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Abstract – In many applications, the radiating elements
of the used antenna may be configured in the form of
a one-dimensional linear array, or two-dimensional pla-
nar array or even random array. In such applications, a
simple optimization algorithm is highly needed to opti-
mally determine the excitation amplitudes and phases
of the array elements to maximize the system’s perfor-
mance. This paper uses a convex optimization instead of
other complex global stochastic optimizations to synthe-
size a linear, planar, and random array patterns under pre-
specified constraint conditions. These constraints could
be either fixed beam width with the lowest possible
sidelobe levels or fixed sidelobe level with narrower
possible beam width. Two approaches for array pat-
tern optimization have been considered. The first one
deals with the problem of obtaining a feasible mini-
mum sidelobe level for a given beam width, while the
second one tries to obtain a feasible minimum beam
width pattern for a given sidelobe level. Both optimiza-
tion approaches were applied to the linear, planar, and
random arrays. Simulation results verified the effective-
ness of both optimization approaches and for all consid-
ered array configurations.

Index Terms – beam width minimization, convex opti-
mization, linear array, planar array, random array, side-
lobe level minimization.

I. INTRODUCTION
In most antenna array applications, low sidelobe

levels with narrow beam width patterns (i.e., maximum
directivities) are critical to minimize the undesirable
effects of the interfering and noise signals that may cause
false target indications and degrade the overall system
performance. Generally, the radiating elements of the
antenna arrays can be arranged as a one-dimensional
linear array, two-dimensional planar array, or even
random array configurations. In the linear and planar
arrays, the inter-element spacing is usually regular and
uniform, while in the random arrays they are irregular
and non-uniform. Unlike the linear arrays where their

radiation patterns can be scanned either on the azimuth
or elevation angles, the radiation patterns of the planar
arrays can be simultaneously scanned to any angle in the
azimuth and elevation planes. Thus, planar arrays are
most widely used in practice due to their advantages and
versatility [1].

The regularly spaced and uniformly excited linear
and planar arrays have many good radiation character-
istics such as narrow beam width, good directivity, and
simple excitation weight vector, but they suffer from high
sidelobe levels (SLLs) which are about −13.2 dB. Such
high SLLs may cause many problems with false tar-
get indications. Usually, the beamwidth, sidelobe level,
and many other array pattern characteristics can be con-
trolled by adjusting one or more of the following array
design parameters; geometrical layout of the array ele-
ments, the excitation phases, and amplitudes of the array
elements, inter-element spacing, and the elementary pat-
tern of each element [2]. In this work, the excitation
amplitudes and phases were used to design the linear and
the planar arrays. Whereas in the random arrays, first the
inter-element spacing is determined randomly, then, the
excitation amplitudes and phases of the random elements
were optimized to get the required array pattern.

In the literature, many researchers have studied these
design parameters and found that the SLL can be reduced
by tapering the excitation amplitudes of the array ele-
ments. Therefore, many tapers based on deterministic
approaches have been suggested such as Dolph, Tay-
lor, triangular, and raised cosine, to name just a few
[2, 3]. Specifically, the Dolph-Tschebyscheff approach
suggested a certain distribution for the element excita-
tions such that the corresponding array pattern has a min-
imum widening factor in the beam width for a given side-
lobe level. In other words, as the beam width decreases,
the side lobe level increases and vice versa. Although
these tapering methods successfully reduced the side-
lobe levels, these good results came at the cost of widen-
ing the beam width. Thus, there was always a trade-off
between the required sidelobe level and the desired beam
width pattern [4].
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In an attempt to maintain the beam width unchanged
while reducing the sidelobe levels, several simple ana-
lytical and numerical methods were presented in [5–7]
where the excitation amplitudes and phases of just two
side elements in the linear array were controlled. Then,
the method was further extended to the planar arrays
where the excitation amplitudes and phases of the bound-
ary elements were modified to achieve the required radi-
ation pattern [8].

On the other hand, many optimization techniques
such as genetic algorithm [9], particle swarm optimiza-
tion [10], simulated annealing [11], differential evolution
algorithm [12], and others [13] have been also used for
array synthesis. However, the computational complexity
of these globally optimized methods is high, especially
when dealing with relatively large arrays.

Interestingly, the problem of the array synthesis with
a feasible minimum sidelobe level for a given beam
width or vice versa can be successfully solved by using
convex optimization methods. First, by converting the
problem into convex, then the optimal solution becomes
much easier and faster than that of other global optimiza-
tion methods. In fact, many array synthesis scenarios are
convex in nature and they can be simply solved with-
out recalling other complex optimization methods such
as genetic algorithms [14, 15] or Modified Seagull opti-
mization [16, 17].

