenius norm is generally applied in (5), 

because it allows to separate the computation of each 

row of the SAI matrix from the rest, which involves very 

good scalability properties using modern multi-core 

computers. By following this procedure, (5) can be 

decomposed into Ns independent LLS problems: 

𝑚𝑖𝑛‖[𝐼] − [𝑀][𝑍𝑁𝐹]‖𝐹
2 = ∑ 𝑚𝑖𝑛‖𝒊𝒕 − 𝒎𝒕[𝑍𝑁𝐹

(𝑡)
]‖

𝐹

2𝑁𝑠
𝑡=1 , 

(6)                       

where Ns is the number of unknowns of the problem, it 

is the t-th column of the identity matrix and mt makes 

reference to the t-th row of the SAI matrix, determined 

after solving the LLS problem. Matrix [𝑍𝑁𝐹
(𝑡)

] is a 

submatrix of [ZNF] obtained by discarding the coefficients 

that are not involved in the LLS problem. By following 

this procedure, after solving the Ns problems described 

by (6) the full SAI matrix can be obtained. 
 

A. Filtering strategies in the SAI matrix generation 

Taking into account the previous considerations 

regarding the matrix generation, it is possible to improve 

its computational efficiency as well as the memory 

footprint [23]. We can, on one hand, substitute matrix 

[𝑍𝑁𝐹
(𝑡)

] in (6) with a filtered version [𝑍𝑁𝐹
(𝑡)

], where the 

coefficients with a magnitude lower than τ times the 

largest self-impedance term within  each MLFMA first-

level region are set to 0. The τ parameter will be denoted 

in this work as impedance filtering threshold. As a result, 

it is possible to eliminate a number of columns in the 

matrix that defines each LLS problem, reducing the 

effective size of these problems and speeding up the  

SAI generation. Typical τ values of around 10-2 offer  

a noticeable CPU-time reduction while maintaining a 

performance comparable to that of the unfiltered version. 

The second filtering strategy that can be considered 

addresses the mt solution vector in (6) that determines 

the t-th row of the SAI matrix. This vector, in turn, can 

be substituted by its filtered version �̃�𝒕 in order to be 

stored using a reduced amount of data. In this case the 

filtering parameter ξ is used, denoted as row filtering 

threshold. Only the elements of the computed row with 

a magnitude equal or larger than ξ times that of the 

dominant element are to be retained, while the rest are 

approximated to 0. Values of 10-2 to 3·10-2 have been 

proven in the existing literature [22,23] to keep good 

performance while requiring a fraction of the memory 

needed by the non-filtered SAI matrix. 

 

III. COMPUTATION OF FAR-FIELD 

INTERACTIONS USING MLFMA 
While the SAI matrix can be used to obtain an 

approximation of the current distribution on the scenario 

due to the near-field interactions, the MLFMA provides 

an operator to account for those between distant functions. 

The working principle of the MLFMA consists of  
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aggregating the contributions of multiple basis functions 

to the center of their parent region. The aggregation of 

the j-th basis function 𝑇𝑗(𝑟′⃗⃗ ) to the multipole located at 

the center of the m-th region can be performed as follows: 

 𝑉𝑗𝑚
𝐴𝐺𝐺(�̂�) = ∫ 𝑒−𝑗�̂�𝑟 𝑗𝑚

 

𝑆
(𝐼 ̅ − �̂��̂�)𝑇𝑗(𝑟′⃗⃗ )𝑑𝑆′,      (7) 

and, analogously, the disaggregation term of a multipole 

centered at the m'-th region to the i-th testing function 

𝑅𝑖(𝑟′⃗⃗ ) can be written: 

𝑉𝑚′𝑖
𝐷𝐼𝑆(�̂�) = ∫ 𝑒𝑗�̂�𝑟 𝑖𝑚′

 

𝑆
(𝐼 ̅ − �̂��̂�)𝑅𝑖(𝑟′⃗⃗ )𝑑𝑆′.       (8) 

After aggregating the currents to the center of the 

corresponding parent regions, the multipoles can be 

aggregated to higher-level regions in a similar fashion 

and translated to other same-level regions. The translation 

operator 𝜏𝑚𝑚′(�̂�, 𝑟 𝑚𝑚′) allows to express the multipole 

expansion aggregated to the center of m as a modified 

multipole centered at m': 

𝜏𝑚𝑚′(�̂�, 𝑟 𝑚𝑚′) =
𝑗𝑘

4𝜋
∑𝑗𝑙(2𝑙 + 1)

𝐿

𝑙=0

 

                  ℎ𝑙
(1)

(𝑘𝑟𝑚𝑚′)𝑃𝑙(𝑟 𝑚𝑚′ ∙ �̂�),             (9) 

where ℎ𝑙
(1)

(𝑘𝑟𝑚𝑚′) is a spherical Hankel function of the 

first kind and 𝑃𝑙(𝑟 𝑚𝑚′ ∙ �̂�) is a Legendre polynomial. 

