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Abstract – Tuning a microwave filter is a challeng-
ing problem due to its complexity. Extracting coupling
matrix from given S-parameters is essential for ?lter
tuning and design. In this paper, a deep-learning-based
neural network namely, a convolutional neural network
(CNN) is proposed to extract coupling matrix from S-
parameters of microwave filters. The training of the pro-
posed CNN is based on a circuit model. In order to
exhibit the robustness of the new technique, it is applied
on 5- and 8-pole filters and compared with a shallow
neural network namely, radial basis function neural net-
work (RBFNN). The results reveal that the CNN can
extract the coupling matrix of target S-parameters with
high accuracy and speed.

Index Terms – convolutional neural network, coupling
matrix, deep learning, microwave filters, parameters
extraction.

I. INTRODUCTION
Microwave filters are widely used in all types of

electronic systems [1, 2]. Tuning of microwave filter is an
inevitable process in the design procedure of microwave
filters. For the case of coupled resonator filter, extracting
of the coupling matrix from the required S-parameters
can be viewed as an inverse problem for microwave
filters.

Therefore, accurate solution of the inverse prob-
lem (extraction of coupling matrix) is crucial. However,
it is extremely difficult to solve this inverse problem
directly [3, 4]. Traditionally, the coupling matrix of the
microwave filter is extracted by adopting the Cauchy
method [5] or vector fitting [6]. However, these meth-
ods need to be repeated for many iterations in different
conditions. Consequently, the process of filter design suf-
fers from the time-consuming and complicated parame-
ters extraction.

Neural network (NN) has been recognized as
a powerful tool in microwave modeling and design
[7–10]. Some conventional (shallow) NN techniques
have been developed to extract the coupling matrix
[11–13]. However, these techniques are not suitable
for high-dimensional (many input variables) problems
because data generation and model training become too
complicated. A deep NN is applied to the parameter
extraction of microwave filter [14]. However, there are
too many layers in the deep NN, which make the train-
ing process complicated.

On the other hand, convolutional neural network
(CNN) is a variant of deep network framework and
achieves remarkable success on image and face recog-
nition [15, 16]. Recently, it has gained much attention in
the microwave field [17, 18]. It has unique capabilities
of extracting underlying nonlinear features of input data.
Two main advantages, sparse connectivity and shared
weights, enable CNNs to have small numbers of param-
eters during learning and, hence, high training speed.
Motivated by the inherent advantages of the CNN, it
has been incorporated into coupling matrix extraction
[19, 20].

In all the above NN methods, the training data is
generated using full-wave electromagnetic (EM) model
through simulation or measurement which becomes
impractical when large training data is needed. Further-
more, the cost of training data generation increases expo-
nentially with the number of input variables. Therefore,
collection of training data using EM-based model to
cover the interested input parameter range over a fre-
quency band can be an overwhelmingly time-consuming
task. Different from EM models, circuit models are used
for all kinds of electronic designs. They are usually
straightforward to build, and fast to evaluate.

In this paper, a CNN is used to extract the cou-
pling matrix of ideal (target) S-parameters based on a
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In this paper, a CNN is used to extract the coupling 
matrix of ideal (target) S-parameters based on a circuit 
model. The CNN first extracts the features of S-
parameters by using convolution layers and pooling 
layers, which are then mapped to the coupling matrix 
by full connection and output layers. To validate the 
effectiveness of the proposed CNN, it is applied on 5- 
and 8-pole microwave filters. The proposed CNN 
model is able to extract the coupling matrix of the ideal 
S-parameters with high accuracy and speed compared 
with a radial basis function neural network (RBFNN) 
[21–23]which is shallow (non-deep) NN. 

 
II. CNN FOR CIRCUIT MODEL-BASED 

COUPLING MATRIX EXTRACTION 
The circuit model-based equation that relates the 

coupling matrix M and filter S-parameters is given by 
[24] 

𝑆𝑆11 = 1 + 2𝑗𝑗𝑅𝑅1[𝛾𝛾𝐈𝐈 − 𝑗𝑗𝐑𝐑 + 𝐌𝐌]11
−1 

𝑆𝑆21 = −2𝑗𝑗�𝑅𝑅1𝑅𝑅2[𝛾𝛾𝐈𝐈 − 𝑗𝑗𝐑𝐑 + 𝐌𝐌]𝑁𝑁1
−1               (1) 

where 𝛾𝛾 = (f0/BW)((f/f0) – (f0/f)), f, f0, and BW are the 
frequency, filter center frequency, and filter bandwidth, 
respectively, N is the filter order, I is N×N identity 
matrix, M is the N×N symmetric coupling matrix, R is 
anN×N matrix with all entries beingzero except [R]11 = 
R1 and [R]NN= R2, and R1 and R2 are the filter’s input 
and output coupling parameters, respectively, as shown 
in Figure1. 
 

