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Abstract ─ A novel miniaturized wideband bandpass 

filter (BPF) using capacitor-loaded microstrip coupled 

line is proposed. The capacitors are loaded in parallel and 

series to the coupled line, which makes the filter just 

require one one-eighth wavelength coupled line and 

achieve filtering response with multiple transmission 

poles (TPs) and transmission zeros (TZs). Compared 

with the state-of-the-art microstrip wideband BPFs, the 

proposed filter has the advantages of compact size and 

simple structure. A prototype centered at 1.47 GHz with 

the 3-dB fractional bandwidth of 86.5% is demonstrated, 

which exhibits the compact size of 0.003λ
2 

g  (λg is the 

guided wavelength at the center frequency) and the 

minimum insertion loss of 0.37 dB. 

 

Index Terms ─ Bandpass filter, capacitors, coupled line, 

miniaturized, wideband. 

 

I. INTRODUCTION 
Miniaturized wideband bandpass filter (BPF) is  

one essential component in the modern wireless 

communication system owing to the advantages of 

compact size and high date-rate transmissions. So far, 

numerous microstrip wideband BPFs have been proposed 

based on various structure, including stub-loaded 

multiple-mode resonator [1]-[6], stub-loaded coupled 

line [7]-[9], cross-coupled multiple-mode resonator [10], 

ring resonator associated with open stubs [11]-[12], and 

stub-loaded stepped impedance resonator (SIR) [13]-

[16]. However, the filter utilizing the above structures 

suffers from the large circuit size (e.g., 0.271λ
2 

g ), which 

is mainly derived from the large size of the resonator or 

extra loaded stubs.  

In order to reduce the size of microstrip wideband  

BPF, quarter-wavelength three-line coupled structure 

[17], high-impedance microstrip line with folded stepped 

impedance stubs and radial stubs [18], and quarter-

wavelength interdigital coupled SIR [19] are utilized. 

The circuit size can be reduced to 0.013λ
2 

g , 0.009λ
2 

g , and 

0.006λ
2 

g , respectively, but with a complex structure. 

Loading lumped elements can also help reduce the 

circuit size of microstrip BPF. For instance, capacitors 

are loaded in parallel on the half-wavelength microstrip 

coupled line so that a miniaturized differential wideband 

BPF [20] can be achieved. 

In this letter, four capacitors are loaded in parallel 

and series to just one one-eighth wavelength microstrip 

coupled line. The filter size can be further reduced, and 

the filter structure becomes much simpler. Wideband 

filtering response and out-of-band suppression are ensured 

by three transmission poles (TPs) and four transmission 

zeros (TZs), which are produced and controlled by 

capacitances and loading positions of capacitors as well 

as the even-odd-mode impedance of the coupled line. 

Odd- and even-mode analysis is utilized for theoretical 

analysis. One prototype is designed for demonstration. 
 

II. PROPOSED WIDEBAND BANDPASS 

FILTER 
The circuit model of the proposed wideband BPF  

is exhibited in Fig. 1 (a), which is composed of four 

capacitors (C1, C2, and C3), one one-eighth wavelength 

coupled line with its one end shorted (Ze and Zo, θ1+θ2 = 

45°), and two ports (Port 1 and Port 2). C1 is loaded in 

series to the coupled line. C2 and C3 are loaded in parallel 

to the coupled line. C1 and C2 are located at the open end 

of the coupled line. The electrical distance between C2 

and C3 is θ1.  
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Fig. 1. Circuit model and even- and odd-mode equivalent 

circuits of the proposed wideband BPF. (a) Circuit 

model; (b) even-mode equivalent circuit; (c) odd-mode 

equivalent circuit. 

 

The whole circuit is symmetrical to the A-A' plane, 

so odd- and even-mode analysis can be utilized. A virtual 

open/short appear along the symmetrical plane A-A' 

under the condition of even/odd-mode operation. Thus, 

the even- and odd-mode equivalent circuits are shown in 

Figs. 1 (b) and 1 (c), respectively. The input admittance of 

even-/odd-mode equivalent circuits can be extracted as: 
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respectively, where ω = 2πf, 
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  , (2) 

where f0 is the center frequency. The reflection coefficients 

(S11 and S22) and transmission coefficients (S21 and S12) 

of the proposed design can be derived as: 
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where Y0 = 1/50 Ω-1 is the port admittance. According  

to Equations (1)-(3), the curves of |S11| and |S21| can  

be obtained in MATLAB by setting a certain initial  

value for C1, C2, C3, θ1/θ2, and Ze/Zo. The frequency 

corresponding to the extreme point of |S11| curve is the 

frequency of the TPs, and the frequency corresponding 

to the extreme point |S21| curve is the frequency of the 

TZs. Then, TPs and TZs can be obtained. 
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Fig. 2. Effect of capacitance values on theoretical 

variations of TPs and TZs. (a) C1 changes; (b) C2 changes; 