In this paper, the convex optimization [18] was
applied to the linear, planar, and random arrays to obtain
the desired radiation patterns where the excitation ampli-
tude and phase of the individual array elements are
optimized. To proceed with the optimization process,
two constraint strategies were suggested. The first one
includes the finding of the feasible minimum sidelobe
level for a given beam width pattern, while the other one
includes the finding of the feasible minimum beam width
pattern for a given sidelobe level. The effectiveness of
both strategies in designing linear, planar, and random
arrays was fully illustrated and verified.

II. THE CONVEX OPTIMIZED METHOD
A regularly spaced two-dimensional rectangular

planar array composed of N rows and M columns of
isotropic radiating elements are considered. The ele-
ments are distributed uniformly on the xy plane with sep-
aration distances dx =

λ

2 and dy =
λ

2 in the x and y direc-
tions, respectively. For uniformly spaced linear arrays,
the array size will be either N ×1 or M×1 according to
the considered axis. In general, the array factor of two-
dimensional elements can be given by:

AF(θ ,φ) =
N

∑
n=1

M

∑
m=1

wnm

e j 2π

λ
[(n−1)(dxsin θ cos φ+βx)+(m−1)(dy sinθ sinφ+βy)], (1)

where λ is the wavelength at the operating fre-
quency, θ and φ are the elevation and azimuth angles,
respectively, and βx = − 2π

λ
dxsin(θ0)cos(φ0), βy =

− 2π

λ
dysin(θ0)sin(φ0) are the progressive phase shifts in

the x and y directions, respectively. θ0 and φ0 are the
steered angles. Finally, wnm represents the amplitude and
phase excitations of the (n,m) element.

For random arrays, the elements are randomly
located along the x and y-axes and the inter-element
spacing is irregular. Thus, (1) can be rewritten as:

AF (θ ,φ) =
N

∑
n=1

M

∑
m=1

wnm

e j 2π

λ
[(n−1)(xn,msin θ cos φ+βx) +(m−1)(yn,m sinθ sin φ +βy)],

(2)
where xn,m and yn,m are the random locations of the (n,m)
element. From (1) and (2), it is clear that the total number
of adjustable excitation elements, wnm, is N ×M which
is quite large, especially for large arrays. Thus, the uses
of global stochastic optimizations such as genetic algo-
rithms are associated with high complexity and slow con-
vergence. Further, in many cases, the optimal solution
may not require such a highly complex-global optimiza-
tion algorithm since the searching space may be convex.
Therefore, such problem can be solved efficiently by the
convex optimization where the unknown array excita-
tions, wnm, constitutes a set of linear functions on a con-
vex space.

The convex optimization problem is formulated
as the determination of the excitation amplitudes and
phases of the array elements such that the resulting radi-
ation pattern satisfies one of the following two cases.

Case 1: Obtaining feasible minimum sidelobe level
for a given beam width

In this case, the convex optimization minimizes the
sidelobe level outside the beamwidth of the array pattern
and it has unit sensitivity at the target direction to avoid
any distortion in the main beam peak. These constraints
are written as follows:

|AF(θ ,φ)| is minimum, (3)
Subject to:

AF
(
β x,β y

)
= 1, (4)

|AF(θ i,φ i)| ≤ SLL, −90o ≤ θ i ≤−ΩBW and

ΩBW ≤ θ i ≤ 90o, (5)
where SLL is the feasible starting value of the sidelobe
level in the elevation plane for a fixed value of azimuth
angle, and ΩBW is the required first null to null beam
width in the elevation plane. The constraint in (4) aims at
preserving the unit gain in the target direction, while the
constraint in (5) is for obtaining the feasible minimum
sidelobe level for a given beam width pattern.
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Case 2: Obtaining minimum beam width pattern for
a given sidelobe level

In this case, the optimized array pattern is designed
such that it has unit sensitivity at the desired target direc-
tion, satisfies the constraint on the sidelobe level out-
side the main beam, and minimizes the beamwidth of the
array pattern. The results of applying these two cases are
shown in the following section.