 
Fig. 1. Equivalent circuit of an N-coupled resonator 
filter [24]. 

Figure 2 shows the CNN model for extracting the 
coupling matrix. The input to the CNN is the required 
vectors |S11| and |S21|, representing the scalar 
magnitudes of the two S-parameters at ℛ frequency 
points in the required frequency range. Therefore, the 
total number of inputs is 2ℛ. In the present case, the 
number of the frequency points ℛ = 2001.The output 
of the CNN is the vector of nonzero coupling 
parameters Mnz. 

 
 
 
 
 

 
Fig. 2. The circuit model-based CNN for coupling 
matrix extraction. 

In order to generate the training and validation data 
of CNN, we assume a tolerance of ±0.5 for every ideal 
nonzero coupling parameter. We then use 12,500 
(10,000 for training and 2500 for validation) uniformly 
distributed random samples in this range for coupling 
parameters. For each sample of coupling parameters, 
eqn (1) is used to obtain the corresponding S-
parameters. By swapping the data of coupling 
parameters and S-parameters, we can get the training 
and validation data for the coupling parameters 
extraction model. In the same way, the trained CNN is 
tested by the ideal set of S-parameters (corresponding to 
the ideal Mnz that is never used in the training), then the 
extracted Mnz is compared to the ideal one. 

 
III. THE PROPOSED CNN STRUCTURE 

CNNs have one or more convolutional and pooling 
layers to learn the discriminative features from the input 
data. After all the convolutional and pooling layers, 
these learned features are then aggregated to the vectors 
by the fully connected (FC) layers for the regression 
task [25]. 

After many simulation trials, it is found that the 
CNN structure thatprovides the best accuracy is 
detailed in Table 1. First, the total 4002 inputs are 
reshaped into a 2×3×667 input image. Then, there are 
three convolutional (Conv) layers and three maximum 
pooling (MaxPool) layers. Each convolutional layer is 
followed by a pooling layer to reduce the dimension of 
network parameters. The first convolutional layer 
comprises eight feature maps. The number of feature 
maps at each convolutional layer is twice the previous 
layer, i.e., there are 16 and 32 feature maps in the 
second and third layers, respectively. The size of the 
feature map in each convolutional layer is fixed at 2×2. 
All convolutional layers have a stride of 1 and 
“same”padding. All pooling layers have a size of 2×2, 
stride 2, and “same”padding. After the sequence of 
convolutional and pooling layers, there is a single FC 
layer with 50 nodes followed by the output layer with a 
number of nodes equal to the number of nonzero 
coupling parameters. In order to avoid overfitting 
during training, a dropout operation with a rate of 50% 
is used at the end of the convolutional and pooling 
layers. The activation functions used in the 
convolutional layers and the FC layer are rectified 
linear unit (ReLU) and exponential linear unit (ELU), 
respectively. Since this is a regression problem instead 
of a classification problem, no activation is used at the 
output layer (linear activation).  
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Fig. 1. Equivalent circuit of an N-coupled resonator fil-
ter [24].

circuit model. The CNN first extracts the features of S-
parameters by using convolution layers and pooling lay-
ers, which are then mapped to the coupling matrix by
full connection and output layers. To validate the effec-
tiveness of the proposed CNN, it is applied on 5- and 8-
pole microwave filters. The proposed CNN model is able
to extract the coupling matrix of the ideal S-parameters
with high accuracy and speed compared with a radial
basis function neural network (RBFNN) [21–23] which
is shallow (non-deep) NN.

II. CNN FOR CIRCUIT MODEL-BASED
COUPLING MATRIX EXTRACTION

The circuit model-based equation that relates the
coupling matrix M and filter S-parameters is given
by [24]

S11 = 1+2 jR1[γI− jR+M]−1
11

S21 =−2 j
√

R1R2[γI− jR+M]−1
N1 , (1)

where γ = (f 0/BW)((f /f 0) – (f 0/f )), f, f 0, and BW are the
frequency, filter center frequency, and filter bandwidth,
respectively, N is the filter order, I is N × N identity
matrix, M is the N × N symmetric coupling matrix, R
is an N × N matrix with all entries being zero except
[R]11 = R1 and [R]NN = R2, and R1 and R2 are the fil-
ter’s input and output coupling parameters, respectively,
as shown in Fig. 1.

Figure 2 shows the CNN model for extracting the
coupling matrix. The input to the CNN is the required
vectors |S11| and |S21|, representing the scalar magni-
tudes of the two S-parameters at R frequency points in
the required frequency range. Therefore, the total num-
ber of inputs is 2R. In the present case, the number of
the frequency points R = 2001. The output of the CNN
is the vector of nonzero coupling parameters Mnz.

