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Abstract – This article presents the design of an array
of rectennas operating at 28.3 THz for infrared (IR)
energy harvesting applications. The basic element of the
array consists of a Vivaldi-dipole rectenna composed of
two arms made with different conductors (gold and tita-
nium). A metal-insulator-metal (MIM) tunnel diode is
used to rectify the THz ac current. The proposed MIM
diode consists of a very thin layer of Al2O3 sandwiched
between the two metal electrodes. Arrays of two, three,
and four rectennas are investigated. The improvement
of the energy captured by coupling several elements in
the same structure with a common gap is also investi-
gated. This array architecture, without feeding network,
may reduce the number of rectifying diodes and, there-
fore, decrease losses and increase the overall efficiency.
Finally, it has been found that the four-elements rectenna
array has a maximum electric field intensity of 62.4 ×
104 V/m at 28.3 THz.

Index Terms – Energy harvesting, infrared (IR) energy,
MIM diode, rectenna, THz, Vivaldi antenna array.

I. INTRODUCTION
Nowadays, wireless sensor networks are widely

used in several applications related to industry, surveil-
lance, monitoring of people and objects, home automa-
tion, scientific research, etc. This rapid expansion in
using wireless systems is due, among other reasons, to
the considerable developments and advances made in

microelectronics. These advances have enabled the inte-
gration of more and more functionalities in an increas-
ingly smaller volume [1].

Unfortunately, research and development in energy
storage technologies have not followed the same rapid
trend. As a result, portable communications systems
are finding themselves increasingly penalized regarding
autonomy. To make these communication systems and
objects more self-sufficient in energy and to increase the
battery life, efficient electromagnetic energy harvesting
systems are required. Collecting energy from the sur-
rounding environment and converting it into usable elec-
trical energy is a very interesting alternative to traditional
usage of replaceable batteries [2]. These energy sources
can be recovered from artificial devices or available nat-
ural sources [3–4].

The most direct and abundant source of energy
comes from the Sun. Photovoltaic energy harvesting is
a promising technology that converts solar energy in the
visible spectrum into usable electrical energy [5], but this
received energy from the sun is used in the visible region
during the day only.

The energy released at night is in the infrared (IR)
region within the spectral range 7-17 µm with a max-
imum power peak centred around the wavelength 10.6
µm (28.3 THz) [6–7]. In order to harvest and convert
this available infrared energy, we need new devices to
capture, convert, and store this energy. One solution
that can exploit this abundant infrared energy from the
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Earth’s surface is to use energy harvesting based on
nano-rectennas [4, 8]. A rectenna-based system, is com-
posed of a receiving antenna with integrated rectifying
diode [9–11].

Harvesting energy in the IR domain requires effi-
cient design of the antenna and the rectifying diode,
with deep understanding of the dielectric properties of
materials in the optical band, especially in the infrared
range [4, 12, 13].

The continuous technological evolution of elec-
tronic and optical materials at the nano-metric scale
quickly leads to the design of devices which were not
even possible a few years ago. Plasmonics is one of areas
that benefit most from these advances [14–15]. Opti-
cal antennas are strongly analogous to their radio fre-
quency counterparts, but there are crucial differences in
their physical properties and behavior when scaled. Most
of these differences arise because metals are not perfect
conductors at optical frequencies, but rather are highly
correlated plasmas described as a free electron gas. By
definition, an optical antenna is a device that converts
freely the radiation of propagating light into localized
electromagnetic energy, and vice versa [16]. The fabrica-
tion of optical antenna structures is an emerging opportu-
nity for new optoelectronic devices [17]. Optical anten-
nas help to exceed the diffraction limit, making it possi-
ble to manipulate, control and visualize optical fields at
the nano-metric scale, which offers a wide range of appli-
cations [18]. Among these are antenna probes for nano-
imaging, non-linear signal conversion, and IR energy
harvesting. These nano-antennas require specific studies
to develop optical antennas.