Using the aggregation of the fields radiated by the 

basis functions into their first-level multipoles and 

subsequently into their higher-level ones, the translation 

of the centers of these multipoles and the disaggregation 

it is possible perform very efficiently the matrix-vector 

multiplication between the far-field coupling matrix and 

the current vector. We will denote in this work Ψ𝐹𝐹  to 

the operator that allows to carry out this computation: 

Ψ𝐹𝐹([𝐽]) = [𝑍𝐹𝐹][𝐽].                      (10) 
 

IV. DESCRIPTION OF THE PROPOSED 

APPROACH 
With the previous considerations, and after 

computing the SAI matrix [M] as indicated in (6), it is 

possible to obtain a first approximation of the current 

distribution on the scenario [J(1)] multiplying the SAI 

matrix and the incident field vector [V(1)]: 

[𝐽(1)] ≈ [𝑀][𝑉(1)].                      (11) 

Vector [V(1)] in (11) is the excitation restricted to the 

visible zone of the geometry: 

𝑣𝑖
(1)

= {
𝑣𝑖 , 𝑖𝑓 �̂�𝑖 ∙ �̂�  ≤ 0

0, 𝑖𝑓 �̂�𝑖 ∙ �̂� > 0
,  for i=1..Ns,        (12) 

where 𝑣𝑖
(1)

 and 𝑣𝑖 make reference to the i-th coefficient 

of [V(1)] and [V], respectively, �̂� is the direction of the 

impinging plane wave and �̂�𝑖 stands for the normal 

vector evaluated at the center of the i-th subdomain. 

The field scattered by [J(1)] can be associated, in the 

terminology of high-frequency approaches, to first order 

effects, and can be sufficient to analyze problems that do 

not present interactions between separate geometrical 

regions (such as double reflections, double diffraction or 

combined effects). However, in order to offer a solution 

for more general cases, and after obtaining [J(1)], it is 

possible to calculate the field induced by this current 

distribution over the scenario due to the far-field 

contributions: 

[𝑉𝐹𝐹] = Ψ𝐹𝐹([𝐽
(1)]).                      (13) 

It is important to remark that [VFF] requires a 

modification before obtaining the final induced currents. 

Analogously to the procedure followed in (12) it is 

necessary to illuminate only the visible part of the 

scenario, generating a new excitation vector [V(2)] as 

follows: 

𝑣𝑖
(2)

= {
𝑣𝑖

𝐹𝐹 , 𝑖𝑓 �̂�𝑖 ∙ �̂�  ≤ 0

0, 𝑖𝑓 �̂�𝑖 ∙ �̂� > 0
,  for i=1..Ns,        (14) 

where 𝑣𝑖
𝐹𝐹  denotes the i-th coefficient of [𝑉𝐹𝐹]. It is 

worthwhile to remark that the current distribution [J(1)] is 

equivalent to considering only the near-field coupling 

matrix [ZNF] shown in (2), and can be refined by 

obtaining [J(2)] after the introduction of the correction 

voltage [V(2)] including near and far field contributions 

as follows: 

  [𝑍𝑁𝐹][𝐽
(2)] + [𝑉(2)] =  [𝑉(1)],              (15) 

and an approximation of the resulting current 

distribution can be obtained using the SAI matrix: 

  [𝐽(2)] ≈ [𝑀]([𝑉(1)] − [𝑉(2)]).              (16) 

 

