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Abstract ─ A robust and computationally efficient 
microwave design optimization procedure is 
presented.  This procedure integrates low-order 
Cauchy-approximation surrogate models with 
coarse-discretization EM simulations. The 
optimization engine is space mapping (SM). Instead 
of setting up a single surrogate model valid for the 
entire design variable space, a sequence of surrogate 
models is established in small hyper-cubes 
containing the optimization path. This allows us to 
substantially limit the number of training points 
necessary to create the surrogates and, therefore, 
reduce the cost of the optimization process. 
Moreover, our approach eliminates the need for 
circuit-equivalent coarse models traditionally used 
by SM algorithms. Our algorithm is successfully 
illustrated through the efficient design of a number of 
microwave filters. 
  
Index Terms ─ Cauchy approximation, computer-
aided design (CAD), EM optimization, space 
mapping, surrogate modeling. 
 

I. INTRODUCTION 
Accurate evaluation of microwave devices can 

be realized using CPU-intensive electromagnetic 
(EM) simulation. These simulators may require 
extensive simulation time for complex structures.  
It is, thus, prohibitive to utilize these simulators in 
optimizing complex structures. On the other hand, 
analytical models can only be used to yield initial 

designs that need to be further tuned to meet the 
given performance specifications. This is 
particularly true for some emerging classes of 
circuits such as ultra wideband (UWB) antennas 
[1] or substrate integrated circuits [2] where no 
systematic design procedures exist that would lead 
to designs satisfying the prescribed specifications. 
Therefore, EM-simulation-driven design 
optimization becomes increasingly important. 

The computational cost of simulation-based 
optimization can be partially reduced by using co-
simulation [3-5], where the EM model is split into 
smaller parts that are subsequently combined in a 
circuit simulator. However, the EM-embedded co-
simulation model is still subjected to direct 
optimization. Also, application of this approach is 
limited and cannot be directly applied in case of 
radiating structures such as antennas.  

Computationally efficient simulation-based 
optimization can be realized using surrogate-based 
optimization (SBO) [6, 7], where the optimization 
burden is shifted to a surrogate model, a 
computationally cheap representation of the 
structure being optimized (referred to as the fine 
model). Probably the most successful approaches 
of this kind are space mapping (SM) [8-19], 
simulation-based tuning [20-22] and tuning SM 
[23-26], and various response correction 
techniques [27-30], as well as methods utilizing 
variable-fidelity models [31, 32].  Using these 
techniques, the direct optimization of expensive 
(or “fine”) EM-based models is replaced by 
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iterative optimization of less accurate but fast 
representations (“coarse” models). The coarse 
model should be physically-based (to have a good 
prediction capability) and it should be 
computationally cheap. In practice, equivalent-
circuit models or models exploiting analytical 
formulas are preferred [6]. Unfortunately, reliable 
equivalent-circuit models may lack accuracy, 
which is critical for the SM algorithm performance 
[33-35].  These models may also be difficult to 
develop for certain types of microwave devices 
including antennas, substrate integrated circuits, 
and waveguide structures. Also, an extra simulator 
is involved in the optimization process.  

An alternative way of creating the coarse 
model for SM algorithm was proposed in [36, 37] 
using Cauchy approximation [38] of the coarse-
discretization EM simulation data of the 
microwave structure under consideration. The 
coarse model built in this way is fast and easy to 
optimize but the approach described in [36] can 
work efficiently only when the number of design 
variables n is small (up to 3 or 4). As the number 
of coarse-discretization simulations necessary to 
set up the coarse model grows exponentially with 
n, their computational cost becomes impracticably 
high for large n. Also, the coarse model of [36] is 
set up once for the entire optimization process. 
Thus, it should be valid in the relatively large 
neighborhood of the initial design which increases 
the required order of the Cauchy model, and 
consequently, the number of coarse-discretization 
simulations necessary to produce the training data 
[36]. 

Here, an alternative technique for creating the 
coarse model is described. This technique extends 
the work presented in [39] to problems with larger 
number of parameters. We exploit low-order 
Cauchy approximation of coarse-discretization 
simulation data set up in small regions enclosing 
the optimization path. This allows us to reduce the 
number of training points necessary to set up the 
coarse model when compared with [36]. 
Moreover, as the number of training points is 
proportional to n2 (in particular, it does not grow 
exponentially with n as in [36]), our method can 
be applied for problems with a larger number of 
design variables. The efficiency of our approach is 
demonstrated through the design of three 
microstrip filters. 

