
Performance of MATLAB and Python for Computational Electromagnetic

Problems

Alec J. Weiss and Atef Z. Elsherbeni

Department of Electrical Engineering

Colorado School of Mines, Golden, Colorado, 80120, United States

aweiss@mines.edu, aelsherb@mines.edu

Abstract ─ MATLAB and Python are two common

programming languages commonly used in computational

electromagnetics. Both provide simple syntax and

debugging tools to make even complicated tasks relatively

simple. This paper studies how these programming

languages compare in throughput for a variety of tasks

when utilizing complex numbers which are common

in electromagnetics applications. The compared tasks

include basic operations like addition, subtraction,

multiplication, and division, along with more complex

operations like exponentiation, summation, Fourier

transforms, and matrix solving. Each of these tests is

performed for both single and double precision on the

CPU. A 2D finite difference frequency domain problem

and a planar array beamforming problem are also

presented for comparison of throughput for realistic

simulations.

Index Terms ─ Computational electromagnetics,

MATLAB, python.

I. INTRODUCTION
Programming languages such as Python and

MATLAB are popular in computational electromagnetics.

They provide abstract constructs when compared to

lower level compiled programming languages such as

C/C++ and FORTRAN. Both Python and MATLAB

provide platforms for quickly developing and testing a

variety computational electromagnetics (CEM) problems.

MATLAB and Python provide optimized libraries that

can be leveraged to create computationally efficient

programs with a minimal amount of programming. This

environment is ideal for the testing of new technologies

because users can quickly prototype ideas without

worrying about memory management and data types.

A. Current work

Speeds between MATLAB and Python have been

previously compared for areas of scientific computing.

[1] provided some benchmark tests to compare runtimes

on a number of linear algebra routines for real numbers

in both Python and MATLAB while articles like [2] and

[3] have covered general usage of Python as an

alternative to MATLAB for scientific computing. Even

further, [4] investigates and discusses the usage of Python

for computational electromagnetics (CEM). A vast

amount of research has looked specifically on the usage

of MATLAB for CEM for general applications like [5]

and for more application specific acceleration like in [6].

Unlike MATLAB, Python is a free and open source

programming language that is community supported.

Python and many scientific computing libraries can be

downloaded as a single package like Anaconda [7]. The

Anaconda package also includes integrated development

environments (IDEs) like Spyder [8] to provide an

experience similar to that of working in MATLAB’s

IDE. For those who are not familiar with Python syntax,

there exists many free resources to help learn the

intricacies of the programming language and help

quickly get a user started. Some resources like [9] even

provide direct command translations from MATLAB to

Python allowing those familiar with MATLAB to learn

how to use numerical libraries in Python even faster.

While MATLAB and Python have both been studied

and utilized for a variety of electromagnetic problems,

MATLAB still dominates this area of research.

IEEEXplore has about 3,000 paper matches for the

keyword Python and over 56,000 for the keyword

MATLAB. Here we will take an in depth look at how

Python matches up as a competitor to MATLAB

specifically in CEM problems.

B. Comparison for scientific computing

CEM problems commonly deal in double and single

precision complex numbers. To the knowledge of the

authors, comparisons of MATLAB and Python for

computation using complex numbers has not previously

been investigated. Because CEM problems vary so

widely in application and implementation, a generic

approach to comparison of speeds between MATLAB

and Python was taken. For this approach, a large variety

of math operations were tested that gradually increase in

complexity. These operations are the building blocks for

many CEM problems and can be used to estimate the

ACES JOURNAL, Vol. 35, No. 7, July 2020

Submitted On: April 2, 2020
Accepted On: May 21, 2020 1054-4887 © ACES

770

relative runtimes between programming languages.

Basic operations (e.g., add, subtract, multiply,

divide) are first tested to provide a good baseline for

elementary math operations performed on complex

numbers. This is then stepped up to include more

complex operations like exponentiation, summation, and

a combination of elementary operations (specifically

𝑐 = 𝑎 + 𝑏 ∗ 𝑒𝑥𝑝(𝑎)). Past this, matrix operations such

as matrix-matrix multiplication and LU decomposition

are performed, along with solving of both dense and

sparse systems of linear equations. With runtime

comparisons for basic operations, relative runtimes can

then be estimated for more realistic CEM problems. To

test these runtimes, a realistic finite difference frequency

domain (FDFD) problem and a beamforming simulation

written in both MATLAB and Python were compared.