A. SAI matrix storage and matrix-vector product 

strategies 

In addition to the theoretical efficiency of modern 

computational analysis approaches, their scalability is 

very important in order to handle complex problems. It 

is necessary to make use of appropriate data structures 

for the concurrent generation and storage of the matrices 

and vectors used in the analysis. The LLS problems 

represented in (6) can be, thanks to the application of the 

Frobenius norm, distributed among a number of threads 

or nodes in shared-memory and distributed-memory 

architectures, respectively. The solution of each problem 

gives rise to a row of the SAI matrix. However, when 

distributed memory systems such as computer clusters 

are taken into account, there are two alternatives for the 

storage of this matrix: (i) each node can store the set of 

rows of the preconditioner that has previously computed 

or (ii) each row can be processed and its elements 

distributed to the nodes that store the corresponding parts 

of the current and excitation vectors. Note that the first 

alternative does not require exchanging messages in the 

SAI generation process, but needs to exchange the 

excitation vectors between nodes in the matrix-vector 

multiplications. This is the approach taken in the present 

work, since it requires a lesser amount of data exchanged 

between nodes. Figure 1 shows the matrix-vector 

product data distributed between a number of nodes P in 

order to clarify this situation, where each processor  

stores the data represented with the same color.  
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Fig. 1. Scheme illustrating the distribution of the current 

vector, SAI matrix and excitation vector among 

computing nodes, represented by blocks with different 

colors. Ni represents the number of rows assigned to the 

i-th node, while Mi corresponds to the maximum number 

of columns corresponding to the i-th node after applying 

the row filtering threshold. 
 

B. Basis and testing functions applied 

The scenarios considered in the present work are 

described by means of Non-Uniform Rational B-Spline 

(NURBS) surfaces defined by their (u,v) parametric 

coordinates. We make use of a curved mesh based on 

quadrangles defined on the parametric space of these 

patches. The basis and testing functions are rooftops and 

razor-blade functions defined in the parametric space. 

The resulting elements and functions, therefore, are 

curved and conformed to the surface in the real space. 

This scheme offers a good degree of accuracy modeling 

the original geometry and avoiding facetization errors. 

The basis functions are introduced between pairs of 

adjacent subdomains for the u and v components. Figure 

2 depicts an example of the definition of these functions 

for the Electric Field Integral Equation (EFIE) 

formulation. 
 

 
 

Fig. 2. Illustration of the basis (curved rooftops) and 

testing (curved razor-blades) functions used in the 

presented approach over NURBS patches, in the real 

space (top) and parametric space (bottom). Each junction 

between consecutive patches is denoted as a side and 

associated with a basis and a testing function. 

V. NUMERICAL RESULTS 
We present in this section some examples in order 

to validate the performance and efficiency of the 

proposed approach. The hardware platform used to 

obtain the results contains 2 Intel Xeon processors with 

a base clock speed of 2.9 GHz, 16 physical cores and 256 

GB of RAM. The first test case considered is a cube with 

a side length of 1 m, coated with 2 mm of a material with 

an electric permittivity εr=2. The base of the cube rests 

on the XY plane, with its sides parallel to the reference 

axes. The center of the cube is located at (0.5, 0.5, 0.5), 

with all the units in meters. The monostatic RCS has 

been obtained for the θ-θ polarization considering the 

Electric Field Integral Equation at a frequency of 3 GHz 

for φ=0º and θ ranging from 0º to 90º in 0.5º steps. The 

results obtained with the presented technique have been 

compared with those returned by the full-wave MoM-

MLFMA approach using the Biconjugate Stabilized 

Gradient solver (BiCGStab) [24] with a residual of 10-3 

and using the same SAI matrix as a preconditioner. The 

impedance filtering threshold used in this case has been 

τ = 10-2, obtaining an average reduction of 25.2% for  

the size of the LLS problems required to retrieve the  

SAI rows. Using the same value for the row filtering 

threshold (ξ = 10-2) we have obtained a reduction of the 

total size of the SAI matrix of 67.3%. Figure 3 shows 

good agreement between both approaches. In this  

case there are predominantly near-field interactions and 

therefore only the SAI matrix has been necessary to 

obtain the current distribution using the proposed 

approach, which means calculating the scattering field 

from the [J(1)] current distribution obtained as shown in 

(11). The total number of basis and testing functions  

has been 249,696. The CPU-time required for this 

computation has been 21,288 seconds in the case of the 

MoM-MLFMA and 894 seconds with the proposed 

technique, including an identical setup time of 541 

seconds to obtain the near-field coupling matrix, the SAI 

matrix and the multipole data. 
 

 
 

Fig. 3. Monostatic RCS results for the scenario 

containing a coated cube. 
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The second test case considered includes an 

additional cube, with the same characteristics as that 

previously described, with its center located at (-1.5, 0.5, 

2.5), where all the units are expressed in meters. This 

case has been analyzed considering the same frequency, 

polarization and observation directions and includes 

second order effects in addition to reflection. To 

illustrate the difference between both we have separated 

the results obtained considering only the SAI matrix (1 

effect) and the SAI-MLFMA contribution (2 effects). 

