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Abstract ─ In this paper, a novel broadband reflectarray 

(RA) is presented. For achieving broadband performance, 

the unit cell is realized using Vivaldi antenna element, 

where the feeding line acts as phase delay-line for 

adjusting the reflection phase. By simply changing the 

length of phase delay-line, a full 360o phase coverage is 

obtained. Additionally, the phase response curves are 

nearly parallel within a broad bandwidth, leading to a 

wideband operation. To verify this design, a prototype 

consisting of 10×22 unit cells is designed, fabricated and 

measured. The measured results show that the maximum 

gain reaches 21.50 dBi with 20.15% 1-dB gain bandwidth 

and 30.38% 3-dB gain bandwidth, respectively. Simulated 

and measured results agree very well with the proposed 

design scheme. 

Index Terms ─ Broadband, high gain, reflectarray, 

Vivaldi antenna array. 

I. INTRODUCTION
Nowdays, it becomes more and more challenging 

to satisfy the ever-lasting capacity-growing and users-

boosting demands in wireless networks. For example, 

many electronic devices in civil and military areas are 

preferred to be connected using wireless technology. To 

support these connections with high date rate, mobility 

and stability in wireless systems, antennas are highly 

required to have the properties of high gain, broad 

bandwidth and stable radiation characteristics [1-2]. In 

addition, for commercial applications, it is important to 

reduce the complexity of antenna structures and have 

low cost.  

Reflectarrays (RAs) have been considered as 

promising alternative to traditional high-gain antennas 

because of their high gain, compact structure, 

lightweight, low cost, easy beam forming, etc. Compared 

to conventional antenna arrays and parabolic reflectors, 

RAs do not need complicated feeding network and have 

planar structure [3-5]. However, the RAs have a severe 

drawback of narrow bandwidth performance mainly due 

to the inherent narrow bandwidth for microstrip antenna 

unit cell and the differential spatial phase delay caused 

by different path lengths from feed source to each unit 

cell [6-7]. In recent years, many methods have been 

proposed to increase the bandwidth of the reflectarray, 

including the use of multilayer structures [8-10], 

subwavelength element [11], dual-frequency phase 

synthesis [12], and true - time delay technique [13]. In 

[14], a three-layer printed reflectarray with patches 

of variable size was designed, whose 1-dB bandwidth 

reaches to 10%. In [15], double-layer subwavelength 

elements with variable size were employed to enlarge the 

gain bandwidth of the reflectarray antennas. Besides, by 

employing tightly coupled technique, an ultra-wide-band 

reflectarray antenna was reported in [16]. 
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Fig. 1. The unit cell of this reflectarray: (a) periodic 

structure view; (b) front view. 

As a kind of exponential tapered slot antenna, 

Vivaldi antennas provide a wide impedance bandwidth 

and stable gain. They are fabricated using low-cost 

planar fabricating technology. Hence, they are used in 

many applications which demand wide or ultra-wide 

bandwidth and directional radiation properties, such as 

ultra-wideband (UWB) imaging systems and emerging 

5G systems [17]. However, one serious problem of 

Vivaldi antenna arrays is that it requires a complicated, 

bulky feed network consisting a number of power 

dividers, which will introduce significant losses at high 

frequency above X-band. Moreover, the perpendicular 

structure between Vivaldi array and feeding network 
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improves the fabrication complexity seriously. These 

drawbacks extremely limit the applications of large 

Vivaldi antenna arrays. 

Inspired by the concept of RAs and wideband 

property of Vivaldi antennas, a wideband unit cell based 

on Vivaldi antenna is proposed to enhance the bandwidth 

performance of reflectarray in this paper. The feeding 

line in the Vivaldi element is used as phase-delay line to 

control the reflection phase response. By varying the 

length of the delay line, a full 360o linear phase range 

within a broad bandwidth is obtained. Within its operating 

frequency, the reflection magnitude maintains above        

-0.5 dB. To verify the design, a wideband reflectarray 

consisting of 10×22 unit cells is designed, fabricated   

and measured. The maximum gain of the proposed 

reflectarray is approximately 21.50 dBi with the 1-dB 

gain bandwidth of 20.15% and 3-dB gain bandwidth of 

30.38%, respectively.  