II. MATLAB AND PYTHON FOR CEM
As previously mentioned, both MATLAB and

Python have been used on a variety of applications. Both

provide a large range of pre-written optimized functions

that the users do not need to rewrite from scratch. In

many cases for linear algebra operations, Python and

MATLAB can both be configured to use the Intel Math

Kernel Library (MKL) [10]. This library provides highly

optimized basic linear algebra subprograms (BLAS) and

linear algebra package (LAPACK) library for common

linear algebra problems. With both programming

languages using these subroutines, many linear algebra

operations utilize the same precompiled code and

therefore would be expected have near identical runtimes.

A. MATLAB

MATLAB arguably provides an easier and more

beginner friendly approach for people not experienced

in programming. This is because MATLAB does not

typically require external libraries. This means that all

commands that need to be used in MATLAB are either

available from the core installation, or a toolbox. Once a

toolbox is installed, the commands from that toolbox are

always available to the user. MATLAB also is built

specifically for matrix operations. This means that for

many CEM applications, the code will be optimized and

require less verbose syntax than its Python counterpart.

B. Python

Unlike MATLAB, Python requires libraries to be

imported for a variety of tasks. While this provides an

extra step by calling the import command in Python, it

increases the flexibility of the programming language by

allowing the user to easily include third party packages

without the concern of overlapping function and class

names.

While a vast number of Python libraries exist online,

three well developed libraries are utilized in this paper.

These are NumPy, SciPy, and Numba. These three

libraries cover most of the core functionality that

MATLAB contains and can therefore be used to solve

many CEM problems. NumPy and SciPy provide

functionality such as array and matrix operations, along

with access to linear algebra subroutines found in the

compiled BLAS backend. Numba provides an additional

layer of acceleration for Python allowing vector

operations to be partially compiled and run around the

typical Python interpreter.

C. Further acceleration

Beyond using prebuilt libraries, MATLAB and

Python both provide further acceleration capabilities.

Both can access functions written and compiled from

C/C++ and FORTRAN. In MATLAB, mex file wrappers

are written to take MATLAB data types and pass them

to these lower level functions. Python on the other hand

can typically directly call these compiled functions. This

is because at its core, Python typically uses a runtime

built in the C programming language. Integration with

lower level libraries can therefore be done through a

Cython interface, or by loading the functions as a shared

library through the ctypes interface.

Python code can also be compiled to native machine

code with Cython. This allows users to include additional

keywords to specify information such as data types and

sizes. This additional information information allows the

Cython compiler to optimize the compiled code to provide

further acceleration over equivalent native Python code.

While it is important to know these low-level

interfaces exist, prototype code will typically be written

directly in Python or MATLAB and therefore these

interfaces are not quantitatively compared in this paper.

III. MEASUREMENT OF

COMPUTATIONAL SPEEDS IN PYTHON

AND MATLAB

A. Accurate timing of code

Both MATLAB and Python provide methods to

perform some timing analysis on different code snippets

with tic()/toc() in MATLAB and timeit() in Python.

Extensions of both of these functions were written with

new OperationTimer classes. The version of this class in

MATLAB and Python leveraged the existing timing

capabilities but extended upon them to provide more in-

depth timing statistics. These classes provided the user

with an adjustable number of repeat measurements. In

most cases 100 repeat measurements were made.

Repeat measurements are vital as they allow the

generation of uncertainty bounds on the data. Bounding

the uncertainties of the runtimes helps remove any

outliers that may occur due to system inconsistencies

(such as operating system scheduling). These

uncertainties also provide insight into how variable these

runtimes may be over multiple uses. In the case of this

paper, these uncertainties were generated as the standard

WEISS, ELSHERBENI: MATLAB AND PYTHON FOR COMPUTATIONAL ELECTROMAGNETIC PROBLEMS 771

deviation of the repeat measurements.

Along with producing repeat measurements, the

OperationTimer classes had several other features. This

included allowing the user to run a sweep of input

data which in turn allowed the testing of runtimes as

a function of element count for each operation.

Functionality for generating statistics on the data was

also included in each class. These classes also provided

a consistent interface and data format between both

MATLAB and Python to ensure consistency in the post-

processing of the results.