(c) C3 changes. (C1 = 1.5 pF, C2 = 1.0 pF, C3 = 5.6 pF, 

θ1/θ2 = 1 and Ze/Zo = 1.6). 
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A. Analysis of TPs and TZs 

Figure 2 shows how C1, C2, C3 affect theoretic TPs 

and TZs. Figure 3 exhibits how θ1/θ2 and Ze/Zo affect 

theoretic TPs and TZs. It can be found from Figs. 2 and 

3 that TP1 moves upwards when C1, θ1/θ2, or Ze/Zo  

is increased, or C2 or C3 is decreased. TP2 moves 

downwards with the decrease of C3 or the increase of 

Ze/Zo, while TP2 moves upwards first then moves 

downwards with C1. TP3 moves upwards with the 

increase of C1 or Ze/Zo, or the decrease of C2, C3, or θ1/θ2. 

TZ3 moves downwards when C2 or θ1/θ2 increases, or 

Ze/Zo decreases. TZ4 moves upwards with C2. 
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Fig. 3. Effect of loading position of capacitor and 

impedance of coupled line on theoretical variations of 

TPs and TZs. (a) θ1/θ2 changes; (b) Ze/Zo changes. (C1 = 

1.5 pF, C2 = 1.0 pF, C3 = 5.6 pF, θ1/θ2 = 1 and Ze/Zo =1.6). 
 

In addition, the number of TPs changes from three 

to two when C1, C3, θ1/θ2, or Ze/Zo is outside a special 

range, while the number of TZs changes from four to 

three when C2 is outside a special range. It can be found 

from Figs. 2 and 3 that three TPs and four TZs can be 

obtained when selecting appropriate parameters, which 

ensures wideband filtering response and enough out-of-

band suppression for the proposed filter. 

It is found that TZs will be affected by C2 and C3 but 

not by C1. This is because C2 and C3 could provide 

additional transmission paths beside the transmission 

path of the coupled line, and the signals on the paths will 

be cancelled each other when the phase difference is 

(2n+1)180 degrees (n = 0, 1, 2…). However, C1 doesn’t  

provide an additional path so that it will not affect TZs.  

B. Analysis of bandwidth and center frequency 

The bandwidth and center frequency can also be 

obtained from |S11| and |S21| curves in MATLAB. By  

this way, the effect of C1, C2, C3, θ1/θ2, and Ze/Zo on 

bandwidth and center frequency are exhibited in Figs. 4 

and 5, respectively. It can be seen from Figs. 4 and 5  

that the bandwidth and center frequency are mainly 

controlled by C2, C3, θ1/θ2, and Ze/Zo. The 3-dB fractional 

bandwidth (FBW) increases when C2, θ1/θ2, or Ze/Zo is 

decreased, or C3 is increased. The center frequency 

moves upwards when C2, C3, or θ1/θ2 is decreased, or Ze/Zo 

is increased. In addition, the variations of bandwidth and 

center frequency in Figs. 4 and 5 are consistent with 

those of the space between the TPs and the position of 

TPs in Figs. 2 and 3, respectively. 
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Fig. 4. Effect of capacitance values on theoretical 

variations of bandwidth and center frequency. (a) C1 

changes; (b) C2 changes; (c) C3 changes. (C1 = 1.5 pF,  

C2 = 1.0 pF, C3 = 5.6 pF, θ1/θ2 = 1 and Ze/Zo =1.6).  
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It is found that the bandwidth and center frequency 

are affected by C2 and C3, but not by C1. This is because 

C2 and C3 change the coupling of the coupled line. 

However, C1 will affect impedance matching because it 

will affect the intensity of the electric field at the feed 

point. 
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Fig. 5. Effect of the loading position of capacitor and the 

impedance of coupled line on theoretical variations of 

bandwidth and center frequency. (a) θ1/θ2 changes; (b) 

Ze/Zo changes. (C1 = 1.5 pF, C2 = 1.0 pF, C3 = 5.6 pF, 

θ1/θ2 = 1 and Ze/Zo = 1.6). 
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Fig. 6. Layout of the proposed wideband BPF. 

