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Abstract ─ An efficient, unsplit-field and unconditional 
stable implementation of the stretched coordinate 
perfectly matched layer (SC-PML) is proposed for 
terminating the finite-difference time-domain (FDTD) 
method. Via incorporating the Crank-Nicolson 
Douglas-Gunn (CNDG) and the auxiliary differential 
equation (ADE) methods, respectively, the proposed 
PML formulations can take advantage of the 
unconditional stability of the CNDG method which has 
smaller numerical anisotropy than the existing 
alternately direction implicit (ADI) method. A 
numerical test carried out in a 2D free space FDTD 
domain is provided to validate the proposed CNDG-
based PML. It has been shown that the proposed PML 
can not only overcome the Courant-Friedrich-Levy 
(CFL) stability constraint, but attenuate the propagating 
waves efficiently. 

Index Terms ─ Auxiliary differential equation (ADE), 
Crank-Nicolson Douglas-Gunn (CNDG), finite-
difference time-domain (FDTD), perfectly matched 
layer (PML). 

I. INTRODUCTION 
The finite-difference time-domain (FDTD) method 

plays an important role in the design and simulation of 
electromagnetic behaviors [1]. As an explicit numerical 
method, the Yee’s FDTD is conditionally stable, which 
means that the FDTD time-step is constrained by the 
Courant-Friedrich-Levy (CFL) limit to maintain 
stability and makes the FDTD method not very efficient 
in analyzing electrically small structures [1]. In order to 
remove the CFL stability constraint on time step and 
improve computational efficiency, unconditionally 
stable methods such as the alternating-direction implicit 
FDTD (ADI-FDTD) scheme and the Crank-Nicolson 
FDTD (CN-FDTD) scheme have been introduced in [2- 

6]. As pointed in [5], the ADI’s accuracy is inferior to 
that of CN scheme. The CN-FDTD with Douglas-Gunn 
(DG) algorithm (denoted as CNDG FDTD method) is 
developed in [6] to overcome the drawbacks that the 
CN-FDTD with a huge irreducible matrix is hardly to 
be solved without approximate algorithms. 

In addition, one of the greatest challenges of 
applying the FDTD method is the development of 
absorbing boundary conditions (ABCs) which truncate 
open region problems to simulate the extension of the 
computational domain to infinity [1]. It has been shown 
that the perfectly matched layer (PML), introduced by 
Berenger, is one of the most effective ABCs [7]. The 
stretched coordinate PML (SC-PML) has the advantage 
of simple implementation in the corners and edges of 
the PML regions [8].

To our knowledge, there is only one literature 
about the formulation of the 2D unconditionally stable 
PML based on an approximate CN scheme [9]. The 
method in [9] is a split-field PML for 2D TEz waves. 

In this paper, an alternative efficient, 
unconditionally stable and unsplit-field PML, denoted 
as ADE CNDG-PML, is constructed for 2D TMz 
waves. The formulation is based upon incorporating the 
CNDG algorithm and auxiliary differential equation 
(ADE) method into the PML implementation. 

II. FORMULATION 
For simplicity, the PML is constructed for 2D TMz 

waves only for truncating the free space. The 
frequency-domain modified Maxwell’s equations in the 
SC-PML can be written as: 
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where c is the free-space wave-propagation velocity, Sη
(η=x,y) is the stretched coordinate variables chosen 
within the PML region as: 
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where ση is the conductivity profile along the η
direction in the PML region [8], ε0 is the free-space 
permittivity. 

Using (4) and the inverse Fourier translation, (1)-
(3) can be written in the time domain as: 
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where fzx, fzy, gxy and gyx are given by:
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Applying the CN scheme to discretize (5)-(11), we 
have the following discrete equations as: 
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The operator Γη[*] denotes the difference form obtained 
by applying the CN method along direction η, for 
example: 
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Other operators take similar forms as (19). The 
corresponding coefficients in (12)-(18) are given by: 
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where Δη (η=x,y) is the space cell size, Δt is the time 
step, and k (k=i,j) is the inter-number indices of the 
computational cells. 