III. SIMULATION RESULTS
In this section, many examples are presented and

investigated by means of computer simulations to assess
the performance of the described optimization methods.
Matlab software has been used to obtain the results. In
the first example, a uniformly spaced linear array with
a total number of elements equal to 36 (i.e., N=36 and
M=1) spaced by λ

2 is considered. The required first null
to null beam width (FNBW) of the optimized array pat-
tern was chosen to be equal to that of the standard uni-
formly excited linear array with 36 elements which is 5◦,
(ΩBW = 5o). Note that the FNBW of the optimized array
is restricted to be as narrow as that of the standard uni-
formly excited linear array while solving for the feasible
minimum sidelobe level. The target direction is assumed
to be known and equals 0◦. In this case, the excitation
amplitudes and phases are optimized such that the cor-
responding array factor complies with the imposed con-
straints according to (3), (4), and (5). Figure 1 shows the
radiation pattern of the optimized linear array and its ele-
ment locations. For comparison purposes, the radiation
pattern of the standard uniformly excited linear array is
also shown in this figure. From this figure, it is found that
the FNBW of the optimized array is exactly equal to that
of the standard uniformly excited linear array, and the
feasible minimum sidelobe level was −31.8 dB which is
much lower than that of the standard uniformly excited
linear array, −13.2 dB. The optimized excitation ampli-
tudes and phases are shown in Fig. 2.
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Case 2: Obtaining minimum beam width pattern for 
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outside the main beam, and minimizes the beamwidth 
of the array pattern. The results of applying these two 
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In the second example, a uniformly spaced planar 
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Fig.3, whereas the excitation amplitudes and phases are 
shown in Fig. 4. In this case, the feasible minimum SLL 
was -8 dB which is higher than that of the standard 
uniformly excited linear array, -13.2 dB. Nevertheless, 
much lower SLL can be obtained for larger values of 
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Fig.1 Optimized pattern of the linear array with 36x1 elements 
for Ω = 5  (left) and its element locations (right). 

Fig. 2 Excitation amplitudes and phases of the optimized linear array 
whose pattern is shown in Fig.1. 

 

Fig.3 Optimized pattern of the planar array with 6x6 elements for 
Ω = 5  (left) and its element locations (right). 

Fig.4 Excitation amplitudes and phases of the optimized planar 
array whose radiation pattern is shown in Fig.3. 

 
Fig. 1. Optimized pattern of the linear array with 36×1
elements for ΩBW =5◦ (left) and its element locations
(right).

In the second example, a uniformly spaced planar
array with N ×M = 6× 6 elements is considered. Note
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radiation pattern of the standard uniformly excited 
linear array is also shown in this figure. From this 
figure, it is found that the FNBW of the optimized array 
is exactly equal to that of the standard uniformly 
excited linear array and the feasible minimum sidelobe 
level was –31.8 dB which is much lower than that of 
the standard uniformly excited linear array, -13.2 dB. 
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shown in Fig. 2.  
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Fig.1 Optimized pattern of the linear array with 36x1 elements 
for Ω = 5  (left) and its element locations (right). 

Fig. 2 Excitation amplitudes and phases of the optimized linear array 
whose pattern is shown in Fig.1. 

 

Fig.3 Optimized pattern of the planar array with 6x6 elements for 
Ω = 5  (left) and its element locations (right). 

Fig.4 Excitation amplitudes and phases of the optimized planar 
array whose radiation pattern is shown in Fig.3. 

 

Fig. 2. Excitation amplitudes and phases of the optimized
linear array whose pattern is shown in Fig. 1.

that the total number of the array elements in all array
configurations (linear, planar, and random) was fixed to
36 elements. Again, the same optimization constraints as
in the previous example were imposed to obtain the fea-
sible minimum sidelobe level for a given narrow beam
width, ΩBW = 5o. The pattern of the optimized planar
array and its element locations are shown in Fig. 3,
whereas the excitation amplitudes and phases are shown
in Fig. 4. In this case, the feasible minimum SLL was
−8 dB which is higher than that of the standard uni-
formly excited linear array, −13.2 dB. Nevertheless,
much lower SLL can be obtained for larger values of
beam widths.
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Fig.1 Optimized pattern of the linear array with 36x1 elements 
for Ω = 5  (left) and its element locations (right). 

Fig. 2 Excitation amplitudes and phases of the optimized linear array 
whose pattern is shown in Fig.1. 

 

Fig.3 Optimized pattern of the planar array with 6x6 elements for 
Ω = 5  (left) and its element locations (right). 

Fig.4 Excitation amplitudes and phases of the optimized planar 
array whose radiation pattern is shown in Fig.3. 

