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Abstract ─ A perfectly matched layer (PML) is 
introduced for elastodynamic waves in 
piezoelectric materials. A matching condition is 
derived for the PML equations to reduce spurious 
reflections from the boundary. The finite 
difference time domain (FDTD) is used to model 
the propagation of the wave in the piezoelectric 
material. The results show good performance of 
the proposed PML boundary. 
  
Index Terms ─ Elastodynamic wave, FDTD, 
piezoelectric materials, PML, SAW.  
 

I. INTRODUCTION 
Much interest is devoted to the surface acoustic 

wave (SAW) devices due to the versatility of their 
application and their widespread use. SAW-based 
resonators and delays are readily used in 
commercial telecommunication systems [1]. This 
makes any error reduction method, before the 
onset of fabrication, an extremely powerful tool 
for the industry. It also highlights the use of the 
computer aided design software in determining the 
SAW device responses prior to manufacturing. 

Surface acoustic wave simulators are generally 
categorized into two groups: behavioural models 
and physics-based models [2,3]. Behavioural 
models, also known as phenomenological models, 
are employed to quickly obtain the device 
response, typically by expanding the response in 
terms of certain basis functions [4]. On the other 
hand, physics-based models, also referred to as 
full-wave models, are more accurate. They directly 
solve the differential equations of SAW generation 
[3]. There is also another fundamental difference 

between the two: physics-based models need only 
be supplied with the boundary conditions of the 
problem, the excitation, and the initial conditions. 
Behavioural techniques, on the other hand, require 
a set of parameters describing an already-existing 
wave. These parameters are either extracted from 
experimental measurements, or from physics-
based simulations. A popular behavioural 
modeling approach is the coupling-of-modes 
(COM) method explained in [3]. References 
describing other phenomenological models exist 
[3, 5-7]. As a result, the two simulation 
methodologies are often complementary, rather 
than competitive.  

Frequency domain techniques are in particular 
powerful for determining SAW device responses 
at specific frequencies [6]. On the other hand, in 
order to obtain a wideband device response, a 
large number of such simulations are required. 
This is where time domain techniques prove their 
worth [8]. Most SAW device modeling has been 
done in the frequency domain, and so a wider 
selection of boundary conditions including the 
PML is available in the frequency domain.  

At the same time, time domain techniques such 
as FDTD, provide a powerful tool for wideband 
frequency response simulation. FDTD can also 
incorporate anisotropic media which include all 
piezoelectric materials. These properties make 
FDTD a suitable candidate for simulating micro-
acoustic devices [9]. 

In this paper, we develop an FDTD physics-
based model through the discretization of the 
piezoelectric governing equations. We describe an 
improvement to reduce spurious reflections from 
the PML boundary. PML implementations for this 
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type of structure based on existing recipes cause 
instabilities for certain crystal groups [9]. Here, a 
PML for acoustic waves is derived by closely 
following Bérenger’s derivation of a PML for 
electromagnetic waves. A new matching condition 
is developed to relate the velocity and stress loss-
coefficients similar to the matching condition 
defined for electromagnetic waves.  

Our paper is organized as follows: In Section 
II, SAW devices are introduced along with an 
overview of absorbing boundary conditions. In 
Section III, our parallel derivation of a PML for 
the elastodynamic wave equation is given. We 
present the PML time update equations based on 
the derived matching condition. Finally, Section 
IV presents the results. 

 
II. BACKGROUND 

 
A. SAW generation and propagation 

In the SAW devices considered here, surface 
acoustic waves are generated by the application of 
an excitation to a thin metal interdigital transducer 
(IDT) deposited on the free surface of a 
piezoelectric substrate, as shown in Fig. 1. 

Generally, two IDTs, separated on the surface 
of the piezoelectric substrate, constitute a basic 
two-port SAW device. One IDT acts as a 
transmitter and the other as a receiver. The 
transmitting IDT converts the electrical signal into 
mechanical wave vibrations, which travel through 
the medium to reach the receiver IDT. Through 
the piezoelectric effect, the mechanical SAW 
wave is converted back into an electrical output 
signal. The two-port devices considered here are 
compliant with the reciprocity theorem, where 
switching the transmitter and receiver ports will 
have no effect on the device functionality [1].  

 

Exitation IDT Detection IDT

Sagittal plane cut line

 
Fig. 1. A 2-port SAW device. 
 