Associated with the antenna, IR energy harvesting
is based on the use of diodes as rectifiers. In the tera-
hertz domain, the use of diodes and more particularly of
Schottky and MIM diodes, is very useful at the level of
the rectifier block. MIM diodes are very attractive and
promising candidates for energy recovery in the infrared
spectrum. The MIM diodes are a good candidate for
infrared (IR) applications of the electromagnetic spec-
trum because of their high-speed characteristics and their
compatibility with integrated circuits [4, 19].

Usually, a single rectenna element cannot supply
sufficient captured wireless power. To increase the power
recovered by the system, we must maximize the power
captured. One way to achieve this is by increasing the
surface area of the antennas; however, this will shift
the omni-directional bandwidth toward the low frequen-
cies. Another approach is to combine several elements
in an array configuration. Several configurations of the
second approach are already presented in literature, but
they all suffer from some limitations: In [20], a rectenna
array based on a 2-by-4 misaligned bowtie antenna is
presented. Four spiral elements composed of three gold-
based square spiral nano-antennas resonate near 13 µm

[21] with dimensions of 750 × 750 nm of each element.
The system arrays have been coupled together in one
structure with one common gap by using a feeding line.
In both configurations cited in [20] and [21], the size
of the feeding network is large compared to the array
causing high ohmic losses, which reduce the intensity of
the total collected electric field within the gap.

To increase further the captured electric field in
arrays of nano-rectennas, authors in [22] optimized both
the metal thickness of a bowtie nano array, (the optimal
thickness was equal to 95 nm) in addition to the incident
angle.

In this paper, we present a new design of nano-
rectenna array, based on a Vivaldi rectenna operating
at infrared wavelengths, with a maximum peak of col-
lected power situated at 10.6 µm (28.3 THz). The struc-
ture is composed of an array of Vivaldi nano-rectennas
placed in a configuration to create a hot spot in order to
increase the intensity of the collected electric field within
this localized zone. The main advantage of the proposed
configuration is to remove the complex and lossy feed-
ing network used in [22] and [23], in addition to the con-
centration of the electric field in one small region (hot
spot) where the rectifying diode should be integrated. So,
losses will be reduced, the captured electric field within
the gap will be enhanced, and the total efficiency of the
rectenna will be increased.

This article is organized as follows. Section II
describes, respectively, the designs of one, two, three,
and four antennas and their performances. The maximum
fields captured for each case are presented. In section III,
a similar study adds the rectifying MIM diode to form the
rectennas. The design parameters of the Vivaldi nanoar-
rays are optimized to obtain maximum performance. The
rectennas were simulated by using computer simulation
technology (CST) software [24], where the dielectric
properties of the metals (gold and titanium) are calcu-
lated based on the Drude-model.

II. VIVALDI NANO-ANTENNA
A. Vivaldi nano-antenna design

Currently, printed antennas are becoming more and
more important because of the great variety of geomet-
ric shapes they can take, which make them applicable
to different integration situations. This is a key prop-
erty which explains the introduction of printed anten-
nas in energy harvesting applications. This technology
responds well to the needs of our application. Therefore,
the design of the antennas must respond to compromises
in terms of performance and complexity of implemen-
tation. The Vivaldi antenna is a simple planar antenna
characterized by a wide band and linear polarization. The
antenna element as shown in Fig. 1, presents an exponen-
tial curve profile in the XY plane. In The gap between
the two arms of the antenna is defined by the following
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function [25]:

g(x) = R(eCx−e−Cx)+
Wmin

2
, (1)

where the coefficient C is the curvature parameter, Wmin
is the width of the gap line, and R is defined by:

R =
Wmax

2 − Wmin
2

eCL− eC . (2)

Wmax is the opening width at the end of the arm and
C is the length of the arm. The antenna configuration is
symmetric around the x-axis.

The antenna element is composed of two arms: one
in gold, with a dielectric constant ε rg, loss tangent tan
δg, and a thickness hg; and the other in titanium with a
dielectric constant εrti, loss tangent tan δti, and a thick-
ness hti separated by a gap Wmin. A detailed parametric
study allowed us to obtain the optimal values of the dif-
ferent parameters of the final structure Vivaldi antennas
are described in Table 1.