B. Testing the functions

With a consistent class for timing of the code in both

MATLAB and Python, each of the functions to be

compared could then be tested. MATLAB and Python

scripts were created that pass the function handles for

each operation to test to the OperationTimer class. These

scripts also set up parameters such as the number of

repeat measurements and the sweep dimensions to run

for each function. With the scripts set up, each function

could then be timed and compared.

IV. CPU RESULTS
CPU results were obtained for the aforementioned

operations on an AMD Threadripper 2990WX 32 Core

processors with 64 logical processors and 128 GB of

RAM. These results were obtained using MATLAB

R2018a and Python 3.7 with NumPy 1.17.4, SciPy 1.3.2,

and Numba 0.46. Each of the tests was run for both

single and double precision complex data. Uncertainty

bars were generated using the standard deviation of each

of the recorded times.

A. Basic operations

The first set of results were basic add, subtract,

multiply, and divide. Each of these operations was

repeated 100 times for arrays with a number of elements

ranging from 1 all the way to 100 million. The addition

operation can be seen in Fig. 1, subtraction in Fig. 2,

multiplication in Fig. 3, and division in Fig. 4.

Fig. 1. Runtime vs. number of elements for addition with

single and double precision using MATLAB, NumPy,

and Numba.

Fig. 2. Runtime vs. number of elements for subtraction

with single and double precision using MATLAB,

NumPy, and Numba.

Fig. 3. Runtime vs. number of elements for multiplication

with single and double precision using MATLAB,

NumPy, and Numba.

Fig. 4. Runtime vs. number of elements for division with

single and double precision using MATLAB, NumPy

and Numba.

In each of these cases, both single and double

precision for MATLAB and the Python Numba library

have almost identical computation time. Numba performs

just in time (JIT) compilation of the code to approach

speeds of programming languages like C and FORTRAN.

MATLAB also reaches these same speeds without any

special operations. NumPy on the other hand is much

ACES JOURNAL, Vol. 35, No. 7, July 2020772

slower with each of these operations. This is most likely

because there are number of abstracted steps and calls to

the Python interpreter that must be performed on top of

the typical computation, causing a slowdown. It is also

important to note that both Numba and MATLAB

provide a form of parallelization almost no user input

(the ‘parallel’ keyword must be specified for Numba).

Depending on the size of the dataset, this also will factor

into the speedup of MATLAB and Numba over the

Numpy Library.

B. Extended operations

Extended Operations were then tested including

exponentiation, a combination of basic operations (𝑐 =
𝑎 + 𝑏 ∗ 𝑒𝑎), summation, and the fast fourier transform

(FFT). Each of these operations was again run 100 times

for a variety of different numbers of elements. All

operations except the FFT were run with sizes from 1

to 100 million elements while the FFT was run on arrays

of size 1 to 5 million elements. The timed result

comparisons of exponentiation and combined operations

can be seen in Fig. 5 and Fig. 6 with the sum and FFT

seen in Fig. 7 and Fig. 8.

Fig. 5. Runtime vs. number of elements for

exponentiation with single and double precision using

MATLAB, NumPy, and Numba.

Fig. 6. Runtime vs. number of elements for combined

𝑎 + 𝑏 ∗ 𝑒𝑥𝑝(𝑎) with single and double precision using

MATLAB, NumPy, and Numba.

Fig. 7. Runtime vs. number of elements for summation

with single and double precision using MATLAB and

NumPy.

Fig. 8. Runtime vs. number of elements for fft(a) with

single and double precision using MATLAB, NumPy,

SciPy, and MKL_FFT.

Again, we can see that for exponentiation,

MATLAB and Python using Numba provide near

identical run times while NumPy proves much slower

than the other two. Surprisingly, for the combined

operation, Numba outperformed MATLAB for both

double and single precision operations. This is most

likely because the compiled Numba function does

not interact with the Python interpreter, whereas the

MATLAB code must return control to its interpreter

between each operation. MATLAB again outperforms

NumPy in all cases. The FFT operations exemplifies

the usage of other libraries in Python, which can be

both a strength and weakness. NumPy and SciPy have

their own FFT functions while another library called

MKL_FFT has yet another implementation. While this

increases the difficulty for the user to know exactly

what function to use, quick web searches can help find

application specific Python libraries that may be faster

than those used in MATLAB. It can be seen that while

SciPy and NumPy are slower than MATLAB, the

MKL_FFT library outperforms MATLAB in terms of

speed when performing fft(a).The open source nature

also allows the slower libraries to implement parts of the

WEISS, ELSHERBENI: MATLAB AND PYTHON FOR COMPUTATIONAL ELECTROMAGNETIC PROBLEMS 773

faster ones. In the future, SciPy plans to directly integrate

MKL_FFT [11].