 

Fig. 3. Optimized pattern of the planar array with 6×6
elements for ΩBW = 5◦ (left) and its element locations
(right).

while the constraint in (5) is for obtaining the feasible 
minimum sidelobe level for a given beam width pattern. 
Case 2: Obtaining minimum beam width pattern for 
a given sidelobe level  

In this case, the optimized array pattern is designed 
such that it has unit sensitivity at the desired target 
direction, satisfies the constraint on the sidelobe level 
outside the main beam, and minimizes the beamwidth 
of the array pattern. The results of applying these two 
cases are shown in the following section. 
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linear array while solving for the feasible minimum 
sidelobe level.  The target direction is assumed to be 
known and equals to 0 . In this case, the excitation 
amplitudes and phases are optimized such that the 
corresponding array factor complies with the imposed 
constraints according to (3), (4), and (5). Fig.1 shows 
the radiation pattern of the optimized linear array and 
its element locations. For comparison purposes, the 
radiation pattern of the standard uniformly excited 
linear array is also shown in this figure. From this 
figure, it is found that the FNBW of the optimized array 
is exactly equal to that of the standard uniformly 
excited linear array and the feasible minimum sidelobe 
level was –31.8 dB which is much lower than that of 
the standard uniformly excited linear array, -13.2 dB. 
The optimized excitation amplitudes and phases are 
shown in Fig. 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the second example, a uniformly spaced planar 

array with 𝑁 × 𝑀 = 6 × 6 elements is considered. Note 
that the total number of the array elements in all array 
configurations (linear, planar, and random) was fixed to 
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as in the previous example was imposed to obtain the 
feasible minimum sidelobe level for a given narrow 
beam width, 𝛺 = 5 . The pattern of the optimized 
planar array and its element locations are shown in 
Fig.3, whereas the excitation amplitudes and phases are 
shown in Fig. 4. In this case, the feasible minimum SLL 
was -8 dB which is higher than that of the standard 
uniformly excited linear array, -13.2 dB. Nevertheless, 
much lower SLL can be obtained for larger values of 
beam widths. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Optimized pattern of the linear array with 36x1 elements 
for Ω = 5  (left) and its element locations (right). 

Fig. 2 Excitation amplitudes and phases of the optimized linear array 
whose pattern is shown in Fig.1. 

 

Fig.3 Optimized pattern of the planar array with 6x6 elements for 
Ω = 5  (left) and its element locations (right). 

Fig.4 Excitation amplitudes and phases of the optimized planar 
array whose radiation pattern is shown in Fig.3. 

 
Fig. 4. Excitation amplitudes and phases of the optimized
planar array whose radiation pattern is shown in Fig. 3.

In the third example, a randomly spaced planar array
with N ×M = 6× 6 elements is considered. Again, the
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beam width constraint was ΩBW = 5oas in the previous
examples. The results for the optimized random array
are shown in Fig. 5. From this figure, it can be seen
that the feasible minimum sidelobe level was −7.7 dB
which is also higher than that of the standard uniformly
excited linear array, −13.2 dB. Nevertheless, much lower
SLL can be obtained for wider beam width as shown
in Fig. 6 (a) where the beam width was varied from
ΩBW = 3o to ΩBW = 20o and the corresponding feasi-
ble minimum SLL was recorded. For these values of
beam widths, the directivities of the three array config-
urations were also plotted as shown in Fig. 6 (b). From
these two figures, it can be seen that the linear array
gives the feasible minimum SLL and higher directivity.
This is mainly because the linear array configuration has
wider space diversity than the planar and random arrays,
thus, narrower beam width and better directivity can be
achieved. Moreover, the feasible minimum SLL can be
significantly reduced with an increase in the given

In the third example, a randomly spaced planar 
array with 𝑁 × 𝑀 = 6 × 6 elements is considered. 
Again, the beam width constraint was 𝛺 = 5 as in 
the previous examples.   The results for the optimized 
random array are shown in Fig. 5. From this figure, it 
can be seen that the feasible minimum sidelobe level 
was -7.7 dB which is also higher than that of the 
standard uniformly excited linear array, -13.2 dB. 
Nevertheless, much lower SLL can be obtained for 
wider beam width as shown in Fig. 6 (a) where the 
beam width was varied from 𝛺 = 3  upto 𝛺 =
20  and the corresponding feasible minimum SLL was 
recorded. For these values of beam widths, the 
directivities of the three array configurations were also 
plotted as shown in Fig.6 (b). From these two figures, it 
can be seen that the linear array gives the feasible 
minimum SLL and higher directivity. This is mainly 
because the linear array configuration has wider space 
diversity than the planar and random arrays, thus, 
narrower beam width and better directivity can be 
achieved. Moreover, the feasible minimum SLL can be 
significantly reduced with an increase in the given 
beam width value. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the next example, a feasible minimum beam 
width pattern for a given SLL is investigated where the 
SLL was fixed at -30 dB and a feasible minimum beam 
width for a linear, planar, and random arrays was 
computed as shown in Fig.7 to Fig.9. From these 
figures, it can be seen that the feasible minimum beam 
width for linear, planar, and random arrays was 
𝛺 = 4 , 𝛺 = 11 , and 𝛺 = 11  respectively 
for given SLL=-30 dB. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