In the IDT region of the wave generation zone, 
the substrate should be piezoelectric. The region in 

between the IDTs needs only be elastic, as it 
merely acts as the transmission medium for the 
SAW [1]. At the receiver IDT, a piezoelectric 
substrate is required to convert the mechanical 
wave back into an electrical signal. 

 

 Fig. 2. One IDT finger on the sagittal plane of a 
SAW device. 
 

Figure 2 shows the sagittal plane (side view) of 
the SAW device, indicated by the cut line in Fig. 
1. SAW waves are generally confined to within 
one or two wavelengths from the free surface of 
the substrate material. However, other types of 
excitations, such as bulk acoustic waves (BAWs) 
will radiate into the substrate.  

In practice, the SAW generation is often also 
accompanied by some small creation of BAWs, 
which act as parasitic waves. It is thus required to 
remove the reflection of these waves from the 
bottom of the device.  

Figure 1 also shows the symmetry of the 
device with respect to the sagittal cut line. This, 
along with the assumption that the device is 
infinitely thick in the y direction, allows for a 
complete analysis of the device by only studying 
the sagittal plane. The problem can therefore be 
analyzed in the xz plane denoting the sagittal 
plane, thus significantly reducing the 
computational requirements. 

 
B. Absorbing boundary conditions and the 
perfectly matched layer 

Several absorbing boundary conditions (ABCs) 
have been suggested with progressive 
improvements. Most of these ABCs were 
originally developed for electromagnetic wave 
propagation [11, 12]. In his 1994 paper, Bérenger 
described his PML, which offered significant 
improvement over previous ABCs [10].  
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In a pioneering work in 1996, Chew and Liu 
developed a PML for elastodynamics [13]. In 
2006, Chagla and Smith introduced a PML for 
piezoelectric materials by splitting the velocity 
components into the normal and tangential 
subcomponents, and only attenuating the normal 
velocity subcomponents. The resulting absorbing 
boundary condition showed instabilities for some 
crystal classes [9]. Here, we introduce losses, not 
just for the velocity components, but for the stress 
field subcomponents as well, thereby generalizing 
the loss matrix. At the same time, by preserving 
the matching condition throughout, the code 
remains stable.  

 
C. The PML for electromagnetic wave 
propagation 

The ABC equations for the electromagnetic 
waves are 

 
 

0 t
 

  

E E H , (1)  

 *
0

H H E
t

 
  


, (2)  

where   is the conductivity and *  is a non-
physical quantity that symmetrises the absorption 
of the magnetic field with that of the electric field 
[10]. o , and o  are the permittivity and 
permeability of the free space, respectively. In 
order to demonstrate the method, we show the 
case where a medium is matched to the vacuum. In 
general however, the computational domain can be 
matched to any number of media, for instance, a 
dielectric, an isotropic material, a non isotropic 
material, or in fact to another PML.  

The matching condition in Bérenger’s 
derivation is defined as [14] 
 *

0 0

 
 

 . (3)  

This impedance matching equation ensures that 
the impedance of the wave travelling inside the 
domain matches that of the lossy ABC medium 
defined by equation (1) and (2). The result is a 
reflectionless propagation of a normally incident 
plane wave as it passes through the interface. This 

works well at normal incidences. However, the 
reflection becomes large at grazing angles.  

Bérenger addressed this problem, by splitting 
the field quantities into normal and tangential 
components and modifying equations (1) and (2). 
The reflection coefficient with n=1 for vacuum, 
matched to this newly defined lossy medium is 
given by 
 1 cos

1 cos

n

r 


    
. (4)  

This reflection coefficient is thus zero for both 
normal and grazing incidence [14]. 

 
III. OUR APPROACH 

Here, the PML for the elastodynamic wave 
propagation on piezoelectric solids is derived in 
exact parallelism with Bérenger’s formulation of 
the PML for electromagnetic waves [10]. 