II. DESIGN OPTIMIZATION USING 
CAUCHY-BASED SURROGATES 

In this section, we formulate the microwave 
design optimization problem, recall the standard 
space mapping optimization technique, and provide 
some general considerations regarding coarse models 
– the most important component of the SM 
algorithm. We also discuss the coarse models created 
by Cauchy approximation of the coarse-
discretization EM-simulation data as well as describe 
the proposed technique exploiting low-order Cauchy 
approximation models. 

 
A. Formulation of the design problem 

Let Rf(x)  Rm denotes the response vector of 
the device of interest (fine model), where x is a 
vector of design variables (e.g., geometry 
parameters). Rf(x) can be, e.g., S-parameters of a 
device evaluated over a certain frequency band. 

In this paper, a microwave design task is 
formulated as a nonlinear minimization problem 
with respect to x. Design specifications are 
translated into a scalar merit function U, so that a 
better design corresponds to a smaller value of 
U(Rf(x)). Typically, U is a minimax function with 
upper and/or lower specifications [8]. 

The goal is to solve the following optimization 
problem: 

           * arg min ( )f fU
x

x R x . (1)
Here, xf

* is the optimal design to be determined. 
The fine model is assumed to be computationally 
expensive so that handling the problem (1) directly 
by employing EM simulator in the optimization loop 
is impractical. 

 
B. Surrogate-based optimization 

Surrogate-based optimization (SBO) [6] 
avoids solving (1) directly for computationally 
expensive models. Instead, the following 
algorithm is considered [14]:  

           ( 1) ( )arg min ( )i i
sU 

x
x R x , (2)

where x(i), i = 0, 1, …, is a series of approximate 
solutions to (1) with x(0) being the initial design. 
The surrogate model Rs

(i) is a representation of Rf 
created using available fine model data, and 
updated after each iteration. 

The construction of the surrogate model 
depends on the specific SBO approach. In the case 
of SM [8, 9], the surrogate model is a composition 
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of the coarse model Rc (a less accurate but 
computationally cheap representation of Rf) and 
simple mappings, e.g., Rs

(i) = Rc(B(i)·x+c(i)) (input 
SM [8]) or Rs

(i) = A(i)·Rc(x) + d(i) (output SM [9]). 
Other approaches include implicit SM [40, 41] and 
frequency SM [9]. The mapping parameters are 
determined to minimize the misalignment between 
the surrogate and Rf, usually in a least-square 
sense [8]. 

One of the recent SBO techniques developed 
for microwave engineering is shape-preserving 
response prediction (SPRP) [30], where the 
surrogate model is constructed using a set of so-
called characteristic points of the fine and coarse 
model response as well as corresponding 
translation vectors that describe the change of the 
coarse model response that is a result of the model 
optimization [30]. These translation vectors are 
subsequently applied to the fine model response at 
certain reference design (typically, the latest 
iteration point x(i)) in order to predict the Rf 
response at the current design. 

Other SBO techniques, in particular, manifold 
mapping [27] or adaptive response correction [29], 
can be considered as generalizations of output SM 
and construct the surrogate through enhancing the 
coarse model by a suitable design-variable-
dependent additive correction term. 

 
C. Coarse models – general remarks 

In order to ensure good performance of the 
SBO algorithm, regardless of whether it is space 
mapping, SPRP, or other technique, the coarse 
model should be physically-based, i.e., describe 
the same phenomena as the fine model which 
would ensure good prediction capability of the 
surrogate [9]. Also, Rc should be computationally 
cheap so that the numerous coarse model 
evaluations utilized while optimizing the surrogate 
model (2) and—in case of space mapping—
solving the parameter extraction problem [8] do 
not seriously affect the computational cost of the 
algorithm. 

For these reasons, the preferred choice for the 
coarse model is an equivalent circuit. In some 
cases, however, circuit-based coarse models are 
not available (antennas, substrate integrated 
circuits). Also, accuracy of such models is often 
insufficient, which may affect the performance of 
the SBO algorithm. 

 

D. Coarse models using Cauchy approximation of 
coarse-discretization EM simulations 

The coarse model can be implemented as a 
coarsely discretized EM model exploiting the same 
EM solver as the one used to evaluate Rf [36]. In this 
case, however, it is difficult to find a satisfactory 
trade-off between accuracy and evaluation time of 
Rc, as well as to ensure its good analytical properties 
(e.g., smoothness) [42]. 