The dielectric properties of gold, used in the simu-
lations are obtained by presenting the experimental data
in a Drude model [4]:

ε (ω)=ε∞−
ωp

2

ω2−iωωτ

, (3)

where ε∞ represents the contribution of electrons linked
to the relative dielectric constant, ωp is the frequency of
the plasma (rapid oscillation of the electron density in
conductive media such as metals), and ωτ is the amorti-
zation frequency.

Table 1: Antenna dimensions and material properties
Parameters Value

(µm)
Parameters Value

(µm)
Wmax 40 ε rg at 28.3

THz
6037.7

Wmin 0.05 tan δ g at 28.3
THz

0.4

L 2.7 ε rti at 28.3
THz

430

hti 0.08 tan δ ti at 28.3
THz

0.98

hg 0.08 C 1.8

The advantage of this configuration is that it gives
the designer the freedom to vary several antenna param-
eters in order to increase the electric field received. In
addition, it produces a stronger electric field in its gap.
Another advantage of Vivaldi’s nano-antennas of this
form is the ability to build an array by coupling many
elements of the Vivaldi antenna in one configuration and
combining the electric field of each element at the feed
point of the network, where a rectifier can be integrated.

Light is an electromagnetic wave where the elec-
tric and magnetic fields are perpendicular to the direction
of propagation (z-axis). To study the electric field at the

antenna gap, a linear polarized plane wave (along x-axis)
with an electric field module equal to 1 V/m (see Fig. 1).
The electric field component of the incident field is along
the dipole axis y, and the direction of propagation is per-
pendicular to the dipole (along -z). The maximum value
of the collected field is concentrated at the gap with a
value 67.2 V/m at 28.3 THz, as shown in Fig. 2.
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B. Vivaldi nano-antenna array
Vivaldi nano-antenna arrays have been used and

studied due to their suitability for broadband operation
and because they offer flexibility to optimize radiation
properties by adjusting their configuration [22]. Figure 3
shows the configuration of the studied nano arrays. We
started by designing a nanoarray of two elements to
increase the captured electric field [26]. This network
consists of two nano-antennas with a 30 nm gap to collect
the electric field from the elements of the array, as shown
in Fig. 3 (a). This simple design offers a higher electric
field compared to a single element nano-antenna.
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The dimensions of all nano-antennas in this array
are the same as those in Fig. 1 with a slot of 30 nm
separating the two identical nano-antennas. Figure 3 (b)
shows three Vivaldi nano-antenna arrays based on gold
and titanium, coupled together in a single network com-
mon gap. The nano-antenna arrays have been designed to
resonate around 28.3 THz. Then, the four-element planar
Vivaldi nanoarray, shown in Fig. 3 (c), has been designed
to increase the electric field picked up for IR energy
harvesting applications [22]. By coupling numerous ele-
ments in the geometry of an array, the far-field character-
istics are improved and the output voltage is increased. In
previous studies [8], methods of increasing the captured
electric field by modifying the geometric parameters
of the nano-antenna are presented. From the simulated
results, the maximum electric field is produced by a 7
nm gap between the arms of the antenna. In addition, the
captured electric field is improved if the size of the gap
between the elements of the network at the supply point
is reduced. Therefore, for the array of four elements, a
Vivaldi nanoarray based on the optimized parameters is
constructed to obtain maximum performance.

(a) (b)

(c) (d)

Fig. 3. Vivaldi nano-antenna: (a) single structure, (b) two
elements array, (c) three elements array, and (d) four ele-
ments array.

C. Discussion
Figure 4 compares the solar energy harvesting

capacities of the different arrays.
The intensity of single nano-antenna reaches a max-

imum value of 5 × 103 at 28.3 THz. The captured field is
not sufficient with such a single-element antenna. How-
ever, this nano-antenna offers the possibility of capturing
higher values by using it in a circular or hexagonal net-
work by capturing the fields at the center of the array.
In the case of a simple antenna, the received signal is
often not sufficient to drive the rectifier. Thus, it is nec-
essary to increase the gain of the receiving antenna by

increasing its electrical size. This can be accomplished
by assembling the single element antennas in a circular
array configuration. The total field captured by the array
is determined by the addition of the fields captured by
each individual element when the elements interfere con-
structively. The factors which control the overall perfor-
mances of an array with identical elements are presented
in [26]: the geometrical configuration, the space between
the elements, the amplitude and the phase of excitation
of the elements, and the contribution of the individual
element. As we can see in Fig. 4, it is obvious that the
four-antenna nanoarray reaches a maximum value of 105

at 28.3 THz, which is better for harvesting the electric
field compared to other designs. It can be seen that the
field captured at the center increases by increasing the
number of nano-antennas integrated into the array.