The equations describing the propagation of 
elastodynamic waves in piezoelectric crystals are 
[15] 

 
 ˆE Ts vst





, (5)  

 v T
t

 
 


. (6)  

Below is a list of symbols used in the equations 
along with their definitions: 

T stress field in abbreviated subscript 
form (6×1 matrix), 

d  piezoelectric strain coefficient (3×6 
matrix),

Ec  stiffness matrix under constant 
electric field (6×6 matrix), 

Es  
compliance coefficients matrix 
under constant electric field (6×6 
matrix),

d Transpose of d, 
v particle velocity (3×1 matrix),
 material density, 

  
0

0
0

z y
z x
y x

    
     
     

, and 

466MONTAZERI, BAKR, HADDARA: A PML FOR ELECTROACOUSTIC WAVES IN PIEZOELECTRIC MATERIALS USING FDTD



 . .s
    

0 0 0
0 0 0
0 0 0

x z y
y z x

z y x

      
       
       

 

Here, prime denotes a transpose matrix and Ec is 
the inverse of Es . Also, 
 
   1 1ˆ ˆ ( )E E E Ts c s d ε d

    , (7)  

is called the stiffening equation which includes the 
effects of piezoelectricity at zero displacement 
[15]. In component-form, the first line of equation 
(5), for a trigonal 3m symmetry class crystal, such 
as lithium niobate (LiNbO3) is [15] 

 
 1

11 1 12 2 13 3 14 4
vs T s T s T s T

t t t t x
   

   
    

. (8) 

The PML is defined by introducing losses for 
the component field variables. The loss terms are 
introduced in accordance with the existing terms 
in equation (8). 

The form of the stiffness matrix determines 
which components of the stress field are present, 
and in turn, which loss terms appear in the PML 
equation. Accordingly, the number of terms in this 
equation depends on the choice of substrate 
material. Similar to electromagnetics, equation (8) 
is used to develop a Bérenger-like boundary 
condition.  

Equation (8) is split into the normal and 
tangential field subcomponents in the xz plane, 
(i.e. no y-dependence) to have 

 
 

11 1 12 2 13 3 14 4

1 1 2 2 3 3 4 4

1 1( )

x x x x

T x T x T x T x

x z

s T s T s T s T
t t t t

T T T T
v v

x

   

   
  

   
  

 




 (9)  

 
11 1 12 2 13 3 14 4 0.z z z zs T s T s T s T

t t t t
   

   
   

 (10)

where TiΨ  denote the loss term for the 
corresponding stress component. 

For the computational grid depicted in Fig. 3, 
where the direction of attenuation is along the x-

axis, the PML equations, in vector form are given 
by 
 ˆE x

T x
Ts Ψ T vsxt


  


 
(11)

 

 ˆE zT
s vszt


 


 

(12)

 

 x
x

v v Tv xt
 

  


 
(13)

 

 v Tz
zt

 
 


, 

(14)

 

where TΨ is a 6 6  stress loss tensor containing 
non zero TiΨ components only where the ˆEs  
matrix has nonzero entries. v  is a non-physical 
scalar denoting the velocity loss-coefficient, and

sx , similar to the s , is a matrix whose only 
non-zero entries are /x. sz , x , and z is 
similarly defined. 

Noting that some coefficients are now tensor 
quantities, we define the acoustic matching 
condition as 

 
 ˆE

TΨ sv


 . (15)

This relation states that the ratios between the 
stress and velocity loss-coefficients are the same 
as the ratios of the field variable coefficients. 
Similar to the electromagnetic case, the matching 
condition (15) ensures that the loss-coefficients 
always maintain the same ratio, even as they 
progressively increase through the PML. 

 
C. The PML time update equations 

The derivation of the PML time update 
equation for the velocity field is less burdensome. 
This has been previously reported as [9] 

 
,1 2 1 2

, ,

2 1( )
2 2x xv v Tv in n

x
v i v i

t t
t t

  

 
   

        
. (16)
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As for the PML time update equations for the 
stress field, we start with the first row of equation 
(11). The same analysis applies to the remaining 
five rows. The first row of this equation in 
component form is: 

 
 

11 1 12 2 13 3 14 4

1 1 2 2 3 3 4 4

1 1( ) .

x x x x

T x T x T x T x

x z

s T s T s T s T
t t t t
T T T T
v v

x

   

   
   

   
   
 




(17)

Applying the time-averaging, for quantities at time 
n and using a central difference scheme for 
approximating the time derivatives, equation (17) 
becomes 

 
1 1 1 1

2 2 2 2
1 , 1 , 2 , 2 ,

11 12

1 1 1 1
2 2 2 2

3 , 3 , 4 , 4 ,

13 14

1 1 1 1
2 2 2 2

1 , 1 , 2 , 2 ,

1 2

1 1
2 2

3 , 3 ,

3

( ) ( )