 

Table 1: Optimized parameters of the Vivaldi antenna 

Parameter LS WS W 

Value (mm) 18.6 15 0.4 

Parameter r L1 W1 

Value (mm) 1 7.3 14 
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Fig. 2. The simulated radiation patterns of unit cell at 

13GHz. 

 

II. DESIGN OF UNIT CELL 
The geometry of the proposed unit cell is shown in 

Fig. 1, which is composed of a conventional taper-slot 

Vivaldi antenna and a metallic reflect plane. As can be 

seen, the taper-slot with a circle-end is printed on the 

ground of the Vivaldi antenna element. The phase-delay 

line beginning with a fan-shape is etched on the other 

side of the substrate for coupling electromagnetic (EM) 

signals through the taper-slot. This structure can provide 

a stable radiation patterns and good impedance matching 

over a wide frequency range. A metallic plane with the 

dimension of 15×6.8 mm2 is placed at the end of the 

Vivaldi antenna element for reflecting EM signals. This 

proposed unit cell is printed on a 0.8 mm Rogers 4003C  

substrate with dielectric constant of 3.55 and loss tangent 

of 0.0027.  

The operating principle of the proposed unit cell can 

be described as follows. The incident waves illumining 

the unit cell is received by Vivaldi antenna element and 

transmit through the delay line. Because the delay line is 

metallic ended, the waves will be reflected and radiated 

by the Vivaldi element. During this process, the 

functions of the delay line are signal transmitting and 

phase controlling. By varying the length of the delay line 

on each unit cell, the corresponding reflection phase can 

be simply controlled. It is worth noting that in order to 

obtain a more compact configuration and increase the 

length of the delay line, the delay line is bent and 

stretched. The unit cell has been optimized to operate at 

Ku-band. The optimized parameters are reported in 

Table 1. 

To investigate the reflection coefficient of the unit 

cell, numerical simulations are carried out by using 

ANSYS HFSS software. The infinite array model is built 

by placing master- slave boundary around the unit cell 

with Floquet port excitation. 
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Fig. 3. The reflection magnitudes of the unit cell with 

different Ds. 
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Fig. 4. Simulated element phase shifts and magnitudes at 

different frequencies. 
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Fig. 5. The reflection phase of the unit cell with different 

oblique incidence. 
 

Figure 2 shows the simulated radiation patterns of 

unit cell at 13GHz. The 3-dB beamwidth of the radiation 

pattern on the E-plane and H-plane is 28o and 49o, 

respectively. The simulated magnitudes of unit cell with 

different Ds is presented in Fig. 3. As can be seen, the 

unit cell has good reflection performance when Ds is 

6.8mm (0.3 λ), whose magnitude is lower than -0.4dB 

within 10GHz to 16GHz. Therefore, the optimized Ds is 

finally chosen as 6.8 mm in this paper. Figure 4 shows 

the simulated reflection phase and magnitude for a normal 

incident wave at different frequencies. It can be observed 

that the reflection phase covers a full 360o phase range 

as the delay line varies from 2 mm to 10 mm. Besides, 

within 12 GHz to 14 GHz, the phase response curves 

maintain parallelism with each other, which imply       

that the unit cell has a good wideband response. The 

magnitude curves show a good reflection performance, 

whose values are above -0.5 dB in the operating band. 
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Fig. 6. (a) The phase distribution of the reflectarray. (b) 

The 3-D structure of the reflectarray. 
 

In general, most of the unit cells are not located in 

the center of the reflectarray and they are obliquely 

illuminated by the incident waves, so it is necessary to 

consider the performance of the reflection phase when 

the incident angle is different. Figure 5 simulated the 

phase response of the unit cell under different incident 

angles. It is clearly seen that compared to normal incident 

illumination, the unit cell illuminated by 30o (theta or   

phi) incident waves still can maintain a very stable 

performance with little phase variation. Hence, according 

to the above analysis, the proposed unit cell has the 

properties of broadband operation, high reflection 

magnitude, full phase range, low sensitive of incident 

angle, which is desired to constitute a wideband 

reflectarray. 

 

III. SIMULATION AND MEASUREMENT 
To obtain high-gain performance, the reflection 

phase for each unit cell must be designed to compensate 

for different path lengths from the illuminating feed,   

and achieve a uniform phase on the array aperture.       