This significant improvement in the collected field
strength obtained with the nanoarray is mainly due to the
increase in numbers of dipoles used. and therefore the
increase in its electrical size, at the resonant frequency.

Fig. 4. The intensity variation captured vs. frequency for
the different Vivaldi nanoarrays.

III. VIVALDI RECTENNA NANOARRAY
Electromagnetic energy harvesting systems require

a wave receiving antenna connected to an RF/DC
conversion system, thus forming a rectifier device or
“Rectenna.” Currently, many challenges encountered in
the design of rectennas for high performance are being
studied. It leads to continuous progress in the under-
standing of light/matter interaction at optical frequen-
cies. Recently, some researchers have shown a new low-
cost nano-antenna manufacturing method [22].

Due to the geometric convenience of the dipole, the
Vivaldi nano-antenna is chosen in this work to be the
main resonator that integrates with the rectifier. However,
the electric field picked up at the center of its gap is weak
and needs to be further improved. That’s why an auxil-
iary resonant element is added to the structure, at the cen-
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ter of this nano-antenna, in order to increase the captured
field and improve its overall performance.

Regarding diodes, many promising new alternatives
are being explored. For example, metal-insulator-metal
(MIM) diodes, metal insulator-insulator-metal diodes
(MIIM), traveling wave diodes, pointy diodes, and geo-
metric diodes have been considered as potential candi-
dates for these applications.

In this work, firstly, the dipole nano-antenna is sim-
ulated. The field picked up at the feed gap level is
shown in Fig. 4. After that, the optimized nano-antenna
is exploited in the rectenna structure by inserting a MIM
diode. In fact, a rectangular dielectric layer of Al2O3
with a permittivity equal to εr = 0.309+ j0.618 at 28.3
THz, thickness 1.5 nm, and size 0.21 µm2 is placed above
the center of the simulated nano-antenna. A rectangular
gold conductive layer of length d = 0.35 µm, width c =
0.2 µm, and thickness 0.14 µm is inserted as shown in
Fig. 5 (a).

Then, the designed double nano-antenna, composed
of four Vivaldi arms forming an array of two dipoles, is
used to create a nano-rectenna array. These two elements
have been coupled in the form of an array by adding a
single diode, as shown in Fig. 5 (b).

A. Nano-rectenna array design
The MIM diode is used for IR rectification with the

optical nano-antenna. The diode incorporates an insula-
tor layer between two electrodes, which are sufficiently
thin to allow tunnel conduction. To integrate the MIM
diode into the nanoarray of two Vivaldi antennas, we fol-
lowed the same principle of the MIM rectifier, an insu-
lator layer of dimension 0.2 × 0.105 µm2 and of the
same thickness, then a conductive layer of gold of dimen-
sion 0.2 × 0.25 µm2 is inserted in the same area of the
diode.

The Vivaldi planar nanoarray (2 × 3) designed to
increase the electric field picked up for solar energy col-
lection applications is shown in Fig. 5 (c). The far-field
characteristics are improved by coupling numerous ele-
ments in the form of an array, and the output voltage is
increased. The dimensions of the MIM diode are each
time modified in order to reach a maximum value of the
field at the frequency of the resonance. A single diode
was used for the network of three elements. The insu-
lating layer of Al2O3 of dimension 0.2 × 0.215 µm2

was used in the simulation. We have selected the con-
ductive layer of gold of dimension 0.2 × 0.355 µm2

in our study. Four Vivaldi elements, coupled together
in a single array with a common gap, is shown in
Fig. 5 (d). All of the features in Fig. 5 (d) have the same
dimensions as the Vivaldi nano-antenna, as depicted in
Fig. 1. A single diode was used for the array of three
elements.
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the electric field picked up at the center of its gap is weak
and needs to be further improved. That’s why an auxil-
iary resonant element is added to the structure, at the cen-
ter of this nano-antenna, in order to increase the captured
field and improve its overall performance.
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are being explored. For example, metal-insulator-metal
(MIM) diodes, metal insulator-insulator-metal diodes
(MIIM), traveling wave diodes, pointy diodes, and geo-
metric diodes have been considered as potential candi-
dates for these applications.