In order to generate the training and validation data
of CNN, we assume a tolerance of ±0.5 for every
ideal nonzero coupling parameter. We then use 12,500
(10,000 for training and 2500 for validation) uniformly
distributed random samples in this range for coupling
parameters. For each sample of coupling parameters, eqn
(1) is used to obtain the corresponding S-parameters.
By swapping the data of coupling parameters and S-
parameters, we can get the training and validation data
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Fig. 2. The circuit model-based CNN for coupling matrix
extraction.

for the coupling parameters extraction model. In the
same way, the trained CNN is tested by the ideal set of S-
parameters (corresponding to the ideal Mnz that is never
used in the training), then the extracted Mnz is compared
to the ideal one.

III. THE PROPOSED CNN STRUCTURE
CNNs have one or more convolutional and pooling

layers to learn the discriminative features from the input
data. After all the convolutional and pooling layers, these
learned features are then aggregated to the vectors by the
fully connected (FC) layers for the regression task [25].

After many simulation trials, it is found that the
CNN structure that provides the best accuracy is detailed
in Table 1. First, the total 4002 inputs are reshaped into a
2 × 3 × 667 input image. Then, there are three convolu-
tional (Conv) layers and three maximum pooling (Max-
Pool) layers. Each convolutional layer is followed by a
pooling layer to reduce the dimension of network param-
eters. The first convolutional layer comprises eight fea-
ture maps. The number of feature maps at each convo-
lutional layer is twice the previous layer, i.e., there are
16 and 32 feature maps in the second and third layers,
respectively. The size of the feature map in each convo-
lutional layer is fixed at 2 × 2. All convolutional layers
have a stride of 1 and “same” padding. All pooling lay-
ers have a size of 2 × 2, stride 2, and “same” padding.
After the sequence of convolutional and pooling layers,
there is a single FC layer with 50 nodes followed by the
output layer with a number of nodes equal to the number
of nonzero coupling parameters. In order to avoid over-
fitting during training, a dropout operation with a rate of
50% is used at the end of the convolutional and pool-
ing layers. The activation functions used in the convo-
lutional layers and the FC layer are rectified linear unit
(ReLU) and exponential linear unit (ELU), respectively.
Since this is a regression problem instead of a classifi-
cation problem, no activation is used at the output layer
(linear activation).
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Table 1: The proposed CNN structure
Layer Size Nodes Stride Padding Activation
Input

(image)
– (2×3×667)

= 4002
– – –

Conv1

2×2

8 1

Same

ReLU
MaxPool1 – 2 –

Conv2 16 1 ReLU
MaxPool2 – 2 –

Conv3 32 1 ReLU
MaxPool3 – 2 –

50% Dropout
FC – 50 – – ELU

Output – Length{Mnz} – – Linear

IV. EXAMPLES
To verify the performance of the CNN-based cou-

pling matrix extraction, it is applied on 5- and 8-pole
microwave filters. The Adam (adaptive momentum) opti-
mization algorithm [26] is used to update the network
weights and the loss function used for this network is
the mean squared error. The initial value of the learn-
ing rate is 0.001. During the training, the learning rate is
decreased by a rate of 0.1 each 40% of number of epochs.
The batch size is 40 and number of epochs is 10. To fur-
ther verify the performance of the CNN, it is compared
to that of the RBFNN. Both NNs have the same number
of inputs (4002) and outputs (Length{Mnz}) as well as
the same size of training and validation datasets (10,000
and 2500, respectively). In all examples, the filter’s input
and output coupling parameters are assumed to be equal,
i.e., R1 = R2.

A. 5-Pole filter
In this example, we use the proposed CNN to

develop a parameter-extraction model for a 5-pole
dielectric resonator filter with a 3.4-GHz center fre-
quency and a 54-MHz bandwidth [24]. The nonzero
coupling parameters are Mnz = [R1 M12 M14 M23 M34
M45]T with their ideal values shown in Table 2. Table
2 also shows the extracted coupling values by RBFNN
and CNN. It can be seen that the values of CNN are
much closer to the ideal ones than those of RBFNN. The
used shallow RBFNN has only one hidden layer with
300 neurons and cannot represent this high-dimensional
input–output relationship effectively. Our proposed CNN
modeling technique is suitable for this high-dimensional
modeling problem.

