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Abstract ─ MATLAB and Python are two common 

programming languages commonly used in computational 

electromagnetics. Both provide simple syntax and 

debugging tools to make even complicated tasks relatively 

simple. This paper studies how these programming 

languages compare in throughput for a variety of tasks 

when utilizing complex numbers which are common 

in electromagnetics applications. The compared tasks 

include basic operations like addition, subtraction, 

multiplication, and division, along with more complex 

operations like exponentiation, summation, Fourier 

transforms, and matrix solving. Each of these tests is 

performed for both single and double precision on the 

CPU. A 2D finite difference frequency domain problem 

and a planar array beamforming problem are also 

presented for comparison of throughput for realistic 

simulations. 

Index Terms ─ Computational electromagnetics, 

MATLAB, python. 

I. INTRODUCTION
Programming languages such as Python and 

MATLAB are popular in computational electromagnetics. 

They provide abstract constructs when compared to 

lower level compiled programming languages such as 

C/C++ and FORTRAN. Both Python and MATLAB 

provide platforms for quickly developing and testing a 

variety computational electromagnetics (CEM) problems. 

MATLAB and Python provide optimized libraries that 

can be leveraged to create computationally efficient 

programs with a minimal amount of programming. This 

environment is ideal for the testing of new technologies 

because users can quickly prototype ideas without 

worrying about memory management and data types. 

A. Current work

Speeds between MATLAB and Python have been

previously compared for areas of scientific computing. 

[1] provided some benchmark tests to compare runtimes

on a number of linear algebra routines for real numbers

in both Python and MATLAB while articles like [2] and

[3] have covered general usage of Python as an

alternative to MATLAB for scientific computing. Even

further, [4] investigates and discusses the usage of Python

for computational electromagnetics (CEM). A vast

amount of research has looked specifically on the usage

of MATLAB for CEM for general applications like [5]

and for more application specific acceleration like in [6].

Unlike MATLAB, Python is a free and open source 

programming language that is community supported. 

Python and many scientific computing libraries can be 

downloaded as a single package like Anaconda [7]. The 

Anaconda package also includes integrated development 

environments (IDEs) like Spyder [8] to provide an 

experience similar to that of working in MATLAB’s 

IDE. For those who are not familiar with Python syntax, 

there exists many free resources to help learn the 

intricacies of the programming language and help 

quickly get a user started. Some resources like [9] even 

provide direct command translations from MATLAB to 

Python allowing those familiar with MATLAB to learn 

how to use numerical libraries in Python even faster. 

While MATLAB and Python have both been studied 

and utilized for a variety of electromagnetic problems, 

MATLAB still dominates this area of research. 

IEEEXplore has about 3,000 paper matches for the 

keyword Python and over 56,000 for the keyword 

MATLAB. Here we will take an in depth look at how 

Python matches up as a competitor to MATLAB 

specifically in CEM problems. 

B. Comparison for scientific computing

CEM problems commonly deal in double and single

precision complex numbers. To the knowledge of the 

authors, comparisons of MATLAB and Python for 

computation using complex numbers has not previously 

been investigated. Because CEM problems vary so 

widely in application and implementation, a generic 

approach to comparison of speeds between MATLAB 

and Python was taken. For this approach, a large variety 

of math operations were tested that gradually increase in 

complexity. These operations are the building blocks for 

many CEM problems and can be used to estimate the 
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relative runtimes between programming languages. 

Basic operations (e.g., add, subtract, multiply, 

divide) are first tested to provide a good baseline for 

elementary math operations performed on complex 

numbers. This is then stepped up to include more 

complex operations like exponentiation, summation, and 

a combination of elementary operations (specifically 

𝑐 =  𝑎 + 𝑏 ∗ 𝑒𝑥𝑝(𝑎)). Past this, matrix operations such 

as matrix-matrix multiplication and LU decomposition 

are performed, along with solving of both dense and 

sparse systems of linear equations. With runtime 

comparisons for basic operations, relative runtimes can 

then be estimated for more realistic CEM problems. To 

test these runtimes, a realistic finite difference frequency 

domain (FDFD) problem and a beamforming simulation 

written in both MATLAB and Python were compared. 

