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Abstract ─ This paper introduces a constrained normalized 

adaptive sparse array beamforming algorithm based  

on approximate L0-norm and logarithmic cost (L0-

CNLMLS). The proposed algorithm can control the 

sparsity of the array by introducing an approximate 

function of L0-norm. In addition, the introduction of 

logarithmic cost improves the stability of the algorithm 

as well as the convergence rate of the algorithm. The 

sparsity of the array can be controlled when adjusting 

related parameter in the proposed algorithm. Simulation 

results show the better performance of L0-CNLMLS 

compared with some conventional algorithms.  
 

Index Terms ─ Approximate L0-norm, constrained 

adaptive beamforming, logarithmic cost function, sparse 

sensor arrays. 
 

I. INTRODUCTION 
The sparse antenna signal processing technology 

has a wide application in modern signal processing. In 

practical applications, the communication system may 

be restricted by conditions such as energy, which may 

require the system to reduce the number of equipment. 

The sparse array signal processing technology is 

proposed to address this problem. In recent years, a main 

method of sparse array technology is to use sparse 

algorithms which can achieve the same performance and 

use less actual elements. Aiming at the application of 

beamforming, a sparse adaptive beamforming algorithm 

is proposed. 

The adaptive digital beamforming technology is 

widely used due to its good characteristics. The early 

classic beamforming algorithm is the linearly constrained 

minimum-variance (LCMV) algorithm proposed in [1], 

which can form the ideal beam in the case of fixed 

interference signals and desired signals. Subsequently, 

people successfully achieve the adaptive realization of 

LCMV algorithm which called constrained normalized 

least mean square (CNLMS) algorithm [2]. These adaptive 

beamforming algorithms can solve the optimization 

problem for any desired signal and interference direction. 

With the introduction of compressed sensing  

technology in [3] and the corresponding algorithms in [4-

5], people start relative study about sparse adaptive 

algorithms. The zero attracting LMS algorithm generates 

a zero attractor according to a combination of L1-norm 

penalty and the quadratic LMS cost function in the 

iteration. A series of related algorithms [6-7] provide an 

idea to study sparse adaptive algorithms. 

Based on the ability of these previously mentioned 

algorithms to induce sparsity, we can expand these 

methods’ application by introducing linear constraints. 

Inspired by the sparse adaptive algorithm [8-10], for 

beamforming applications, the L1-norm CNLMS algorithm 

proposed in [11] and its weighted version successfully 

introduce L1-norm penalty into beamforming algorithm. 

However, it has a disadvantage that the sparsity cannot 

be adjusted. In addition, many beamforming algorithms 

based on the adaptive algorithm LMS have been proposed 

and applied to various aspects of signal processing for 

specific conditions [12-13]. In this paper, we propose an 

adaptive sparse array beamforming algorithm based on 

approximate L0-norm and logarithmic cost (L0-CNLMLS). 

The proposed algorithm can control the sparsity of array 

as well as improve the stability. 

In compressed sensing theory, the sparse signal 

reconstruction ability of L0-norm is much better than  

L1-norm. However, due to the non-convex nature of  

L0-norm and the optimization problem of L0-norm is NP-

hard problem, most algorithms use L1-norm to solve the 

problem of sparse signal reconstruction. In recent years, 

more and more approximate methods for the L0-norm 

have been proposed and widely used. In the algorithm 

proposed in this paper, an approximate function of L0-

norm is used for calculation and derivation. Using the 

steepest descent iteration method, the update expression 

is successfully obtained. Besides this, a novel of new 

convergence factor is used and makes the algorithm get 

a better convergence rate. 

In addition, we introduce a kind of logarithmic cost 

function [14] based on the original algorithm. When  

the algorithm uses a logarithmic cost function, its 

convergence rate can be better than that of the classical 

algorithm like LMS. The logarithmic cost function 
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makes the algorithm compromise between convergence 

speed and steady-state performance. In the case of 

ensuring a certain convergence speed, the stability of the 

algorithm is also improved. Furthermore, the introduction 

of a logarithmic cost function does not add too much 

computational complexity. 

 

II. THE PROPOSED L0-CNLMLS 

ALGORITHM 

In this section, the derivation steps of L0-CNLMLS 

is shown in detail. Since the logarithmic cost shows good 

characteristics for the disturbance on the error, we add 

the logarithmic cost function into the mean square error. 

Then the linearly constrained minimization problem can 

be expressed as follows: 
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where ke and
kw is iteration error and the vector of 

coefficients in the algorithm. C is an N × L constraint 

matrix which contains the array orientation information 

and z is the corresponding constraint vector containing 

L (number of constraints) elements. p is the parameter of 

L0-norm to adjust the sparsity of the algorithm. 

Considering that L0-norm minimization is a Non-

Polynomial (NP) hard problem, an approximate function 

is carried out to simplify the complexity of computation. 