( ) ( )

( ) ( )
2 2

(

n n n n
x i j x i j x i j x i j

n n n n
x i j x i j x i j x i j

n n n n
x i j x i j x i j x i j

T T

n n
x i j x i j

T

T T T T
s s

t t

T T T T
s s

t t

T T T T

T T

 



   

   

   

 

 
 

 

 
  

 

 
  




1 1
2 2

4 , 4 ,

4

1 1

) ( )
2 2

( ) .

n n
x i j x i j

T

x z

T T

v v
x



 


 




 (18)

 

Grouping the terms at time 0.5n   yields the time 
update equation 

 
1 1

2 2
11 1 1 , 12 2 2 ,

1 1
2 2

13 3 3 , 14 4 4 ,

1 1
2 2

11 1 1 , 12 2 2 ,

1 1
2 2

13 3 3 , 14 4 4 ,

1 1

(2 ) (2 )

(2 ) (2 )

(2 ) (2 )

(2 ) (2 )

( )2

n n
T x i j T x i j

n n
T x i j T x i j

n n
T x i j T x i j

n n
T x i j T x i j

x z

s t T s t T

s t T s t T

s t T s t T

s t T s t T

v vt

 

 

 

 

 

 

 

 

     

      

    

    

 
 .

x

(19)

 

For all rows, the result can be cast in the more 
concise matrix form 

 
1 1

2 2
, ,ˆ ˆ(2 ) (2 ) 2 .x xs Ψ T s Ψ Tn nE E

T i j T i j xt t t v        . (20)

Making use of the matching condition defined in 
equation (15) to substitute for TΨ , we have: 

1
2

,

1
2

,

ˆ ˆ(2 )

ˆ ˆ(2 ) 2 .

E E

E E

s s T

s s T v

nv
x i j

nv
x i j x

t

t t










  

    

 
(21)

Multiplying by ˆEc  which is the inverse of ˆEs the 
time update equation within the PML becomes 

 
1 2 1 2

* *

2 ˆET T c vn nv
x x x

v v

t
 

  
    (22)

where (2 / )v vt     and * (2 / )v vt    . It 

should be noted that the quantities v  and *
v  are 

scalars. There is no need for matrix inversion. This 
significantly relaxes the computational resources 
for calculating the field values inside the PML. 
The Tz component of the stress field is allowed to 
propagate without loss, and the equation is given 
by 

1 2 1 2 ˆn n
z z zt    ET T c v . (23)

The end of the boundary is often terminated 
with a perfect reflector. This ensures that any 
reflections from the terminal layer of the PML 
undergo a secondary attenuation upon return.  

The matching condition is in essence a 
constraint, which connects the loss-coefficients of 
the stress and velocity fields. That is, setting v  is 
sufficient for defining both equations (16) and 
(22). Note that these two equations define one 
layer of the PML. An arbitrary number of layers 
can be specified. Generally the more layers the 
PML has, the better it is in suppressing reflections. 

From one layer to the next, starting at the 
medium-PML interface, the loss-coefficients are 
gradually increased according to a profile 
function. At the starting layer, the loss-profile v
is small; however, it is ramped up at every layer, 
terminating at a final value ,0v  at the end of the 
PML. Generally, either a polynomial or 
exponential loss profile is employed to define the 
sequence of v  values, as is done in 
electromagnetics. We have used a polynomial loss 
profile given by [14] 
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, ,0 

m
PML

v i v
i x 


   

 
, (24)

where PMLx  is the position of the onset of the 
PML, i  is the position of each PML,   is the 
thickness of the PML, ,0v  is the loss-coefficient 
at the terminal layer of the PML, and m is the 
order of the polynomial used. ,0v  is either chosen 
heuristically, or using an empirical formula similar 
to the electromagnetic PML explained in [12].  
 

IV. RESULTS AND DISCUSSION 
Figure 3 shows the computational domain, 

which is the discretized sagittal plane depicted in 
Fig. 2. The domain is terminated on the left and 
the right sides by periodic boundaries, modelling 
an infinite interdigital transducer (IDT). This is the 
case, for example, in a SAW resonator, where the 
excitation travels symmetrically in both directions. 
 