The required reflection phase φi for the ith unit cell is 

calculated as: 

                             
0 0 0

ˆ( ) ,i i ik R r r                          (1) 

where k0 is the propagation constant in free space, Ri        

is the distance from feed antenna to the ith unit cell, ir      

is the position vector of the ith unit cell, and 0̂r  is the  

main beam unit vector. For generating the far-field at   

the broadside direction, 0̂ir r =0, where φ0 is a phase 

constant that is selected to drive the reference phase         

at the aperture center phase to a certain value. Once       

the required phase at each unit cell is determined, the 

corresponding length of delay line in unit cell, namely 

the parameter of ‘L’, can be obtained from Fig. 3.  

When feed antenna non-uniformly illuminates the 

reflectarray consisting of M×N unit cells, the reradiated 

field from the array in an arbitrary direction can be 

represented by: 

0 00

1 1

( ) ( ) ( ) ( ) ( )
n m

ij f ijf

i j

E u F R R F R R F R R F R R
 

      

                0exp ,ij f ij ijjK R R R R j      
 

             (2) 

where Ff is the radiation pattern function of the feed 

antenna, F is the radiation pattern function of the Vivaldi 

element, ijR  is the position vector of the ijth element, fR

is the position vector of the feed, k0 is the free-space 

wavenumber, and φij is the required phase delay of the 

ijth element. 

 

10 11 12 13 14 15 16 17
14

16

18

20

22

 

 

G
a
in

 (
d

B
i)

Frequency (GHz)

 F=84mm

 F=87mm

 F=90mm

-40 -20 0 20 40
-10

-5

0

5

10

15

20

25

 

 

G
a
in

 (
d

B
i)

Angle (deg)

 F=84mm

 F=87mm

 F=90mm

 
                       (a)                                        (b) 

 

Fig. 7. (a) The bandwidth of the RAs with varying F at 

the broadside direction; (b) the radiation pattern of the 

RAs with varying F at the broadside direction. 
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Table 2: Simulated results with different F 

Focal Length 84mm 87mm 90mm 

Unit numbers 10*22 10*22 10*22 

Maximum gain/dBi 21.90 21.64 21.94 

1-dB bandwidth 17.7% 17.3% 20.7% 

3-dB bandwidth 29.6% 22.7% 33.4% 

 

According to function (1), the phase distribution    

for generating narrow beams along broadside direction 

is presented in Fig. 6 (a). As can be seen, the phase 

distribution shows a symmetric distribution around the 

array center. To validate the wideband performance of the 

reflectarray unit cell, a reflectarray antenna operating at 

13 GHz is designed and simulated. This reflectarray consists 

of 10×22 unit cells with the dimension of 150×149.6mm2. 

Based on the calculated phase distribution, the proposed 

wideband RA is built and shown in Fig. 6 (b).  

Three different focal lengths are chosen to study    

the effects of F/D on gain performance, where D is the 

aperture size of the proposed reflectarray. Figure 7 

presents the antenna gain and radiation patterns by 

changing F with fixed aperture dimension. It can be seen 

that the proposed reflectarray can successfully generate 

high-gain radiation patterns, where all of the maximum 

gain with different F/D are above 20 dBi. Meanwhile, the 

value of F/D impacts on the gain performance and       

gain bandwidth. Both of the maximum gain and gain 

bandwidth show growth trend with the increase of F/D. 

Table 2 reports the maximum gain, 1-dB gain bandwidth 

and 3-dB gain bandwidth with different focal lengths. 

According to the results, the focal length is finally 

chosen as 90 mm. 

The simulated radiation pattern at 13 GHz is plotted 

in Fig. 8. The focusing pencil beam is produced 

successfully. With accurate phase distribution, the 

reflectarray has a high gain performance, whose 

maximum gain reaches 21.73 dBi at 13GHz. Figure 9 

shows the side view of E-fields. As we can see, the 

proposed reflectarray has good focusing effects on EM 

waves. The incident spherical wave generated by the 

feed antanna is transmitted through the Vivaldi elements 

and reflected by the metallic plane, which is converted 

into plane wave. To verify the design, a prototype is 

fabricated, assembled and measured, as shown in Fig. 10. 