A popular approximation is the Geman-McClure function, 

the expression can be written as: 
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The derivative form of the Geman-McClure 

function which will be used in the following derivation 

is given by: 
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where sign( )x denotes the basic signum function. By 

employing the Lagrange multiplier  , the constraints 

can be included into the objective function. And then we 

can get the cost function with L0-norm penalty as follows: 
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According to the steepest descent method, the 

solution for ( )J w can be given as: 

 0 ˆ( 1) ( ) ( ).
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+ = − ww w w  (5) 

Symbol ̂ denotes the gradient operator and 0  

is a fixed value which controls the misadjustment. 

Differentiate and calculate the cost function which 

contains L0-norm penalty, the gradient vector can be  

obtained as (6): 
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knowledge
H

k z=C w , we can get the solution of 

Lagrangian multiplier 
1  giving by: 
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The value kx  denotes the input signal vector in the 

th
k iteration. By defining the L0-norm error function as 

( )
0

H
( ) kL ke k p f= − w w and rearranging the terms of 

formula, the solution of 2  can be obtained as follows: 
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where
H

( ) ( )N f x f x= . After organizing the formulas, 

the solutions for 2 and 1  can be obtained. The final 

update equation of L0-CNLMLS algorithm can be 

expressed as follows: 
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The variable 
k  is a new convergence factor carried out 

to minimize the instantaneous posteriori squared error at 

instant k [15]. Bases on the above derivation process, we 

can get: 
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to the prior knowledge and solve the above formula (11), 

we can get the expression of the new convergence factor: 
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The parameter  is a small positive constant to 

ensure the correctness of the calculation. By replacing

0 with
k , the above final iterative formula can be 

obtained. 

 

III. SIMULATION RESULTS 
In this section, several simulations are carried out  

to show the better performance of the proposed L0-

CNLMLS algorithm. Simulation results and comparisons 

of L0-CNLMLS with similar algorithms (shrinkage L1-

norm constrained LMS algorithm (SL1-CLMS) [16], 

L0-norm feature LMS (L0-F-LMS) [17] and L0-

CNLMS) are illustrated to demonstrate the improvement 

of the proposed algorithm. Interferers and the signal of 

interest (SOI) used in the experiments are narrowband 

QPSK signals. The experiments are conducted under two 

different sparsities. 

In the first simulation the parameter of the 

approximate L0-norm function is set to be 15 and the 

parameter is set to be 2. The initial adaptation step size 

of L0-CNLMLS and L0-CNLMS is fixed at 0.004 and 

0.003, respectively. For L0-F-LMS, the adaptation step 

size is set to be 5×10-9. The sparse parameter p is 0.3. 

The iteration number is 6000 in this simulation.  

 

 
 

Fig. 1. Beampatterns for L0-CNLMLS algorithm and 

similar algorithms. 

 

Figure 1 shows the beampatterns for L0-CNLMLS 

algorithm and some other algorithms. Results show that 

the proposed algorithm and the other algorithms all can 

form main lobe and nulls. In the terms of side lobe, the 

average height of the five algorithms is almost the same. 

Figure 2 shows the thinned triangular array and  

the change of coefficient vector for L0-norm to L0-

CNLMLS algorithm and the other two algorithms which 

use L0-norm. The array used in the simulations is a 

triangular array considered as the senor for P-band 

signals which has particularly advantage in satellite 

detection. The triangular array contains 117 array 

elements. The white points represent the array elements 

which are closed while the black points denote normal 

working antenna arrays. From the L0-norm in Fig. 2, the 

L0-CNLMLS algorithm converges after 5000 iterations. 

It is found that the L0-CNLMLS algorithm converges 

faster than the L0-CNLMS algorithm and L0-F-LMS 

algorithm. 

According to the numbers of the points, the sparsity 

of the array can be calculated as 30.7% which is very 

close to the preset sparse parameter value of 30%. The 

L0-CNLMS algorithm and L0-F-LMS algorithm achieve 

a sparsity of 31.6%. It is obvious that the L0-CNLMLS 

algorithm can control the sparsity much better than the 

other algorithms under the same conditions.  

 

 
                     (a)                                        (b) 

 
                      (c)                                         (d) 

 

Fig. 2. Thinned triangular array for the L0-CNLMLS and 

other two algorithms: (a) L0-CNLMLS; (b) L0-CNLMS; 

(c) L0-F-LMS; (d) convergence of the used algorithms. 

 

In experiment 2, the sparse parameter p set to be 0.7 

with the other parameters unchanged. Figure 3 and Fig. 

4 show the respective beampatterns and thinned triangular 

array of the proposed algorithm and other algorithms.  