 

II. MATLAB AND PYTHON FOR CEM 
As previously mentioned, both MATLAB and 

Python have been used on a variety of applications. Both 

provide a large range of pre-written optimized functions 

that the users do not need to rewrite from scratch. In 

many cases for linear algebra operations, Python and 

MATLAB can both be configured to use the Intel Math 

Kernel Library (MKL) [10]. This library provides highly 

optimized basic linear algebra subprograms (BLAS) and 

linear algebra package (LAPACK) library for common 

linear algebra problems. With both programming 

languages using these subroutines, many linear algebra 

operations utilize the same precompiled code and 

therefore would be expected have near identical runtimes. 

 

A. MATLAB 

MATLAB arguably provides an easier and more 

beginner friendly approach for people not experienced  

in programming. This is because MATLAB does not 

typically require external libraries. This means that all 

commands that need to be used in MATLAB are either 

available from the core installation, or a toolbox. Once a 

toolbox is installed, the commands from that toolbox are 

always available to the user. MATLAB also is built 

specifically for matrix operations. This means that for 

many CEM applications, the code will be optimized and 

require less verbose syntax than its Python counterpart.  

 

B. Python 

Unlike MATLAB, Python requires libraries to be 

imported for a variety of tasks. While this provides an 

extra step by calling the import command in Python, it 

increases the flexibility of the programming language by 

allowing the user to easily include third party packages 

without the concern of overlapping function and class 

names. 

While a vast number of Python libraries exist online, 

three well developed libraries are utilized in this paper. 

These are NumPy, SciPy, and Numba. These three 

libraries cover most of the core functionality that 

MATLAB contains and can therefore be used to solve 

many CEM problems. NumPy and SciPy provide 

functionality such as array and matrix operations, along 

with access to linear algebra subroutines found in the 

compiled BLAS backend. Numba provides an additional 

layer of acceleration for Python allowing vector 

operations to be partially compiled and run around the 

typical Python interpreter. 
 

C. Further acceleration 

Beyond using prebuilt libraries, MATLAB and 

Python both provide further acceleration capabilities. 

Both can access functions written and compiled from 

C/C++ and FORTRAN. In MATLAB, mex file wrappers 

are written to take MATLAB data types and pass them 

to these lower level functions. Python on the other hand 

can typically directly call these compiled functions. This 

is because at its core, Python typically uses a runtime 

built in the C programming language. Integration with 

lower level libraries can therefore be done through a 

Cython interface, or by loading the functions as a shared 

library through the ctypes interface.  

Python code can also be compiled to native machine 

code with Cython. This allows users to include additional 

keywords to specify information such as data types and 

sizes. This additional information information allows the 

Cython compiler to optimize the compiled code to provide 

further acceleration over equivalent native Python code.  

While it is important to know these low-level 

interfaces exist, prototype code will typically be written 

directly in Python or MATLAB and therefore these 

interfaces are not quantitatively compared in this paper. 
 

III. MEASUREMENT OF 

COMPUTATIONAL SPEEDS IN PYTHON 

AND MATLAB 

A. Accurate timing of code 

Both MATLAB and Python provide methods to 

perform some timing analysis on different code snippets 

with tic()/toc() in MATLAB and timeit() in Python. 

Extensions of both of these functions were written with 

new OperationTimer classes. The version of this class in 

MATLAB and Python leveraged the existing timing 

capabilities but extended upon them to provide more in-

depth timing statistics. These classes provided the user 

with an adjustable number of repeat measurements. In 

most cases 100 repeat measurements were made. 