A. Point-excitation in the vicinity of the PML 

The first example addresses the case of a point 
excitation in the vicinity of the PML.  The domain 
is one IDT period of the sagittal plane shown in 
Fig. 2 with the assumption that the IDT is 
infinitely long compared to the wavelength of the 
SAW. This reduces the problem to a two 
dimensional analysis in the sagittal plane.  A 
spatial resolution of 33.57×10-5 m, and a temporal 
timestep of 0.318 ns are used on a 91×91 grid. 

The PML was tested for sinusoidal, Gaussian, 
and impulse excitations placed 8 spatial steps from 
a PML with 15 layers. The relative amplitude of 
reflection for all excitations, was less than 10-6 
after 6000 timesteps or 19 μs. 

The implemented PML is used for the bottom 
of the domain. This allows any unwanted parasitic 
waves to be removed from the computational 
domain, as though the computational domain were 
a semi-infinite plane. Any other boundary 
condition will result in spurious reflections from 
the bottom that will show up in the detection IDT 
of the device as computational noise.  

The top boundary condition is stress-free, 
implying that all components of the stress normal 
to the boundary (i.e. 1T , 5T , 6T ) are set to zero [8]. 
Therefore, at the stress-free boundary, the only 
non-zero components of the stress are the 
transverse ones.  

Fig. 3. The computational domain. 
 
A Gaussian-modulated sinusoidal with a center 

frequency of 1.0 GHz is applied to the middle of 
the free surface. This excitation is applied to the 

3T  component of the wave which is a 
compressional stress component in the z-direction.  

Figure 4 shows the plot of the v1 component of 
the field in an unbounded region, where the wave 
is freely propagating (solid curve) vs. the same 
measurement when one side of the boundary is 
terminated by a PML. The two curves are virtually 
overlapping and the reflection is under 10-6 as seen 
in Fig. 4. 

 

 
Fig. 4. A comparison of reflection of the 
normalized v1 field component for an unbounded 
medium and a PML-bounded medium. The 
vertical axes is the amount of reflection from the 
boundary and the horizontal axes denotes the 
number of timesteps. 

469 ACES JOURNAL, VOL. 26, NO. 6, JUNE 2011



 
(a) 

 
(b) 

Fig. 5. v1 field component of an excitation near the 
PML; (a) A sinusoidal excitation in an unbounded 
region, and (b) symmetric spread of the same 
excitation near the PML after 15.9 μs or 5000 time 
steps. 
 

Figure 5(a) shows the propagation of the wave 
in the unbounded region while Fig. 5(b), shows the 
field near the boundary after 15.9 μs. The two 
profiles are identical for the domain region outside 
the PML.  The symmetric shape of the excitation 
is preserved even after a prolonged interaction 
with the PML.  
 
B. Line-excitation via a metallic IDT 

Figure 6 shows the excitation under the 
metallic IDT in the computational domain of Fig. 
2. The excitation for this example is a line source 
underneath the metallic strip.  A Gaussian-

modulated time profile with a center frequency of 
1.0 GHz is also used in this example. The crystal 
cut is chosen as 128 X-Cut Y propagating lithium 
niobate. The main excitation type is of Rayleigh 
type; with some bulk waves also excited. 

If these excitations are not removed, they 
introduce computational noise, shown in Fig 7(a) 
where the domain is not terminated with a PML. 
The reflections are magnified in the figure near 
their corresponding boundaries. 

 
Fig. 6. v1 field component of a line excitation of a 
SAW on the surface of the piezoelectric material. 
 
However, by introducing a PML-terminated 
computational domain in Fig. 7(b), these spurious 
reflections are effectively removed, and are not 
reintroduced into the computational domain. 
 

V. CONCLUSION 
A matching condition is developed for the 

implementation of a perfectly matched layer for 
propagation of waves in piezoelectric materials. 
The new matching condition preserves the 
impedance matching criteria for all components of 
the stress and velocity fields. Coupled 
piezoelectric waves require a more elaborate 
matching condition to preserve the wave 
impedance in the PML region. We plan on further 
reducing the reflections by choosing PML grading 
optimized for all wave components.   
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(a) 

 
(b) 

Fig. 7. Snapshots of the v1 component of the 
acoustic waves inside the device (a) SAW and 
BAW generated in a medium without PML on the 
left boundary. (b) Same IDT excitation terminated 
with PML. 
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