These results are shown in Fig. 4 and compared to those 

obtained using MoM-MLFMA, showing very good 

agreement. The impedance filtering threshold τ and the 

row filtering threshold ξ, as in the previous example, 

have been set to 10-2, obtaining a reduction of the size  

of the LLS problems involved in the SAI matrix 

computation of 19.5% and a reduction of the total SAI 

matrix size of 72.3%. The number of basis functions has 

been 499,392. The total CPU-time with MoM-MLFMA 

using the same solver as in the previous case has been 

53,940 seconds, while the proposed approach has 

required 6,122 seconds computing both effects and  

5,240 seconds when considering only the near-field 

contribution. This time includes a setup stage of 3,513 

seconds for both approaches. We have differentiated the 

results for both effects in Fig. 4 with the sole purpose of 

illustrating the contribution carried by each stage of the 

approach. 
 

 
 

Fig. 4. Monostatic RCS results for the scenario 

containing two coated cubes. 

 

VI. CONCLUSION 
A novel analysis method for the computation of  

the monostatic RCS of arbitrary scenarios has been 

described in this letter. This approach presents very good 

efficiency compared to full-wave approaches because it 

does not require to make use of an iterative solver. The 

parametric Sparse Approximate Inverse of the near-field 

coupling matrix is used to obtain the induced currents 

considering the near-field interactions, and the Multilevel 

Fast Multipole Algorithm takes into account the far-field 

effects using the near-field derived currents in order  

to compute the final current distribution. Good 

performance and accuracy is observed in the test cases 

provided. 

 

ACKNOWLEDGMENT 
The work described in this letter has been supported 

in part by the Spanish Ministry of Economy and 

Competitiveness (Project Ref. TEC2017-89456-R), by 

the Junta de Comunidades de Castilla-La Mancha (Project 

Ref. SBPLY/17/180501/000433) and by the University 

of Alcalá (Project Ref. CCG2018/EXP-048). 

 

REFERENCES 
[1] E. F. Knott, “A progression of high-frequency RCS 

prediction techniques,” Proc. IEEE, vol. 73, no. 2, 

pp. 252-264, Feb. 1985. 

[2] R. F. Harrington, Field Computation by Moment 

Methods. New York, McMillan, 1968. 

[3] D. P. Bouche, F. A. Molinet, and R. Mittra, 

“Asymptotic and hybrid techniques for electro-

magnetic scattering,” Proc. IEEE, vol. 81, no. 12, 

pp. 1658-1684, Dec. 1993. 

[4] L. N. Medgyesi-Mitschang and D.-S. Wang, 

“Hybrid methods in computational electromagnet-

ics: A review,” Computer Physics Communications, 

vol. 68, no. 1-3, pp. 76-94, Nov. 1991. 

[5] C. Delgado, E. Garcia, and F. Catedra, “Hybrid 

iterative approach combined with domain 

decomposition for the analysis of large 

electromagnetic problems,” Proc. IEEE, vol. 101, 

no. 2, pp. 320-331, Aug. 2012. 

[6] W. C. Chew, J. Jin, E. Michielssen, J. Song, Ed., 

Fast and Efficient Algorithms in Computational 

Electromagnetics. Artech House Inc., 2001. 

[7] K. Zhao, M. N. Vouvakis, J.-F. Lee, “The adaptive 

cross approximation algorithm for accelerated 

method of moments computations of EMC 

problems,” IEEE Trans. Electromagnetic Compat., 

vol. 14, iss. 4, pp. 763-773, Nov. 2005. 

[8] E. Suter and J. R. Mosig, “A subdomain multilevel 

approach for the efficient MoM analysis of large 

planar antennas,” Micr. Opt. Technol. Letters, vol. 

26, no. 4, pp. 270-277, Aug. 2000. 

[9] C. Delgado, R. Mittra, and M. F. Cátedra, 

“Accurate representation of the edge behavior of 

current when using PO-derived Characteristic 

Basis Functions,” IEEE Antennas and Wireless 

Propagation Letters, vol. 7, no. 5, pp. 43-45, Mar. 

2008. 

[10] Z.-Q. Lu and X. An, “Fast monostatic radar  

cross-section computation for perfectly electric 

conducting targets using low-rank compression 

and adaptive integral method,” IEEE Trans. 