The overall dimension of the reflectarray is 220×220 

mm2 with the effective area of 150×180mm2, which is 

covered by 10×22 unit cells. To assemble the proposed 

reflectarray and feed antenna, a frame and two supporters 

are designed, which are also considered during the 

simulations. 

 

 
 

Fig. 8. The simulated radiation pattern at 13 GHz. 

 

 
 

Fig. 9. The side view of E-fields. 

 

  
 (a) (b) 

 

Fig. 10. The fabricated prototype: (a) the proposed 

reflectarray; (b) the E-field measurement in microwave 

chamber. 

 

Vivaldi antenna is also selected as the feed antenna. 

It is placed above the reflectarray surface at the distance 

of 90 mm. Figure 11 (a) shows the simulated radiation 

patterns of feed antenna at 13GHz. The measured S 

parameters of the feed antenna is plotted in Fig. 11 (b), 

showing that the proposed feed antenna can work from 

10 GHz to 18 GHz. 
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Fig. 11. The measured S parameter of the feed antenna. 
 

Radiation patterns are measured in anechoic 

chamber. Figure 12 presents the measured E-plane and 

H-plane radiation patterns at 12 GHz, 13 GHz and 14 

GHz, respectively. The simulated radiation patterns are 

also plotted as comparison. It can be observed that the 

simulated and measured results show a good agreement. 

Due to outstanding focused effects, pencil beams are 

generated. The 3-dB beamwidth of the radiation patterns 

is around 5o. Meanwhile, good cross-polarization lower 

than -20 dB is also achieved. Most of the side lobe     

level (SLL) are below -13 dB. Some measured SLL are 

slightly higher compared to these of the simulation. This 

can be the result of manufacturing tolerances and the 

manipulation setup. The measured gain is plotted in Fig. 

12 to showing that the 1-dB gain bandwidth is 20.15% 

from 12 GHz to 14.6 GHz and 3-dB gain bandwidth is 

30.38% from 11.54 GHz to 15.48 GHz, respectively.  

The measured maximum gain reaches to 21.5 dBi at   

12.7 GHz. Clearly, the proposed reflectarray antenna is 

with outstanding high-gain and wideband characteristics. 

Moreover, the gain of feed antenna and the measurement 

results for aperture efficiency are also shown in Fig. 13. 

As we can see, the gain of feed antenna is stable at Ku-

band, which is higher than 7.5dBi from11GHz to18GHz. 

The maximum aperture efficiency by the measurement 

is 23.1% at 12.6GHz. 

Table 3 compares the proposed reflectarray based on  

Vivaldi antenna elements with other reported reflectarrays. 

The comparison mainly focuses on center frequency, 

maximum gain, aperture efficiency, 1-dB gain bandwidth 

and 3-dB gain bandwidth. As we can see, the proposed 

reflectarray based on Vivaldi antenna elements shows 

the superiority of wide gain bandwidth compared to 

those reported reflectarrays. 
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Fig. 12. The simulated and measured radiation patterns 

at: 12GHz (a), (b); 13GHz (c), (d); 14GHz (e),(f). 
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Fig. 13. The measured gain, aperture efficiency at the 

broadside direction and feed antenna gain. 
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Table 3: Comparison with other reported reflectarray 

Ref. [5] [7] [10] 
This 

Work 

Center frequency 

(GHz) 
42.5 10 13.5 13 

Maximum gain 

(dBi) 
32.83 26.38 32.76 21.5 

Aperture 

efficiency 
51.11% 51.3% -- 23.1% 

1-dB Gain 

bandwidth 
12.94% 20% 14.8% 20.15% 

3-dB Gain 

bandwidth 
16% 28% -- 30.38% 

 

IV. CONCLUSION 
In conclusion, a wideband reflectarray operating     

at Ku-band is designed by employing Vivaldi unit      

cells. By adjusting the delay lines, the required phase 

compensation can be simply achieved for producing 

high-band pencil beams. Arranging unit cells with 

different delay line length according to the calculated 

phase distribution, we have designed a reflectarray 

radiating along broadside direction with a focal distance 

of 90 mm. The measured results are in a good agreement 

with the simulated ones, which demonstrates a 20.15% 

1-dB gain bandwidth and a 30.38% 3-dB gain bandwidth, 

respectively, with maximum gain of 21.5 dBi. 
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