To overcome this problem, the coarse model can 
be created by approximating the data from the 
coarsely discretized EM model (referred to here as 
Rf-c) using a suitable approximation technique. It is 
only necessary to evaluate the coarse EM model at a 
predefined set of training points. The resulting coarse 
model is computationally cheap. 

In [34], Rc was built using a multi-dimensional 
Cauchy rational approximation that can be 
summarized as follows [38]. Let Rs(x) be a scalar 
system response where x = [x1 x2 … xn]T is the vector 
of design variables. The response Rs can be modeled 
as:  

      
2 2

0 1 1 2 2 3 1 4 1 2 5 2
2 2

0 1 1 2 2 3 1 4 1 2 5 2

.( )
..s

a a x a x a x a x x a xR
b b x b x b x b x x b x
     


     

x , (3)

where a = [a0 a1 … aM]T and b = [b0 b1 … bM]T are 
the unknown coefficients. The globally-optimal 
model coefficients can be found using a robust 
algorithm for the extraction of the parameterized 
Cauchy model introduced in [38].  This algorithm 
allows for an error margin in the given response data 
resulting in a stable formulation that is less sensitive 
to errors. It also implements safeguard constraints 
that eliminate spurious solutions. The model 
coefficients can be found by solving a linear program 
of the form [38]:  

  min subject to ( )T 
v

c v A δ v d ,     (4)
where v = [t  aT  bT]T is the vector of unknowns with t 
being an auxiliary variable introduced by the linear 
program. The matrix A depends on the set of data 
pairs S whose cardinality is Ns. The number of rows 
in the matrix A depends linearly on Ns, the vectors c 
and d are constant vectors whose dimensions also 
depend on Ns. The global optimum of the linear 
program (4) can always be found [38]. The vector 
 = [1 2 … Ns]T is the vector of tolerances defined 
as ( )i

i i s i iR R R   x  , where i is the allowed 
tolerance for the ith data sample. In this work, the 
tolerances are identical for all samples and preset to a 
small value (typically 10–3). 
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Let XB = {x1, x2, …, xN} be a base set and           
Rf-c(x) = [Rf-c.1(x) … Rf-c.m(x)]T.  The vector Rf-c(xj) is 
known for j = 1, 2, …, N.. The coarse model Rc is 
defined as:  

  .1 .2 .( ) [ ( ) ( ) ... ( )]T
c f c f c f c mR R R  R x x x x , (5)

where . ( )f c iR  x  is the Cauchy model of the ith 
component of Rf-c(x) constructed as described in (5). 

 
III. LOW-ORDER LOCAL CAUCHY-
APPROXIMATION SURROGATES 
The coarse model (3)-(5) has a number of 

advantages. It is computationally cheap and easy to 
optimize, there is no need for a circuit-equivalent 
model, and the same EM solver can be used to 
implement both the fine and coarse model. Also, 
the initial design obtained through optimization of 
the coarse-mesh EM model is usually better than 
the initial design that could be possibly obtained 
using other methods. Unfortunately, the Cauchy-
approximation model of Section II. B has some 
practical limitations. To overcome these, we 
propose low-order local approximation technique 
described in Section III. B. 

 
A. Limitations of the Cauchy-approximation 
coarse models 

The Cauchy-approximation coarse model can 
be used efficiently only when the number of design 
variables n is small (up to 3 or 4). For larger n, the 
required number of evaluations of Rf-c becomes too 
large (the number of training points increases 
exponentially with n) so that the computational cost 
of creating the coarse model is too high. Also, 
because the coarse model is set up only once for the 
entire optimization process, it has to have a 
relatively large region of validity, which results in a 
high (required) order of the model. This has two 
consequences: (i) large number of model 
parameters (which again increases the number of 
necessary training points), and (ii) difficulty in 
ensuring the required accuracy of the Cauchy 
approximation (high order rational-function 
approximation are highly nonlinear and their 
generalization capability is limited). 

 
B. Low-order local Cauchy-approximation 
models 

The Cauchy-based coarse model is typically 
set up in the neighborhood of the initial design 

defined by 10% to 20% deviation around the 
initial design. A substantial reduction of the 
training data can be obtained if the low-order 
Cauchy models are set up in smaller regions and 
the additional models are generated as necessary 
following the optimization path as explained in 
Fig. 1 for n = 2.  

More specifically, the proposed approach 
assumes that Rc is set up locally in the 
neighborhood of the initial design x(0) 
(neighborhood size 1  2) and the surrogate 
model optimization is constrained to this 
neighborhood. If the new design is on the border 
of this neighborhood, a new Rc is created in the 
adjacent region. Each (local) Rc requires a small 
number of training data.  