Antennas Propagat., vol. 52, no. 2, pp. 605-607,  

DELGADO, CÁTEDRA: FAST MONOSTATIC RCS COMPUTATION 739



Feb. 2004. 

[11] M. J. Schuh, A. C. Woo, and M. P. Simon, “The 

monostatic/bistatic approximation,” Electromag-

netics, vol. 36, no. 4, pp. 76-78, Aug. 2004. 

[12] A. Schroder, H. D. Brüns, and C. Schuster,  

“A hybrid approach for rapid computation of  

two-dimensional monostatic radar cross section 

problems with the multilevel fast multipole 

algorithm,” IEEE Trans. Antennas Propag., vol. 

60, no. 12, pp. 6058-6061, Dec. 2012. 

[13] Z. Liu, R. Chen, J. Chen, and Z. Fan, “Using 

adaptive cross approximation for efficient 

calculation of monostatic scattering with multiple 

incident angles,” Appl. Comput. Electrom., vol. 26, 

no. 4, pp. 325-333, 2011. 

[14] X. M. Pan and X. Q. Sheng, “Accurate and efficient 

evaluation of spatial electromagnetic responses  

of large scale targets,” IEEE Trans. Antennas 

Propag., vol. 62, no. 9, pp. 4746-4753, 2014. 

[15] X. M. Pan, S. L. Huang, and X. Q. Sheng, “Wide 

angular sweeping of dynamic electromagnetic 

responses from large targets by MPI parallel 

skeletonization,” IEEE Trans. Antennas Propag., 

vol. 66, no. 3, pp. 1619-1623, Mar. 2018. 

[16] Y. E. Erdemli, J. Gong, C. J. Reddy, and J. L. 

Volakis, “Fast RCS pattern fill using AWE 

technique,” IEEE Trans. Antennas Propagat., vol. 

46, pp. 1752-1753, Nov. 1998. 

[17] X. C. Wei, Y. J. Zhang, and E. P. Li, “The 

hybridization of fast multipole method with 

asymptotic waveform evaluation for the fast 

monostatic RCS computation,” IET Microw. 

Antennas Propag., vol. 8, no. 1, pp. 46-51, Jan. 

2014. 

[18] H.-H. Zhang, X.-W. Zhao, Z.-C. Lin, and W. E. I. 

Sha, “Fast monostatic scattering analysis based on 

Bayesian compressive sensing,” Appl. Comput. 

Electrom., vol. 31, no. 11, pp. 1279-1285, 2016. 

[19] Z. Liu, S. He, X. Zhang, Y. Liu, and Y. Zhang, 

“Using the best uniform approximation with 

compression for efficient computation of 

monostatic scattering,” Appl. Comput. Electrom., 

vol. 29, no. 11, pp. 856-863, 2014. 

[20] J. Lee, J. Zhang, and C.-C. Lu, “Sparse inverse 

preconditioning of multilevel fast multipole 

algorithm for hybrid integral equations in electro-

magnetics,” IEEE Trans. Antennas Propagat., vol. 

52, no. 9, pp. 2277-2287, Sept. 2004. 

[21] T. Malas and L. Gürel, “Accelerating the 

multilevel fast multipole Algorithm with the 

Sparse-Approximate-Inverse (SAI) precondition-

ing,” SIAM J. Sci. Comput., vol. 31, no. 3, pp. 

1968-1984, Mar. 2009. 

[22] C. Delgado and M. F. Cátedra, “Sparse 

approximate inverse preconditioner with parametric 

sparsity pattern applied to Macro Basis Function 

methods,” IEEE Antennas and Wireless Propa-

gation Letters, vol. 17, no. 5, pp. 849-852, May 

2018. 

[23] C. Delgado, E. García, A. Somolinos, and M.  

F. Cátedra, “Hybrid parallelisation scheme for  

the application of distributed near-field sparse 

approximate inverse preconditioners on high-

performance computing clusters,” IET Microw. 

Antennas Propag., vol. 14, no. 4, pp. 320-328, Mar. 

2020. 

[24] G. L. G. Sleijpen and D. R. Fokkema, “Bi-

CGSTAB(l) for linear equations involving 

unsymmetric matrices with complex spectrum,” 

Elec. Trans. Numer. Anal., vol. 1, pp. 11-32, 1993. 