In this work, firstly, the dipole nano-antenna is sim-
ulated. The field picked up at the feed gap level is
shown in Fig. 4. After that, the optimized nano-antenna
is exploited in the rectenna structure by inserting a MIM
diode. In fact, a rectangular dielectric layer of Al2O3
with a permittivity equal to εr = 0.309+ j0.618 at 28.3
THz, thickness 1.5 nm, and size 0.21 μm2 is placed above
the center of the simulated nano-antenna. A rectangular
gold conductive layer of length d = 0.35 μm, width c =
0.2 μm, and thickness 0.14 μm is inserted as shown in
Fig. 5 (a).

Then, the designed double nano-antenna, composed
of four Vivaldi arms forming an array of two dipoles, is
used to create a nano-rectenna array. These two elements
have been coupled in the form of an array by adding a
single diode, as shown in Fig. 5 (b).

A. Nano-rectenna array design
The MIM diode is used for IR rectification with the

optical nano-antenna. The diode incorporates an insula-
tor layer between two electrodes, which are sufficiently
thin to allow tunnel conduction. To integrate the MIM
diode into the nanoarray of two Vivaldi antennas, we fol-
lowed the same principle of the MIM rectifier, an insula-
tor layer of dimension 0.2 × 0.105 μm2 and of the same
thickness, then a conductive layer of gold of dimension
0.2 × 0.25 μm2 is inserted in the same area of the diode.

The Vivaldi planar nanoarray (2 × 3) designed to
increase the electric field picked up for solar energy col-
lection applications is shown in Fig. 5 (c). The far-field
characteristics are improved by coupling numerous ele-
ments in the form of an array, and the output voltage is
increased. The dimensions of the MIM diode are each
time modified in order to reach a maximum value of the
field at the frequency of the resonance. A single diode
was used for the network of three elements. The insulat-
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tive layer of gold of dimension 0.2 × 0.355 μm2 in our
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the electric field picked up at the center of its gap is weak
and needs to be further improved. That’s why an auxil-
iary resonant element is added to the structure, at the cen-
ter of this nano-antenna, in order to increase the captured
field and improve its overall performance.

Regarding diodes, many promising new alternatives
are being explored. For example, metal-insulator-metal
(MIM) diodes, metal insulator-insulator-metal diodes
(MIIM), traveling wave diodes, pointy diodes, and geo-
metric diodes have been considered as potential candi-
dates for these applications.

In this work, firstly, the dipole nano-antenna is sim-
ulated. The field picked up at the feed gap level is
shown in Fig. 4. After that, the optimized nano-antenna
is exploited in the rectenna structure by inserting a MIM
diode. In fact, a rectangular dielectric layer of Al2O3
with a permittivity equal to εr = 0.309+ j0.618 at 28.3
THz, thickness 1.5 nm, and size 0.21 μm2 is placed above
the center of the simulated nano-antenna. A rectangular
gold conductive layer of length d = 0.35 μm, width c =
0.2 μm, and thickness 0.14 μm is inserted as shown in
Fig. 5 (a).

Then, the designed double nano-antenna, composed
of four Vivaldi arms forming an array of two dipoles, is
used to create a nano-rectenna array. These two elements
have been coupled in the form of an array by adding a
single diode, as shown in Fig. 5 (b).

A. Nano-rectenna array design
The MIM diode is used for IR rectification with the

optical nano-antenna. The diode incorporates an insula-
tor layer between two electrodes, which are sufficiently
thin to allow tunnel conduction. To integrate the MIM
diode into the nanoarray of two Vivaldi antennas, we fol-
lowed the same principle of the MIM rectifier, an insula-
tor layer of dimension 0.2 × 0.105 μm2 and of the same
thickness, then a conductive layer of gold of dimension
0.2 × 0.25 μm2 is inserted in the same area of the diode.