C. Matrix operations

The final set of basic operations performed were a

set of common linear algebra matrix routines. These

routines included matrix-matrix multiplication and LU

decomposition along with solving of both dense and

sparse linear equations. Matrix multiplication, LU

decomposition, and dense matrix solving are all called

from the underlying MKL BLAS library and therefore

would be expected to perform the same between

MATLAB and Python. In Python, the MKL library is

used through an interface provided by the NumPy library.
The runtime comparisons for matrix multiplication, LU

decomposition, and dense matrix solving can be seen in

Fig. 9, Fig. 10, and Fig. 11 respectively. As expected,

both MATLAB and Python run at almost the exact same

speeds for these three operations. In most cases and for

most sizes, the runtimes even lie within the uncertainty

bounds of one another.

Fig. 9. Runtime vs. number of elements for matrix

multiplication with single and double precision using

MATLAB and NumPy/SciPy.

Fig. 10. Runtime vs. number of elements for LU

decomposition with single and double precision using

MATLAB and NumPy/SciPy.

Fig. 11. Runtime vs. number of elements for dense linear

equation solving with single and double precision using

MATLAB and NumPy/SciPy.

The sparse solving did not fall under the BLAS

libraries and therefore there were no expectations for

runtime comparisons. MATLAB does not support single

precision sparse matrices and therefore only times for

double precision for MATLAB are provided. Figure 12

shows the runtimes for a variety of different sizes of

sparse matrices. From this plot it can clearly be seen that

MATLAB drastically outperforms Python for sparse

matrix solving.

Fig. 12. Runtime vs. number of elements for sparse linear

equation solving with single and double precision using

MATLAB and NumPy/SciPy.

D. Finite difference frequency domain simulation

While the basic operations tested provide a good

basis set of data for runtime comparison between

MATLAB and Python, a real FDFD simulation was

implemented and the runtimes compared. The FDFD

simulation performed calculates the scattering from a 2D

cylinder. Because FDFD relies on solving a sparse set

of linear equations, it is expected that MATLAB will

drastically outperform the runtime of Python because of

the runtime comparison of sparse equation solving. The

magnitude of the total electric field produced by this

ACES JOURNAL, Vol. 35, No. 7, July 2020774

simulation can be seen in Fig. 13. These results were

produced and verified by both a MATLAB and Python

code. The number of cells in the x and y directions were

then swept to compare runtimes of the simulations. The

runtime as a function of the total number of elements

(𝑐𝑒𝑙𝑙𝑠𝑥 ∗ 𝑐𝑒𝑙𝑙𝑠𝑦) was then plotted. The runtime

comparisons for both single and double precision are

given in Fig. 14. Again, MATLAB is not capable of

single precision sparse datatypes and therefore this

metric is not included.

Fig. 13. Total electric field from FDFD scattering from a

cylinder problem.

Fig. 14. Runtime vs. number of elements for an FDFD

simulation with single and double precision using

MATLAB and NumPy/SciPy.

As expected, this data shows that MATLAB

drastically outperforms even the single precision version

of Python. MATLAB also seems to exhibit a linear

increase in runtime (𝑂(𝑛)) as the number of cells are

increased whereas NumPy exhibits a squared (𝑂(𝑛2))

runtime increase. Because of this it is assumed that for

much larger domains, Python FDFD simulations will

only become slower compared to MATLAB.

E. Beamforming angle of arrival estimation

A final test was performed with a basic angle of

arrival beamforming algorithm. For this test, a large 35

by 35 element antenna array is simulated. An incident

plane wave is simulated at a π/4 radians azimuthal angle

and π/4 radians elevation angle. The output of the

beamformed data can be seen in Fig. 15. Beamforming

was then performed and times recorded for an increasing

number of steering angles. It is expected that because

beamforming consists of matrix multiplication and

combined elementary operations that Python would

outperform MATLAB in this task. The speeds in both

MATLAB and Python for a varying number of angles

can be seen in Fig. 16.