 

 

 

 

Carlos Delgado received the M.S. 

and Ph.D. degrees in Telecomm-

unications Engineering from the 

University of Alcalá, Alcalá de 

Henares, Spain, in 2002 and 2006, 

respectively. He was a Visiting 

Scholar in 2005 and a Visiting   

Post-Doctoral Fellow in 2007 with 

the Electromagnetic Communication Laboratory, 

Pennsylvania State University, State College, PA, USA. 

He is currently an Associate Professor with the 

Computer Science Department, University of Alcalá. He 

is also a Co-Founder of newFASANT, a company that 

develops and commercializes electromagnetic simulation 

software using a wide range of numerical approaches. 

His current research interests include numerical methods 

applied to scattering and radiation problems, hybridization 

of high-frequency and full-wave methods, and fast 

computational techniques applied to electromagnetics. 

 

Manuel Felipe Cátedra received 

the M.S. and Ph.D. degrees in 

Telecommunications Engineering 

from the Polytechnic University of 

Madrid (UPM), Madrid, Spain, in 

1977 and 1982, respectively. From 

1976 to 1989 he was with the 

Radiocommunication and Signal 

Processing Department, UPM. He has been a Professor 

with the University of Cantabria, Santander, Spain, from 

1989 to 1998. He is currently a Professor with the 

University of Alcalá, Madrid. He has worked on about a 

100 research projects solving problems of electromagnetic 

compatibility in radio and telecommunication equipment, 

antennas, microwave components and radar cross 

section, and mobile communications. He has developed 

and applied CAD tools for radio-equipment systems 

such as Navy ships, aircrafts, helicopters, or satellites, 

ACES JOURNAL, Vol. 35, No. 7, July 2020740



and the main contractors being EADS, ALCATEL, 

CNES, ALENIA, DASA, SAAB, INTA, BAZAN, 

INDRA, the Spanish Defense Department, CAICYT, 

DGICYT, CICYT, CEE (ESPRIT), European Space 

Agency (ESA), Ericsson, MATRA SPACE, CSELT, 

KTH, INAVI, Texas University, Drexel University, 

Singapore University, Mitsubishi, Kawasaki Heavy 

Industries, BOSCH, CASA, RYMSA, IRSA, INDRA, 

ISDEFE, TELEFONICA, ENSA, Instituto Geográfico 

Nacional, TELEVES, GMV, and ACCIONA. Recently, 

he promoted the creation of a technology-based company 

of the University of Alcalá called newFASANT 

(http://www.fasant.com) for a better transfer of techniques 

developed by the group.

 

DELGADO, CÁTEDRA: FAST MONOSTATIC RCS COMPUTATION 741



 
 
    
   HistoryItem_V1
   AddNumbers
        
     Range: all odd numbered pages
     Font: Times-Roman (unembedded) 8.0 point
     Origin: top right
     Offset: horizontal 43.20 points, vertical 26.64 points
     Prefix text: ''
     Suffix text: ''
     Colour: Default (black)
     Add text every 0 pages
      

        
     D:20200708141638
      

        
     1
     1
     
     TR
     
     1
     1
     1
     0
     0
     735
     TR
     1
     0
     0
     334
     127
     0
     1
     R0
     8.0000
            
                
         Odd
         7
         AllDoc
         174
              

       CurrentAVDoc
          

     [Sys:ComputerName]
     43.2000
     26.6400
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0m
     Quite Imposing Plus 4
     1
      

        
     0
     115
     114
     7bea0473-0aa3-4e75-9a2d-81b4400081c4
     58
      

   1
  

    
   HistoryItem_V1
   AddNumbers
        
     Range: all even numbered pages
     Font: Times-Roman (unembedded) 8.0 point
     Origin: top left
     Offset: horizontal 43.20 points, vertical 26.64 points
     Prefix text: ''
     Suffix text: ''
     Colour: Default (black)
     Add text every 0 pages
      

        
     D:20200708141702
      

        
     1
     1
     
     TL
     
     1
     1
     1
     0
     0
     735
     TR
     1
     0
     0
     334
     127
    
     0
     1
     R0
     8.0000
            
                
         Even
         7
         AllDoc
         174
              

       CurrentAVDoc
          

     [Sys:ComputerName]
     43.2000
     26.6400
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0m
     Quite Imposing Plus 4
     1
      

        
     0
     115
     113
     1784f42f-ada1-463e-bc40-b636a55a1a19
     57
      

   1
  

 HistoryList_V1
 qi2base