Setting Rc in the region of size 12 
enclosing the entire optimization path would 
require a substantially larger amount of training 
data (here, coarse-discretization EM simulations). 
For example, if 1 = 2 = 10% of ||x(0)|| (relative 
size) and 1 = 2 = 2% of ||x(0)||, the size of 12 is 
25 times larger than the size of 1  2.  

 

.
1

2
x(0) x(1)

x(2)

x(3)

x(4)

x*

1

2

 
Fig. 1. Local versus quasi-global Cauchy-
approximation-based coarse models (two 
dimensional illustration): the proposed approach 
assumes that the coarse model is set up locally in 
the neighborhood of the initial design x(0) 
(neighborhood size 12). The surrogate model 
optimization is constrained to this neighborhood. 
If the new design reaches the border, a new coarse 
model is created in the adjacent region. Each 
(local) coarse model requires small number of 
training data. 
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A typical optimization path that spans the 
entire 12 region contains five 1  2 cells so 
that the number of training points (assuming 
comparable model accuracy) will be 5 times 
smaller for the proposed approach than for the 
original method [36]. For example, at n = 5, the 
region size ratio would be 625, and the training 
point number ratio 125 which shows a tremendous 
savings when using local models. It should also be 
noted that the proper values of i are not known 
beforehand. Therefore, the proposed approach is 
more flexible as no initial region size estimate is 
necessary. 

In all numerical experiments presented here, 
we use second-order Cauchy models that only 
have (n+1)(n+2) unknown coefficients. We choose 
the number of training points to be also equal to 
(n+1)(n+2). This is yet another advantage of the 
proposed technique because the number of 
unknown parameters (and, consequently, the 
number of training points) for high-order Cauchy 
models grows exponentially with n. 
 

IV. VERIFICATION EXAMPLES 
The performance of our technique exploiting 

local low-order Cauchy models is verified using 
three examples of microstrip filters. The number 
of design variables in these examples ranges from 
five to nine and cannot be handled by a 
“traditional” Cauchy model being set up for the 
entire search space. 

 
A. 4th-order ring resonator bandpass filter [43] 

Consider the fourth-order ring resonator 
bandpass filter [43] shown in Fig. 2. The design 
parameters are x = [L1 L2 L3 S1 S2]T mm. Other 
parameters are W1 = 1.2 mm and W2 = 0.8 mm. 
The fine model is simulated in FEKO [44]. The 
total mesh number (i.e., the total number of mesh 
elements) for Rf is 1334. Simulation time for Rf is 
84 min. The total mesh number for the coarse-
mesh FEKO model Rf-c is 180 (evaluation time 
112 s). The design Rf-c specifications are |S21|  –
1 dB for 1.75 GHz    2.25 GHz, and |S21|  –
20 dB for 1.0 GHz    1.5GHz and 2.5 GHz   
 3.0 GHz. The initial design is xinit = [25.0 20.0 
25.0  0.12 0.1]T mm. The fine model specification 
error at x(0) is +4.3 dB. The response of the fine 
model at xinit is shown in Fig. 3. 

The starting point for space mapping 
optimization stage, x(0) = [24.47 19.76 26.61 0.125 
0.1]T mm, is an approximate optimum of the 
coarsely discretized model; x(0) is found at the cost 
of 60 Rf-c evaluations (equivalent to about 1.3 
evaluations of Rf). The fine model specification 
error at x(0) is +1.3 dB.  

The region size for the local Cauchy model Rc 
is  = [1.0  1.0  1.0  0.1 0.1]T mm. We use a 
second-order model that has 42 coefficients. The 
model is established using 42 base points allocated 
with the Latin hypercube sampling (LHS) 
algorithm [45]. The surrogate model for 
optimization algorithm (2) is created using 
frequency SM [8] and output SM [9]. Figure 4 
shows the responses of Rf, Rf-c and the frequency-
space-mapped Rc at x(0).  

The design obtained after the first iteration of 
the SM algorithm, x(1) = [23.97 19.58 27.11 0.16 
0.05]T mm, is located at the border of the region 
[x(0) – /2, x(0) + /2]. According to the 
methodology of Section 3.2, the new coarse model 
is set up in the adjacent region of size  with the 
center at [23.47 19.76 27.61 0.125 0.1]T mm (the 
last component is not modified because 0.05 mm 
is set as the lower bound for the design variables 
S1 and S2). The space-mapped coarse model is then 
optimized. The procedure is continued for four 
iterations. The final design is x(4) = [22.97 19.81 
26.78 0.166 0.05]T mm (specification error –
0.5 dB). Figure 5 shows the fine model response at 
x(4). Table 1 summarizes the computational cost of 
the optimization: the total optimization time 
corresponds to less than 8 evaluations of Rf. 