Repeat measurements are vital as they allow the 

generation of uncertainty bounds on the data. Bounding 

the uncertainties of the runtimes helps remove any 

outliers that may occur due to system inconsistencies 

(such as operating system scheduling). These 

uncertainties also provide insight into how variable these 

runtimes may be over multiple uses. In the case of this 

paper, these uncertainties were generated as the standard  
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deviation of the repeat measurements. 

Along with producing repeat measurements, the 

OperationTimer classes had several other features. This 

included allowing the user to run a sweep of input  

data which in turn allowed the testing of runtimes as  

a function of element count for each operation. 

Functionality for generating statistics on the data was 

also included in each class. These classes also provided 

a consistent interface and data format between both 

MATLAB and Python to ensure consistency in the post-

processing of the results. 
 

B. Testing the functions 

With a consistent class for timing of the code in both 

MATLAB and Python, each of the functions to be 

compared could then be tested. MATLAB and Python 

scripts were created that pass the function handles for 

each operation to test to the OperationTimer class. These 

scripts also set up parameters such as the number of 

repeat measurements and the sweep dimensions to run 

for each function. With the scripts set up, each function 

could then be timed and compared. 
 

IV. CPU RESULTS 
CPU results were obtained for the aforementioned 

operations on an AMD Threadripper 2990WX 32 Core 

processors with 64 logical processors and 128 GB of 

RAM. These results were obtained using MATLAB 

R2018a and Python 3.7 with NumPy 1.17.4, SciPy 1.3.2, 

and Numba 0.46. Each of the tests was run for both 

single and double precision complex data. Uncertainty 

bars were generated using the standard deviation of each 

of the recorded times. 
 

A. Basic operations 

The first set of results were basic add, subtract, 

multiply, and divide. Each of these operations was 

repeated 100 times for arrays with a number of elements 

ranging from 1 all the way to 100 million. The addition 

operation can be seen in Fig. 1, subtraction in Fig. 2, 

multiplication in Fig. 3, and division in Fig. 4. 
 

 
 

Fig. 1. Runtime vs. number of elements for addition with 

single and double precision using MATLAB, NumPy, 

and Numba. 

 
 

Fig. 2. Runtime vs. number of elements for subtraction 

with single and double precision using MATLAB, 

NumPy, and Numba.  

 

 
 

Fig. 3. Runtime vs. number of elements for multiplication 

with single and double precision using MATLAB, 

NumPy, and Numba.  
 

 
 

Fig. 4. Runtime vs. number of elements for division with 

single and double precision using MATLAB, NumPy 

and Numba.  

 

In each of these cases, both single and double 

precision for MATLAB and the Python Numba library 

have almost identical computation time. Numba performs 

just in time (JIT) compilation of the code to approach 

speeds of programming languages like C and FORTRAN. 

MATLAB also reaches these same speeds without any 

special operations. NumPy on the other hand is much 
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slower with each of these operations. This is most likely 

because there are number of abstracted steps and calls to 

the Python interpreter that must be performed on top of 

the typical computation, causing a slowdown. It is also 

important to note that both Numba and MATLAB 

provide a form of parallelization almost no user input 

(the ‘parallel’ keyword must be specified for Numba). 

Depending on the size of the dataset, this also will factor 

into the speedup of MATLAB and Numba over the 

Numpy Library. 

 

B. Extended operations 

Extended Operations were then tested including 

exponentiation, a combination of basic operations (𝑐 =
𝑎 + 𝑏 ∗ 𝑒𝑎), summation, and the fast fourier transform 

(FFT). Each of these operations was again run 100 times 

for a variety of different numbers of elements. All 

operations except the FFT were run with sizes from 1  

to 100 million elements while the FFT was run on arrays 

of size 1 to 5 million elements. The timed result 

comparisons of exponentiation and combined operations 

can be seen in Fig. 5 and Fig. 6 with the sum and FFT 

seen in Fig. 7 and Fig. 8. 

 

 
 

Fig. 5. Runtime vs. number of elements for 

exponentiation with single and double precision using 

MATLAB, NumPy, and Numba. 
 