It is noted that the discrete electric and magnetic 
field components are coupled, which leads to a huge 
sparse matrix to be solved expensively. One way to 
decouple the electric and magnetic fields is to insert 
(15)-(18) into (12)-(14) respectively, then substitute  
Hn+1 

x  and Hn+1 
y  into the expression of En+1 

z  to eliminate the 
implicit magnetic field components: 
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where D2x and D2y are defined as follows: 
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The coefficients of (20)-(22) are defined as: 
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Note that (20) leads to a block tri-diagonal matrix, 
which still requires very expensive matrix solution at 
each time step. For an efficient solution of En+1 

z , the 
CNDG method proposed in [6] is introduced. By 
adding D2xD2yEn+1 

z  and D2xD2yEn
z to the left-hand-side 

(LHS) and right-hand-side (RHS) of (20) respectively, 
it can be factorized into: 
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where αi,j denotes the other terms of the RHS of (20). 
Then (23) can be solved with the following two-

step update equations: 
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From (24) and (25), we can see that the updated 
equation for principal component En+1 

z splits into two-
step update equations by introducing an intermediate 
parameter E* 

z . However, the LHS of (24) and (25) form 
two tri-diagonal matrixes which can be solved easily. 
Once En+1 

z  is obtained, gn+1 
xy , gn+1 

yx , Hn+1 
x , Hn+1 

y , fn+1 
zx  and fn+1 

zy  
can be updated explicitly. 
 

III. NUMERICAL RESULT 
To validate the effectiveness of the proposed 

formulation, we implemented the PML in a 2D domain. 
With 1 GHz of the bandwidth, a derivative gauss pulse 
is placed at the center of a 101×101 uniform mesh 
domain, which radiates into the free space as an 
electric-field source. The computational domain 
discretized with a space cell size of 3 mm in both x and 
y directions. All sides of the computational domain 
were terminated by PML [8, 2, 0.001%], as defined in 
[7]. 

To evaluate the reflection error of the proposed 
PML, this ADE CNDG-PML scheme under different 
CFL numbers (CFLN) are invoked for field 
computations. The term CFLN is defined as 
CFLN=Δt/ΔtFDTD 

max , where ΔtFDTD 
max  is the maximum stability 

constraint of the conventional FDTD. For the sake of 
comparison, the results using the PML based on the 
conventional FDTD are also obtained. Figure 1 depicts 
the results obtained by using these two different 
approaches. The relative reflection error versus time is 
computed at an observation point in the corner of the 
computational domain and with one cell away from the 
interface between the PML and the computational 
domain using: 
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where Ez(t) represents the electric field computed using 
the test domain and Ezref(t) is a reference solution based 
on an extended lattice with the size of 600 cells in both 
x and y directions and terminated by PML [128, 4, 
0.0001%]. Ezrefmax is the maximum amplitude of the 
reference solution over the full time simulation. 

The results are shown in Fig. 1. At early time to 
about 7 ns, the performance of the proposed PML 
degrade as the CFLN increasing. However, the 
maximum relative errors of the conventional SC-PML 
and the ADE CNDG-PML with different CFLN 
(CFLN=1, 2, 4) are -66.46 dB, -66.48 dB, -66.56 dB 
and -64.65 dB, respectively. Then it can be concluded 
that the proposed PML can almost maintain the same 
maximum relative error level with different CFLN. 
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Fig.1. Relative reflection error at observation point in 
the computational domain terminated by PML [8, 2, 
0.001%] for ADE CNDG-PML with various CFLN. 
The conventional FDTD SC-PML is also included. 
 

IV. CONCLUSION 
An efficient algorithm based upon the ADE 

method is presented in this paper for implementing the 
SC-PML formulations by making use of a CNDG 
scheme without the need of splitting the field 
components. Numerical results demonstrate that the 
ADE CNDG-PML can be used as a good absorbing 
boundary condition while the time step is beyond the 
CFL limit. The simulation time can be reduced by 
increasing the time step without decreasing of PML 
performance. Consequently, the computational process 
uses less time than the conventional SC-PML as the 
value of CFLN is larger than CFL limit. 
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