 

 
Fig. 2. Fourth-order ring resonator bandpass filter: 
geometry [43]. 
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Fig. 3. Fourth-order ring resonator filter: response 
of the fine model Rf at the initial design xinit. 
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Fig. 4. Fourth-order ring resonator filter: response 
of the fine model Rf (solid line), coarse-mesh 
model Rf-c (dashed line) and the frequency-space-
mapped coarse model (dotted line) at x(0). 
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Fig. 5. Fourth-order ring resonator filter: fine model 
response at the final design. 
 
Table 1: 4th-order ring resonator filter: 
optimization cost 

Algorithm 
Component 

Model 
Involved 

Number of 
Model 

Evaluations 

Absolute 
Time 

Relative 
Cost* 

Setting up 
Cauchy model Rf-c 168 5.2 h 3.7 

Evaluation of 
the fine model Rf 4# 5.6 h 4.0 

Total cost - - 10.8 h 7.7 
* Equivalent number of fine model evaluations. 
# Excluding fine model evaluation at the initial design. 

 

B. Bandpass filter using microstrip resonators 
with open stub inverter [46] 

Consider the bandpass microstrip filter with 
open stub inverter [46] shown in Fig. 6. The 

design parameters are x = [L1 L2 L3 S1 S2 W1]T. The 
fine model simulated in FEKO [44]. The total 
mesh number for Rf is 1702. Simulation time for 
Rf is 132 min. The total mesh number for the 
coarse-discretization FEKO model Rf-c is 160 
(evaluation time 89 s). The design specifications 
are |S21|  –20dB for 1.5 GHz    1.9 GHz, |S21| 
 –1 dB for 1.98 GHz    2.02 GHz and |S21|  
–20dB for 2.1GHz    2.5GHz. The initial 
design is xinit = [25.0  5.0  25.0  1.0  0.5  2.0]T mm, 
which is quite poor (See Fig. 7). The fine model 
specification error at x(0) is +43.3 dB.  

The initial design for space mapping 
optimization, x(0) = [23.0 5.0 25.0 0.7 0.1 
1.0]T mm, is a rough optimum of the coarsely 
discretized model obtained at the cost of 55 Rf-c 
evaluations (less than one evaluation of the fine 
model). The fine model specification error at x(0) is 
+3.3 dB. The region size for the local Cauchy-
approximation-based Rc is  = [0.2 0.2 0.2 0.2 0.1 
0.2]T mm. We use second-order model (56 
unknown coefficients) that is established using 56 
base points allocated with LHS [45]. As before, 
the surrogate model is created using frequency SM 
[8] and output SM [9]. The responses of Rf, Rf-c 
and frequency-space-mapped Rc at x(0) are shown 
in Fig. 8. For this example, a very good design, 
x(2) = [22.90 4.915 25.10 0.799 0.139 0.826]T mm, 
is obtained after two iterations with a specification 
error –0.7 dB. Figure 9 shows the fine model 
response at x(2). As indicated in Table 2, the 
computational cost of the optimization is very low 
and corresponds to only 3.3 evaluations of Rf. 

 

 
Fig. 6. Bandpass filter using microstrip resonators 
with open stub inverter: geometry [46]. 
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Fig. 7. Bandpass filter using microstrip resonators 
with with open stub inverter: response of the fine 
model at the initial design xinit. 
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Fig. 8. Bandpass filter using microstrip resonators 
with with open stub inverter: response of the fine 
model Rf (solid line), coarse-mesh model Rf-c 
(dashed line) and the frequency-space-mapped 
coarse model (dotted line) at x(0). 
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Fig. 9. Bandpass filter using microstrip resonators 
with with open stub inverter: fine model response at 
the final design. 
 
Table 2: Bandpass filter using microstrip resonators 
with open stub inverter: optimization cost 

Algorithm 
Component 

Model 
Involved 

Number of 
Model 

Evaluations 

Absolute 
Time 

Relative 
Cost* 

Setting up 
Cauchy model Rf-c 112 2.8 h 1.3 

Evaluation of 
the fine model Rf 2# 4.4 h 2.0 

Total cost - - 7.2 h 3.3 
* Equivalent number of fine model evaluations. 
# Excluding fine model evaluation at the initial design. 
 