According to the thinned antenna array in Fig. 4, the 

sparsity of the array in this simulation can be obtained as 

70.1%. For large sparse ratio, the L0-CNLMLS and L0-

CNLMS are almost the same in the ability to control the 

sparsity of the array while the L0-F-LMS shows a worse 

performance by calculation. Simulation results prove 

that the sparsity of the array can be controlled by the 

adjustment of corresponding parameter. 

Figure 4 (d) shows the L0-norm of the coefficient 

vector. The better convergence ability of proposed 

algorithm can be seen. The L0-CNLMLS algorithm 

converges after about 2300 iterations, the L0-CNLMS 
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and L0-F-LMS converged slight slowly. Table 1 shows 

the comparison of the two experiments. The proposed 

algorithm achieves sparsities of 30.7%, 70.1% which 

equal to the prescribed parameter p of 0.3, 0.7. 

 

 
 

Fig. 3. Beampatterns for L0-CNLMLS algorithm and the 

other algorithms under large sparsity ratio. 

 

 
                     (a)                                        (b) 

 
                     (c)                                          (d) 

 

Fig. 4. Thinned triangular array in experiment 2: (a) 

using L0-CNLMLS; (b) L0-CNLMS; (c) L0-F-LMS; (d) 

convergence of the used algorithms with p=0.7. 

 

Table 1: Comparison with different sparsity ratio 

Experiment Parameter Result 

  0.307 

  0.701 

 

In addition, we found that the logarithmic cost can 

improve the stability of proposed algorithm. Figure 5 is 

two different results in simulation I. The L0-CNLMS 

achieves different sparsities of 31.6% and 32.4% under 

the same parameters, while the L0-CNLMLS shows 

better stability in controlling the sparsity than L0-F-LMS 

algorithm. As for SL1-CLMS algorithm, the algorithm 

uses too much different array elements in different 

sparsities. Compared with algorithm using L1-norm, the 

L0-CNLMLS algorithm achieves the ability to precisely 

control the sparsity of the array. The logarithmic cost 

ensures a good agreement between the sparse parameter 

and simulation results, which shows the better 

performance of proposed algorithm. 
 

 
                     (a)                                        (b) 

 
                      (c)                                        (d) 

 
                      (e)                                        (f) 

 
                     (g)                                        (h) 

 

Fig. 5. Two different results in simulation I under same 

conditions. (a), (b) The antenna array thinned by L0-

CNLMLS with sparsity of 30.7%. (c), (d) The antenna 

array thinned by L0-CNLMS with sparsity of 31.6%, 

32.4%, respectively. (e), (f) The antenna array thinned by 

L0-F-LMS with sparsity of 30.7%, 31.6%, respectively. 

(g), (h) Different results of antenna array using SL1-

CLMS. 
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IV. CONVERGENCE ANALYSIS 
In this section, the convergence analysis of L0-

CNLMLS is carried out. Defining the priori error in the 
th

k iteration as: 
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where k k o = −w w w , ow  is considered as the 

optimal coefficient vector and kn  denotes the noise in 

the 
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k iteration. Defining 
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equation of proposed algorithm can be written as: 
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When the algorithm is converged, the constraint 

conditions ( )H
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can get: 
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conclusion tr[ ] 1=A  can be easily obtained shows that 

there is only one non-zero eigenvalue among all the 

eigenvalues of matrix A. Therefore, the coefficient error 

form of (15) is: 
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non-zero eigenvalue of 1. From simulation results 
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close to 1. Then, take expectation on both sides of (17), 

we will have: 
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According to [15], 
kw   is statistic independence 

with kn , kx and kf . Under the truth of the expectation 

of kn is 0, (18) can be written as: 
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In the case of = 0AB , we can get the final 

convergence domain as: 

 00 1.   (20) 

Actually, the convergence domain is a little larger 

according to [14] because the introduction of logarithmic 

cost can influence convergence performance. The 

selection of step-size for L0-CNLMLS is always far 

below the upper bound to gain better performance in 

actual application. 

 

V. CONCLUSION 
In this paper, an adaptive sparse array beamforming 

algorithm based on approximate L0-norm and 

logarithmic cost (L0-CNLMLS) is proposed and 

analyzed. The L0-CNLMLS algorithm uses GMF 

function to be the approximate function of the L0-norm 

penalty and avoid the NP-hard problem. The 

introduction of L0-norm allows the algorithm to control 

the sparseness of the array. The use of logarithmic cost 

function improves stability while ensuring a certain 

convergence speed of the algorithm. 

Simulation results show that the proposed algorithm 

exhibits better performance and convergence speed 

compared with some sparse beamforming algorithm in 

recent years under different sparsities. In addition, the 

L0-CNLMLS algorithm can control the sparsity of 

antenna array more precisely for small sparse ratio, so as 

to improve the stability performance. In the future, the 

algorithms in [18-21] will be considered to construct new 

sparsity beamforming algorithms. 
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