Figure 3 shows the S-parameters corresponding to
the coupling values in Table 2. As can be seen, there
is a perfect agreement between the responses from the
ideal and extracted coupling matrix of CNN compared
with RBFNN, that is, owing to the capability of CNN
to extract the hidden features in the input data, S-
parameters, automatically. On the other hand, because
the RBFNN is shallow, it cannot strengthen the net-

Table 2: The ideal and extracted coupling values by
RBFNN and CNN for a 5-pole filter

Mnz RBFNN CNN Ideal
R1 1.1098 1.1345 1.1330

M12 0.8138 0.8659 0.8660
M14 −0.1450 −0.2525 −0.2520
M23 0.7389 0.7942 0.7920
M34 0.5287 0.5946 0.5950
M45 0.8594 0.9006 0.9010

Table 3: The ideal and extracted coupling values by
RBFNN and CNN for 8-pole filter

Mnz RBFNN CNN Ideal
R1 1.2206 1.2415 1.2420

M12 0.8977 0.9387 0.9380
M23 0.5882 0.6300 0.6310
M27 −0.0110 −0.0172 −0.0180
M34 0.5313 0.5729 0.5760
M36 0.0034 0.0637 0.0660
M45 0.4549 0.5193 0.5190

work training process by reconstructing the input S-
parameters.

B. 8-Pole filter
The second example involves the parameter-

extraction of an 8-pole elliptic-function filter with 30-
MHz bandwidth centered at 3 GHz [27]. The nonzero
couplings are R1, M12, M23, M27, M34, M36, M45, M56,
M67, and M78. However, the coupling matrix of this fil-
ter is dual-symmetrical meaning that it is symmetrical
w.r.t. its anti-diagonal as well as its diagonal [28]. There-
fore, M12 = M78, M23 = M67, and M34 = M56. Conse-
quently, the output of NNs is Mnz = [R1 M12 M23 M27
M34 M36 M45]T . Table 3 shows the ideal as well as the
extracted coupling values by both NNs with their corre-
sponding S-parameters shown in Fig. 4.

According to Table 3 and Fig. 4, a very good match
between the ideal and extracted coupling parameters
by CNN along with an excellent agreement between
the responses from the ideal and extracted coupling
matrix by CNN have been achieved, compared to
RBFNN. This again proves that the CNN is much
more accurate than the RBFNN for coupling matrix
extraction.

Table 4 shows the training time as well as the per-
centage root mean square error (RMSE) between ideal
and extracted couplings by NNs for 5- and 8-pole fil-
ters. It can be seen that the CNN modeling for the extrac-
tion of coupling matrix is with much higher accuracy and
shorter training time than the RBFNN modeling.
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Table 4: Percentage RMSE and training time of RBFNN
and CNN for 5- and 8-pole filters

NN 5-Pole filter 8-Pole filter
Training

Time
RMSE

(%)
Training

Time
RMSE

(%)
CNN 39 s 0.1413 38 s 0.2260

RBFNN 19.6 min 7.7997 17.7 min 6.3894

M45 0.4549 0.5193 0.5190 
 

Table 4 shows the training time as well as the 
percentage root mean square error (RMSE) between 
ideal and extracted couplings by NNs for 5- and 8-pole 
filters. It can be seen that the CNN modeling for the 
extraction of coupling matrix is with much higher 
accuracy and shorter training time than the RBFNN 
modeling. 

Moreover, our proposed circuit model-based CNN 
can provide parameter-extraction solutions instantly, 
while the full-wave EM model-based methods can take 
hours to extract the solutions by repetitively 
simulating/measuring the filter during optimization 
iterations. 
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Fig. 3. The responses calculated by the coupling values 
in Table 2: (a) Return loss and (b) insertion loss. 
 
 

Fig. 3. The responses calculated by the coupling values
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Moreover, our proposed circuit model-based CNN
can provide parameter-extraction solutions instantly,
while the full-wave EM model-based methods can take
hours to extract the solutions by repetitively simulat-
ing/measuring the filter during optimization iterations.
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Fig. 4. The responses calculated by the coupling values 
in Table 3: (a) Return loss and (b) insertion loss. 
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RMSE 
(%) 

Training 
Time 

RMSE 
(%) 

CNN 39 s 0.1413 38 s 0.2260 
RBFNN 19.6 min 7.7997 17.7 min 6.3894 

 
 
 

V. CONCLUSION 
A circuit model-based CNN is proposed to extract 

coupling matrix from S-parameters. The results show 
that the proposed CNN method can be used reliably to 
perform the parameter extraction for microwave filters. 
Compared to the shallow NN, the deep-learning-based 
CNN is much more accurate and faster in extracting the 
coupling parameters. Unlike the full-wave EM model-
based methods, our proposed CNN model does not 
need to simulate and/or measure the filter iteratively. 
Once the CNN model is developed, it can be used to 
quickly extract the coupling parameters of microwave 
filters. 
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V. CONCLUSION
A circuit model-based CNN is proposed to extract

coupling matrix from S-parameters. The results show
that the proposed CNN method can be used reliably to
perform the parameter extraction for microwave filters.
Compared to the shallow NN, the deep-learning-based
CNN is much more accurate and faster in extracting the
coupling parameters. Unlike the full-wave EM model-
based methods, our proposed CNN model does not need
to simulate and/or measure the filter iteratively. Once
the CNN model is developed, it can be used to quickly
extract the coupling parameters of microwave filters.
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