 
 
 

C. Microstrip hairpin filter [47] 
Consider the microstrip hairpin filter [47] shown 

in Fig. 10. The design parameters are x = [L1 L2 L3 L4 
L5 L6 S1 S2 d]T. The fine model is simulated in 
FEKO [44]. The total mesh number for Rf is 1424. 
Simulation time for Rf is 96 min. The total mesh 
number for the coarse-mesh FEKO model Rf-c is 
176 (evaluation time 2 min). The design 
specifications are |S21|  –20dB for 3.0 GHz    
3.3 GHz, |S21|  –0.2 dB for 3.6 GHz    4.3 GHz 
and |S21|  –20dB for 4.7 GHz    5.0 GHz. The 
initial design is xinit = [10.0 10.0 10.0 0.5 1.0 0.5 
0.1 0.2 0.1]T mm. The fine model specification 
error at xinit is +20.6 dB. The response of the fine 
model at xinit is shown in Fig. 11. 

Before performing space mapping optimization, 
an approximate optimum of the coarsely discretized 
model is found to be x(0) = [9.9 11.2 11.35 0.875 
0.75 0.5 0.125 0.2 0.8]T mm. This step takes about 
200 evaluations of Rf-c ( four evaluations of the 
fine model). The region size for the local Cauchy-
approximation-based Rc is  = [0.05 0.05 0.05 0.05 
0.05 0.05 0.025 0.025 0.05]T mm. We use second-
order model (110 unknown coefficients) that is 
established using 110 base points allocated with 
LHS [45]. Again, the surrogate model is created 
using frequency and output SM. The responses of 
Rf, Rf-c and frequency-space-mapped Rc at x(0) are 
shown in Fig. 12. The fine model specification error 
at x(0) is +1.5dB. An optimized design, x(3) = [9.9 
11.2 11.325 0.925 0.7125 0.55 0.14375 0.2063 
0.90]T mm, is found after three iterations of our 
algorithm with a specification error of –0.04 dB. 
Figure 13 shows the fine model response at x(3). The 
computational cost of the optimization corresponds 
to 10 evaluations of the fine model (Table 3). 

 

 
Fig. 10. The geometry of the microstrip hairpin filter 
[47]. 
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Fig. 11. Microstrip hairpin filter: response of the 
fine model Rf at the initial design xinit. 
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Fig. 12. Microstrip hairpin filter: response of the 
fine model Rf (solid line), coarse-mesh model Rf-c 
(dashed line) and the frequency-space-mapped 
coarse model (dotted line) at the approximate 
optimum of Rf-c, x(0). 
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Fig. 13. Microstrip hairpin filter: fine model 
response at the final design. 
 
Table 3: Microstrip hairpin filter: optimization 
cost 

Algorithm 
Component 

Model 
Involved 

Number of 
Model 

Evaluations 

Absolute 
Time 

Relative 
Cost* 

Setting up 
Cauchy model Rf-c 330 11.0 h 6.9 

Evaluation of 
the fine model Rf 3# 4.8 h 3.0 

Total cost - - 15.8 h 9.9 
* Equivalent number of fine model evaluations. 
# Excluding fine model evaluation at the initial design. 
 
D. Discussion 

The results presented in Sections IV. A through 
IV. C consistently demonstrate that a combination of 

coarse-discretization EM models, Cauchy 
approximation and space mapping can make a 
simulation-driven design very efficient.  

It should be noted that the number of space 
mapping iterations necessary to complete the 
optimization process is low (no more than four for 
the presented examples). It is not dependent on the 
problem size. On the other hand, the cost of creating 
the Cauchy model is (n+1)(n+2) coarse-
discretization model evaluations. The 
aforementioned facts imply that the total 
optimization cost scales with n as n2 (in worst case). 
This is much better than for the standard approach of 
[36], where, as explained in Section III, the cost 
generally grows exponentially with n, and, building a 
single Cauchy model is impractical for n larger than 
4 or 5. 

 
V. CONCLUSION 

Computationally efficient design optimization 
algorithm exploiting space mapping and the coarse 
model based on local low-order Cauchy 
approximation of coarse-discretization EM 
simulation data is presented. The proposed 
approach does not require equivalent-circuit coarse 
model and is not limited to problems with small 
number of design variables. The robustness of our 
technique is demonstrated through the optimization 
of three microstrip filters with the number of design 
variables ranging from five to nine. Satisfactory 
designs are obtained at the cost of a few EM 
simulations of the filter structures. 
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