 

C. Parametric study  

The layout of the proposed wideband bandpass filter 

is exhibited in Fig. 6, where the substrate is RO4003C  

(εr = 3.38, h = 0.813 mm, tan δ = 0.0027). In order to 

further study the performance variation, the parametric 

study on C1, C2, C3 are displayed in Figs. 7 (a), 7 (b) and  

7 (c), respectively. Meanwhile, the parametric study on 

l2, w1, and s1 are depicted in Figs. 8 (a), 8 (b) and 8 (c), 

respectively. It can be found from Figs. 7 and 8 that the 

bandwidth and center frequency are mainly affected by 

C2, C3, l2, and s, and the out-of-band suppression is 

mainly changed by C1, C2, and s. The bandwidth increases 

when C2, l2, or s is decreased, or C3 is increased. The 

center frequency moves upwards with the decrease of C2, 

C3, l2, or s. The out-of-band suppression becomes better 

when C1 is increased, or C2 or s is decreased. 
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Fig. 7. Simulated responses of the proposed wideband 

BPF with (a) C1, (b) C2, and (c) C3. (C1 = 1.5 pF, C2 = 

1.0 pF, C3 = 5.6 pF, l2 = 6.7 mm, w1 = 0.9 mm, and s = 

0.58 mm). 
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Fig. 8. Simulated responses of the proposed wideband 

BPF with (a) l2, (b) w1, and (c) s. (C1 = 1.5 pF, C2 = 1.0 

pF, C3 = 5.6 pF, l2 = 6.7 mm, w1 = 0.9 mm, and s = 0.58 

mm). 

 

D. Design procedure 

According to the above analysis, the design 

procedure of the proposed wideband BPF is summarized 

as follows: 

Step 1: Get initial C1, C2, C3, θ1/θ2, and Ze/Zo 

according to the variation of TPs and TZs in Figs. 2 and 

3, and the variation of bandwidth and center frequency 

in Figs. 4 and 5. 

Step 2: Convert the theoretical θ1/θ2 and Ze/Zo to the 

dimensions of the coupled line. 

Step 3: Obtain final C1, C2, C3, l2, w1, and s in Ansoft 

High Frequency Structure Simulator (HFSS) by slightly 

tuning them according to their variation in Figs. 7 and 8.  
 

III. PROTOTYPES AND RESULTS  
Based on the above analysis, a prototype is 

implemented with the target of 3-dB FBW of 87% and 

the center frequency of 1.5 GHz. The final parameters 

can be obtained from the design procedure and are 

shown as follows: C1 = 1.5 pF, C2 = 1.0 pF, C3 = 5.6 pF, 

w0 = 1.85 mm, w1 = 0.9 mm, l0 = 8.0 mm, l1 = 13.7 mm, 

l2 = 4.85 mm, and s = 0.58 mm. The photograph of the 

proposed wideband BPF is exhibited in Fig. 9 (a). 

Figure 9 (b) demonstrates the simulated and 

measured results of the proposed wideband BPF. The 

fabricated filter works at the center frequency of 1.47 

GHz, which exhibits the 3-dB FBW of 86.5% with a 

minimum insertion loss of 0.37 dB. Four TZs are loaded 

at 0 GHz, 0.65 GHz, 2.52 GHz, and 5.09 GHz, while 

three TPs are loaded at 0.98 GHz, 1.37 GHz, and 1.89 

GHz. The overall size of the proposed design is 15.3 mm 

× 2.38 mm (0.139λg × 0.022λg = 0.003λ
2 

g ).  

Table 1 lists the performance of this work and the 

state-of-the-art designs. Compared with the reported 

microstrip wideband BPF, the proposed design has the 

advantages of compact size and simple structure. 
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Fig. 9. Photograph and simulation and measured results 

of the proposed wideband BPF. (a) Photograph and (b) 

simulation and measured results. 
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Table 1: Performance comparison between previous 

state-of-the-art wideband bandpass filters and the 

proposed design 

Ref. f0 (GHz) 
3-dB  

FBW (%) 

Number of 

TPs/TZs 

Insertion 

Loss (dB) 
Size (λg

2) 

[1] 2.88 79.33 5/5 0.94 0.271 

[7] 3.0 70 5/6 0.49 0.217 

[9] 6.0 67.8 5/6 1.3 0.084 

[10] 6.85 79.1 6/7 0.81 0.238 

[12] 1.91 52.4 2/3 0.3 0.021 

[13] 6.9 115.9 7/6 N.A. 0.256 

[16] 3.0 80 2/3 0.5 0.013 

[17] 0.885 87 3/8 0.66 0.009 

[18] 1.0 59.19 4/2 0.64 0.006 

This work 1.47 86.5 3/4 0.37 0.003 

 

V. CONCLUSION  
A wideband BPF based on capacitor-loaded one-

eighth wavelength coupled line is proposed. A compact 

size of only 0.003λ
2 

g  and simple structure can be achieved. 

Theoretic analysis and parametric study are introduced 

to guide the practical design. It is believed that the 

proposed wideband BPF is able to promote the 

development of the miniaturized wideband wireless 

communication systems. 
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