Fig. 15. Beamformed values between -pi/2 and pi/2

radians with 181 calculated angles with an incident plane

wave at pi/4 and -pi/4 azimuth and elevation.

Fig. 16. Runtime vs. number of elements for an antenna

array beamforming simulation with single and double

precision using MATLAB and NumPy.

Surprisingly, MATLAB still outperformed the

Python implementation in this scenario for more than

about 20,000 elements. The simulations included setup

and array allocation in the timing which may have played

a role in the unexpected result. While this is true for large

sizes, many times beamforming simulations may be

interested in a smaller number of angles and for these

cases, Python outperforms MATLAB.

WEISS, ELSHERBENI: MATLAB AND PYTHON FOR COMPUTATIONAL ELECTROMAGNETIC PROBLEMS 775

V. CONCLUSION
Although MATLAB is faster for many complex

number-based calculations and simulations, other factors

come into play when choosing a programming language.

For the highest possible speeds in simulations, compiled

code written in C or FORTRAN will be the fastest

choice. As mentioned earlier, while MATLAB provides

accessibility to these lower level functions, Python

provides great tools for this integration with ctypes and

Cython. Python can also provide acceleration through

direct compilation with Cython.

While they were the focus of this paper, runtimes

are not the only thing to focus on in a programming

language. Python provides a free alternative with many

community supported libraries for a variety of different

scientific and non-scientific applications. These libraries

extend the capabilities of Python to provide everything

from easy documentation with sphinx or pydoc, to

control of instruments using the pyvisa, pyserial, and

socket libraries. While all of these capabilities exist

within MATLAB, they typically come as an additional

cost in a MATLAB toolbox.

While all of these factors should be taken into

consideration before deciding on a programming

language, MATLAB clearly outperforms Python in the

majority of complex math operations and all CEM

simulations tested. That being said, Python can provide

a well-supported alternative to MATLAB for usage in

CEM problems.

REFERENCES
[1] J. Unpingco, “Some comparative benchmarks

for linear algebra computations in Matlab and

Scientific Python,” in 2008 DoD HPCMP Users

Group Conference, pp. 503-505, 2008. doi: 10.1109/

DoD.HPCMP.UGC.2008.49.

[2] R. Python, “MATLAB vs Python: Why and how

to make the switch – Real Python,” [Online].

Available: https://realpython.com/matlab-vs-python/.

[Accessed: 30-Dec-2019].

[3] J. Ranjani, A. Sheela, and K. P. Meena,

“Combination of NumPy, SciPy and Matplotlib/

Pylab - A good alternative methodology to

MATLAB - A comparative analysis,” in 2019

1st International Conference on Innovations in

Information and Communication Technology

(ICIICT), pp. 1-5, 2019 doi: 10.1109/ICIICT1.

2019.8741475.

[4] N. Kinayman, “Python for microwave and RF

engineers [Application Notes],” IEEE Microwave

Magazine, vol. 12, no. 7, pp. 113-122, Dec. 2011.

doi: 10.1109/MMM.2011.942704.

[5] M. Capek, P. Hazdra, J. Eichler, P. Hamouz, and

M. Mazanek, “Acceleration techniques in Matlab

for EM community,” in 2013 7th European

Conference on Antennas and Propagation (EuCAP),

pp. 2639-2642, 2013.

[6] A. J. Weiss, A. Z. Elsherbeni, V. Demir, and M.

F. Hadi, “Using MATLAB’s parallel processing

toolbox for multi-CPU and multi-GPU accelerated

FDTD simulations,” vol. 34, no. 5, p. 7, 2019.

[7] “Anaconda | The world’s most popular data science

platform,” Anaconda. [Online]. Available: https://

www.anaconda.com/. [Accessed: 14-Jan-2020].

[8] “Spyder Website.” [Online]. Available: https://

www.spyder-ide.org/. [Accessed: 14-Jan-2020].

[9] V. Gundersen, “NumPy for MATLAB users.”

2006.

[10] ajolleyx, “Intel® Math Kernel Library (Intel®

MKL),” 00:00:14 UTC. [Online]. Available: https://

software.intel.com/en-us/mkl. [Accessed: 13-Jan-

2020].