The Vivaldi planar nanoarray (2 × 3) designed to
increase the electric field picked up for solar energy col-
lection applications is shown in Fig. 5 (c). The far-field
characteristics are improved by coupling numerous ele-
ments in the form of an array, and the output voltage is
increased. The dimensions of the MIM diode are each
time modified in order to reach a maximum value of the
field at the frequency of the resonance. A single diode
was used for the network of three elements. The insulat-
ing layer of Al2O3 of dimension 0.2 × 0.215 μm2 was
used in the simulation. We have selected the conduc-
tive layer of gold of dimension 0.2 × 0.355 μm2 in our
study. Four Vivaldi elements, coupled together in a sin-
gle array with a common gap, is shown in Fig. 5 (d). All
of the features in Fig. 5 (d) have the same dimensions as
the Vivaldi nano-antenna, as depicted in Fig. 1. A single
diode was used for the array of three elements.
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and needs to be further improved. That’s why an auxil-
iary resonant element is added to the structure, at the cen-
ter of this nano-antenna, in order to increase the captured
field and improve its overall performance.

Regarding diodes, many promising new alternatives
are being explored. For example, metal-insulator-metal
(MIM) diodes, metal insulator-insulator-metal diodes
(MIIM), traveling wave diodes, pointy diodes, and geo-
metric diodes have been considered as potential candi-
dates for these applications.
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ulated. The field picked up at the feed gap level is
shown in Fig. 4. After that, the optimized nano-antenna
is exploited in the rectenna structure by inserting a MIM
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with a permittivity equal to εr = 0.309+ j0.618 at 28.3
THz, thickness 1.5 nm, and size 0.21 μm2 is placed above
the center of the simulated nano-antenna. A rectangular
gold conductive layer of length d = 0.35 μm, width c =
0.2 μm, and thickness 0.14 μm is inserted as shown in
Fig. 5 (a).

Then, the designed double nano-antenna, composed
of four Vivaldi arms forming an array of two dipoles, is
used to create a nano-rectenna array. These two elements
have been coupled in the form of an array by adding a
single diode, as shown in Fig. 5 (b).

A. Nano-rectenna array design
The MIM diode is used for IR rectification with the

optical nano-antenna. The diode incorporates an insula-
tor layer between two electrodes, which are sufficiently
thin to allow tunnel conduction. To integrate the MIM
diode into the nanoarray of two Vivaldi antennas, we fol-
lowed the same principle of the MIM rectifier, an insula-
tor layer of dimension 0.2 × 0.105 μm2 and of the same
thickness, then a conductive layer of gold of dimension
0.2 × 0.25 μm2 is inserted in the same area of the diode.

The Vivaldi planar nanoarray (2 × 3) designed to
increase the electric field picked up for solar energy col-
lection applications is shown in Fig. 5 (c). The far-field
characteristics are improved by coupling numerous ele-
ments in the form of an array, and the output voltage is
increased. The dimensions of the MIM diode are each
time modified in order to reach a maximum value of the
field at the frequency of the resonance. A single diode
was used for the network of three elements. The insulat-
ing layer of Al2O3 of dimension 0.2 × 0.215 μm2 was
used in the simulation. We have selected the conduc-
tive layer of gold of dimension 0.2 × 0.355 μm2 in our
study. Four Vivaldi elements, coupled together in a sin-
gle array with a common gap, is shown in Fig. 5 (d). All
of the features in Fig. 5 (d) have the same dimensions as
the Vivaldi nano-antenna, as depicted in Fig. 1. A single
diode was used for the array of three elements.
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and needs to be further improved. That’s why an auxil-
iary resonant element is added to the structure, at the cen-
ter of this nano-antenna, in order to increase the captured
field and improve its overall performance.

Regarding diodes, many promising new alternatives
are being explored. For example, metal-insulator-metal
(MIM) diodes, metal insulator-insulator-metal diodes
(MIIM), traveling wave diodes, pointy diodes, and geo-
metric diodes have been considered as potential candi-
dates for these applications.