 
 

Fig. 6. Runtime vs. number of elements for combined 

𝑎 + 𝑏 ∗ 𝑒𝑥𝑝(𝑎) with single and double precision using 

MATLAB, NumPy, and Numba.  

 
 

Fig. 7. Runtime vs. number of elements for summation 

with single and double precision using MATLAB and 

NumPy.  

 

 
 

Fig. 8. Runtime vs. number of elements for fft(a) with 

single and double precision using MATLAB, NumPy, 

SciPy, and MKL_FFT. 

 

Again, we can see that for exponentiation, 

MATLAB and Python using Numba provide near 

identical run times while NumPy proves much slower 

than the other two. Surprisingly, for the combined 

operation, Numba outperformed MATLAB for both 

double and single precision operations. This is most 

likely because the compiled Numba function does  

not interact with the Python interpreter, whereas the 

MATLAB code must return control to its interpreter 

between each operation. MATLAB again outperforms 

NumPy in all cases. The FFT operations exemplifies  

the usage of other libraries in Python, which can be  

both a strength and weakness. NumPy and SciPy have 

their own FFT functions while another library called 

MKL_FFT has yet another implementation. While this 

increases the difficulty for the user to know exactly  

what function to use, quick web searches can help find 

application specific Python libraries that may be faster 

than those used in MATLAB. It can be seen that while 

SciPy and NumPy are slower than MATLAB, the 

MKL_FFT library outperforms MATLAB in terms of 

speed when performing fft(a).The open source nature 

also allows the slower libraries to implement parts of the 
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faster ones. In the future, SciPy plans to directly integrate 

MKL_FFT [11]. 

 

C. Matrix operations 

The final set of basic operations performed were a 

set of common linear algebra matrix routines. These 

routines included matrix-matrix multiplication and LU 

decomposition along with solving of both dense and 

sparse linear equations. Matrix multiplication, LU 

decomposition, and dense matrix solving are all called 

from the underlying MKL BLAS library and therefore 

would be expected to perform the same between 

MATLAB and Python. In Python, the MKL library is 

used through an interface provided by the NumPy library. 
The runtime comparisons for matrix multiplication, LU 

decomposition, and dense matrix solving can be seen in 

Fig. 9, Fig. 10, and Fig. 11 respectively. As expected, 

both MATLAB and Python run at almost the exact same 

speeds for these three operations. In most cases and for 

most sizes, the runtimes even lie within the uncertainty 

bounds of one another.  

 

 
 

Fig. 9. Runtime vs. number of elements for matrix 

multiplication with single and double precision using 

MATLAB and NumPy/SciPy. 

 

 
 

Fig. 10. Runtime vs. number of elements for LU 

decomposition with single and double precision using 

MATLAB and NumPy/SciPy. 

 

 
 

Fig. 11. Runtime vs. number of elements for dense linear 

equation solving with single and double precision using 

MATLAB and NumPy/SciPy. 

 

The sparse solving did not fall under the BLAS 

libraries and therefore there were no expectations for 

runtime comparisons. MATLAB does not support single 

precision sparse matrices and therefore only times for 

double precision for MATLAB are provided. Figure 12 

shows the runtimes for a variety of different sizes of 

sparse matrices. From this plot it can clearly be seen that 

MATLAB drastically outperforms Python for sparse 

matrix solving. 

 

 
 

Fig. 12. Runtime vs. number of elements for sparse linear 

equation solving with single and double precision using 

MATLAB and NumPy/SciPy. 