[11] “SciPy Roadmap — SciPy v1.4.1 Reference

Guide.” [Online]. Available: https://docs.scipy.org/

doc/scipy/reference/roadmap.html. [Accessed: 16-

Jan-2020].

Alec J. Weiss received his B.S.

degree in Electrical and Computer

Engineering from the University of

Colorado, Boulder, Colorado, USA

in 2017 and his M.S. in Electrical

Engineering from the Colorado

School of Mines, Golden, Colorado,

USA in 2018 where he is currently

pursuing his Ph.D. in Electrical Engineering. He joined

the National Institute of Standards and Technology

(NIST) Communications Technology Laboratory (CTL)

in 2017 as a graduate student researcher. His research

interests include millimeter-wave measurements, 5G

communications systems, and high performance

computing for electromagnetic applications.

Atef Z. Elsherbeni received an

honor B.Sc. degree in Electronics

and Communications, an honor

B.Sc. degree in Applied Physics,

and an M.Eng. degree in Electrical

Engineering, all from Cairo

University, Cairo, Egypt, in 1976,

1979, and 1982, respectively, and a

Ph.D. degree in Electrical Engineering from Manitoba

University, Winnipeg, Manitoba, Canada, in 1987. He

started his engineering career as a part time Software and

System Design Engineer from March 1980 to December

1982 at the Automated Data System Center, Cairo,

Egypt. From January to August 1987, he was a Post-

Doctoral Fellow at Manitoba University. Elsherbeni

joined the faculty at the University of Mississippi in

ACES JOURNAL, Vol. 35, No. 7, July 2020776

August 1987 as an Assistant Professor of Electrical

Engineering. He advanced to the rank of Associate

Professor in July 1991, and to the rank of Professor in

July 1997. He was the Associate Dean of the College of

Engineering for Research and Graduate Programs from

July 2009 to July 2013 at the University of Mississippi.

He then joined the Electrical Engineering and Computer

Science (EECS) Department at Colorado School of

Mines in August 2013 as the Dobelman Distinguished

Chair Professor. He was appointed the Interim

Department Head for (EECS) from 2015 to 2016 and

from 2016 to 2018 he was the Electrical Engineering

Department Head. In 2009 he was selected as Finland

Distinguished Professor by the Academy of Finland and

TEKES. Elsherbeni is a Fellow member of IEEE and

ACES. He is the Editor-in-Chief for ACES Journal, and

a past Associate Editor to the Radio Science Journal. He

was the Chair of the Engineering and Physics Division

of the Mississippi Academy of Science, the Chair of

the Educational Activity Committee for IEEE Region

3 Section, the General Chair for the 2014 APS-URSI

Symposium, the president of ACES Society from 2013

to 2015, and the IEEE Antennas and Propagation Society

(APS) Distinguished Lecturer for 2020-2022.

WEISS, ELSHERBENI: MATLAB AND PYTHON FOR COMPUTATIONAL ELECTROMAGNETIC PROBLEMS 777

 HistoryItem_V1
 AddNumbers

 Range: all odd numbered pages
 Font: Times-Roman (unembedded) 8.0 point
 Origin: top right
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20200708141638

 1
 1

 TR

 1
 1
 1
 0
 0
 735
 TR
 1
 0
 0
 334
 127
 0
 1
 R0
 8.0000

 Odd
 7
 AllDoc
 174

 CurrentAVDoc

 [Sys:ComputerName]
 43.2000
 26.6400

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 0
 115
 114
 7bea0473-0aa3-4e75-9a2d-81b4400081c4
 58

 1

 HistoryItem_V1
 AddNumbers

 Range: all even numbered pages
 Font: Times-Roman (unembedded) 8.0 point
 Origin: top left
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20200708141702

 1
 1

 TL

 1
 1
 1
 0
 0
 735
 TR
 1
 0
 0
 334
 127

 0
 1
 R0
 8.0000

 Even
 7
 AllDoc
 174

 CurrentAVDoc

 [Sys:ComputerName]
 43.2000
 26.6400

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 0
 115
 113
 1784f42f-ada1-463e-bc40-b636a55a1a19
 57

 1

 HistoryList_V1
 qi2base