(d) (c) 
Fig.5 Optimized pattern of the random array with 6x6 elements for 
Ω = 5  (a), its element locations (b), excitation amplitudes (c) 

and phases (d). 

Fig.6 Variation of minimum SLL (a) and directivity (b). 
(a) (b) 

(a) (b) 

(c) (d) 
Fig.7 Optimized pattern of the linear array with 36x1 elements for 
𝑆𝐿𝐿 = −30 𝑑𝐵 (a), its element locations (b), excitation amplitudes 

(c) and phases (d). 

(a) (b) 

(d) (c) 
Fig.8 Optimized pattern of the planar array with 6x6 elements for 

𝑆𝐿𝐿 = −30 𝑑𝐵 (a), its element locations (b), excitation amplitudes 
(c) and phases (d). 

Fig. 5. (a) Optimized pattern of the random array with
6×6 elements for ΩBW = 5◦, (b) its element locations,
(c) excitation amplitudes, and (d) phases.

In the third example, a randomly spaced planar 
array with 𝑁 × 𝑀 = 6 × 6 elements is considered. 
Again, the beam width constraint was 𝛺 = 5 as in 
the previous examples.   The results for the optimized 
random array are shown in Fig. 5. From this figure, it 
can be seen that the feasible minimum sidelobe level 
was -7.7 dB which is also higher than that of the 
standard uniformly excited linear array, -13.2 dB. 
Nevertheless, much lower SLL can be obtained for 
wider beam width as shown in Fig. 6 (a) where the 
beam width was varied from 𝛺 = 3  upto 𝛺 =
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Finally, figure 10 shows the variations of the 

minimum feasible beam width and the directivities for 
different values of the given SLL. It can be seen that the 
higher SLL results in a narrower beam width. These 
results fully confirm the effectiveness of the convex 
optimization algorithm for designing linear, planar, and 
random arrays.  

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

IV. CONCLUSION 
Convex optimization has been effectively used to 

obtain the desired radiation patterns of the linear, 
planar, and random arrays by optimizing the excitation 
amplitudes and phases of the array elements subject to 
either finding the minimum possible sidelobe level for a 
given beam width pattern or finding the minimum 
possible beam width for a given sidelobe level. From 
the results of the linear, planar, and random array 

configurations, it has been shown that a much lower 
SLL can be obtained for higher beam width values at 
the cost of lower directivities. Moreover, the 
performance of the linear arrays was found to 
outperform in terms of minimum feasible SLL for a 
given narrow beam width compared to other two 
configurations. This is mainly due to the fact that the 
linear array has wider space diversity. On the other 
hand, the three array configurations perform well and 
provide feasible minimum beam width for relatively 
high SLL. These results fully confirm the capability of 
the suggested two optimization constraints methods. 
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Finally, Fig. 10 shows the variations of the minimum
feasible beam width and the directivities for different
values of the given SLL. It can be seen that the higher
SLL results in a narrower beam width. These results
fully confirm the effectiveness of the convex optimiza-
tion algorithm for designing linear, planar, and random
arrays.
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IV. CONCLUSION
Convex optimization has been used effectively to

obtain the desired radiation patterns of the linear, planar,
and random arrays by optimizing the excitation ampli-
tudes and phases of the array elements subject to either
finding the minimum possible sidelobe level for a given
beam width pattern or finding the minimum possible
beam width for a given sidelobe level. From the results of
the linear, planar, and random array configurations, it has
been shown that a much lower SLL can be obtained for

higher beam width values at the cost of lower directivi-
ties. Moreover, the performance of the linear arrays was
found to outperform in terms of minimum feasible SLL
for a given narrow beam width compared to the other two
configurations. This is mainly due to the linear array has
wider space diversity. On the other hand, the three array
configurations perform well and provide feasible mini-
mum beam width for relatively high SLL. These results
fully confirm the capability of the suggested two opti-
mization constraint methods.
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