 

D. Finite difference frequency domain simulation  

While the basic operations tested provide a good 

basis set of data for runtime comparison between 

MATLAB and Python, a real FDFD simulation was 

implemented and the runtimes compared. The FDFD 

simulation performed calculates the scattering from a 2D 

cylinder. Because FDFD relies on solving a sparse set  

of linear equations, it is expected that MATLAB will 

drastically outperform the runtime of Python because of 

the runtime comparison of sparse equation solving. The 

magnitude of the total electric field produced by this  
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simulation can be seen in Fig. 13. These results were 

produced and verified by both a MATLAB and Python 

code. The number of cells in the x and y directions were 

then swept to compare runtimes of the simulations. The 

runtime as a function of the total number of elements 

(𝑐𝑒𝑙𝑙𝑠𝑥 ∗ 𝑐𝑒𝑙𝑙𝑠𝑦) was then plotted. The runtime 

comparisons for both single and double precision are 

given in Fig. 14. Again, MATLAB is not capable of 

single precision sparse datatypes and therefore this 

metric is not included. 
 

 
 

Fig. 13. Total electric field from FDFD scattering from a 

cylinder problem. 
 

 
 

Fig. 14. Runtime vs. number of elements for an FDFD 

simulation with single and double precision using 

MATLAB and NumPy/SciPy. 
 

As expected, this data shows that MATLAB 

drastically outperforms even the single precision version 

of Python. MATLAB also seems to exhibit a linear 

increase in runtime (𝑂(𝑛)) as the number of cells are 

increased whereas NumPy exhibits a squared (𝑂(𝑛2)) 

runtime increase. Because of this it is assumed that for 

much larger domains, Python FDFD simulations will 

only become slower compared to MATLAB. 
 

E. Beamforming angle of arrival estimation 

A final test was performed with a basic angle of  

arrival beamforming algorithm. For this test, a large 35 

by 35 element antenna array is simulated. An incident 

plane wave is simulated at a π/4 radians azimuthal angle 

and π/4 radians elevation angle. The output of the 

beamformed data can be seen in Fig. 15. Beamforming 

was then performed and times recorded for an increasing 

number of steering angles. It is expected that because 

beamforming consists of matrix multiplication and 

combined elementary operations that Python would 

outperform MATLAB in this task. The speeds in both 

MATLAB and Python for a varying number of angles 

can be seen in Fig. 16.  

 

 
 

Fig. 15. Beamformed values between -pi/2 and pi/2 

radians with 181 calculated angles with an incident plane 

wave at pi/4 and -pi/4 azimuth and elevation. 

 

 
 

Fig. 16. Runtime vs. number of elements for an antenna 

array beamforming simulation with single and double 

precision using MATLAB and NumPy.  

 

Surprisingly, MATLAB still outperformed the 

Python implementation in this scenario for more than 

about 20,000 elements. The simulations included setup 

and array allocation in the timing which may have played 

a role in the unexpected result. While this is true for large 

sizes, many times beamforming simulations may be 

interested in a smaller number of angles and for these 

cases, Python outperforms MATLAB. 
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V. CONCLUSION 
Although MATLAB is faster for many complex 

number-based calculations and simulations, other factors 

come into play when choosing a programming language. 

For the highest possible speeds in simulations, compiled 

code written in C or FORTRAN will be the fastest 

choice. As mentioned earlier, while MATLAB provides 

accessibility to these lower level functions, Python 

provides great tools for this integration with ctypes and 

Cython. Python can also provide acceleration through 

direct compilation with Cython. 

While they were the focus of this paper, runtimes  

are not the only thing to focus on in a programming 

language. Python provides a free alternative with many 

community supported libraries for a variety of different 

scientific and non-scientific applications. These libraries 

extend the capabilities of Python to provide everything 

from easy documentation with sphinx or pydoc, to 

control of instruments using the pyvisa, pyserial, and 

socket libraries. While all of these capabilities exist 

within MATLAB, they typically come as an additional 

cost in a MATLAB toolbox.  

While all of these factors should be taken into 

consideration before deciding on a programming 

language, MATLAB clearly outperforms Python in the 

majority of complex math operations and all CEM 

simulations tested. That being said, Python can provide 

a well-supported alternative to MATLAB for usage in 

CEM problems. 
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