In this work, firstly, the dipole nano-antenna is sim-
ulated. The field picked up at the feed gap level is
shown in Fig. 4. After that, the optimized nano-antenna
is exploited in the rectenna structure by inserting a MIM
diode. In fact, a rectangular dielectric layer of Al2O3
with a permittivity equal to εr = 0.309+ j0.618 at 28.3
THz, thickness 1.5 nm, and size 0.21 μm2 is placed above
the center of the simulated nano-antenna. A rectangular
gold conductive layer of length d = 0.35 μm, width c =
0.2 μm, and thickness 0.14 μm is inserted as shown in
Fig. 5 (a).

Then, the designed double nano-antenna, composed
of four Vivaldi arms forming an array of two dipoles, is
used to create a nano-rectenna array. These two elements
have been coupled in the form of an array by adding a
single diode, as shown in Fig. 5 (b).

A. Nano-rectenna array design
The MIM diode is used for IR rectification with the

optical nano-antenna. The diode incorporates an insula-
tor layer between two electrodes, which are sufficiently
thin to allow tunnel conduction. To integrate the MIM
diode into the nanoarray of two Vivaldi antennas, we fol-
lowed the same principle of the MIM rectifier, an insula-
tor layer of dimension 0.2 × 0.105 μm2 and of the same
thickness, then a conductive layer of gold of dimension
0.2 × 0.25 μm2 is inserted in the same area of the diode.

The Vivaldi planar nanoarray (2 × 3) designed to
increase the electric field picked up for solar energy col-
lection applications is shown in Fig. 5 (c). The far-field
characteristics are improved by coupling numerous ele-
ments in the form of an array, and the output voltage is
increased. The dimensions of the MIM diode are each
time modified in order to reach a maximum value of the
field at the frequency of the resonance. A single diode
was used for the network of three elements. The insulat-
ing layer of Al2O3 of dimension 0.2 × 0.215 μm2 was
used in the simulation. We have selected the conduc-
tive layer of gold of dimension 0.2 × 0.355 μm2 in our
study. Four Vivaldi elements, coupled together in a sin-
gle array with a common gap, is shown in Fig. 5 (d). All
of the features in Fig. 5 (d) have the same dimensions as
the Vivaldi nano-antenna, as depicted in Fig. 1. A single
diode was used for the array of three elements.
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four elements at the highest captured electric field, which
is more than six times greater than that of the array
with a single element. The intensity of the electric field
increases by increasing the number of elements forming
the nanoarray.

Thus, in this approach, the arrays designed have
contributed to increasing the field of view at the level
of the common gap when a single rectifier is necessary
instead of two or more. This means that we have reduced
the heat losses in the rectifiers and increased the total
efficiency of the rectenna.

Table 2 summarizes the simulation results of the
Vivaldi nano-rectennas designed. Vivaldi nano-rectennas
resonate at 28.3 THz, and they always operate in the
desired infrared band. Furthermore, it is clear that the
Vivaldi array with four elements produces the highest
captured electric field, which is more than double the
highest value for the two-element array, and more
than four times the highest value for the single Vivaldi
element.

Table 2: Comparison between different Vivaldi nano-
rectenna configurations

Array Element E-max
(V/m)

Intensity

One element 124 1.5 × 104

Two elements 284 8 × 104

Three elements 393 15.4 × 104

Four elements 790 62.4 × 104

V. CONCLUSION
A Vivaldi nano-antenna array for solar energy har-

vesting application at infrared frequencies 26-30 THz is
designed and optimized. The first study is done to exam-
ine the captured field at the common gap for the single,
double, three, and four nano-antenna with a resonant fre-
quency of 28.3 THz. The second study is done by inte-
grating a MIM diode into the designed arrays. The MIM
diode is a very thin device made up of a very thin layer
of Al2O3 sandwiched between two metal electrodes. It is
noted that the resonant frequency for this array is 28.3
THz with a maximum electric field intensity of value
62.4 × 104 J for a nanoarray of four elements.
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