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Abstract ─ In this paper, a low complexity approach 
called modified fourth-order cumulants orthonormal 
propagator method (MFOC-OPM) is proposed for 
direction-of-arrival (DOA) estimation of incident 
narrowband signals impinging on a uniform linear array 
(ULA). In the proposed algorithm, the modified fourth-
order cumulants (MFOC) matrix is achieved via 
removing the redundant information encompassed in the 
primary fourth-order cumulants (FOC) matrix, and then 
the direction-of-arrivals (DOAs) estimation of source 
signals can be resolved by exploiting the orthonormal 
propagator method (OPM). Without any spectrum-peak 
searching and eigenvalue decomposition (EVD) of the 
MFOC matrix, the theoretical analysis coupled with 
simulation results show that in comparison with the 
MFOC-MUSIC algorithm, the resultant algorithm can 
reduce computational complexity significantly, as well 
as yield good estimation performance in both spatially-
white noise and spatially-color noise environments.

Index Terms ─ Direction-of-arrival (DOA), fourth-
order cumulants (FOC), orthonormal propagator method 
(OPM), spatially-color noise, spatially-white noise. 

I. INTRODUCTION 
Over the past two decades, the issue of finding the 

direction-of-arrival (DOA) of source signals has 
received considerable attention in array signal 
processing fields such as radar, sonar, underwater 
acoustics, radio astronomy, speaker localization, mobile 
communication systems and wireless communication 
systems [1-2]. The classical high-resolution subspace 
algorithms for direction-of-arrivals (DOAs) estimation, 
such as multiple signal classification (MUSIC) [3-4] and 
estimation of signal parameters via rotation invariance 
techniques (ESPRIT) [5-6] algorithms, have provided 
satisfactory performance. Because these subspace-based 
algorithms break through the limitation of the Rayleigh, 
the super resolution DOAs estimation of the radiation 
sources can be achieved [7-8]. However, the 
aforementioned algorithms are not only sensitive to the 
noise, but also require a priori information of the noise.

In addition, these algorithms employ either the 
eigenvalue decomposition (EVD) or singular value 
decomposition (SVD) to obtain the signal subspace and 
the noise subspace. Therefore, the computational 
complexity of these subspace-based algorithms is high 
especially when the number of sensors and snapshots is
relatively large. This indicates that these conventional 
high-resolution algorithms might not be useful when the 
low-computational cost and highly real-time data 
process are required. 

To alleviate aforesaid drawbacks, various useful 
algorithms have been proposed. Fortunately, the fourth-
order cumulants (FOC) are asymptotically insensitive to 
Gaussian noise. Therefore, FOC have been shown to be 
a promising substitute for second-order statistic (SOS) in 
solving DOA estimation, since it is not necessary to 
know or to estimate the noise covariance as long as the 
noise is normally distributed [9-10], which is a 
reasonable assumption in practical situations. In order to 
reduce computational complexity, the propagator 
method (PM) in [11-12] and its improved algorithm 
called orthonormal propagator method (OPM) [13] are 
presented. The OPM executes a linear operator instead 
of EVD or SVD to obtain the signal subspace and the 
noise subspace, which can decrease the computational 
complexity effectively. Moreover, the OPM can obtain 
the same estimation performance as the high-resolution 
subspace-based algorithms but more efficient in 
computation in medium and high signal-to-noise ratio 
(SNR) conditions. An OPM-like (FOC-OPM) algorithm 
[14], based on FOC, is proposed to achieve good 
estimation performance. However, the computational 
complexity of this method is high since a great number 
of redundant information is contained in the FOC matrix.
In [15], the authors considered the redundancy among 
the FOC matrix through analyzing the effective array 
aperture, which can increase the computational 
complexity greatly. Moreover, due to the finite sampling 
snapshots, there exists an estimation error between the 
FOC statistical matrix of the array received signal and its 
ideal matrix, thus the capacity of DOA estimation 
degrades. 
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In this paper, a novel MFOC-OPM algorithm is 
presented. The emphasis of this paper is on the 
investigation of the computational load. In the presented 
algorithm, the reduced-rank FOC matrix is obtained by 
removing the redundant information encompassed in the 
primary FOC matrix. Meanwhile, the effective extended
aperture of the virtual array keeps unchanged for 
improving estimation performance. Then the DOAs 
estimation of source signals can be estimated by using 
the OPM to reduce computational complexity. 
Compared with the MFOC-MUSIC method in [16], the 
proposed algorithm not only has the advantages of good 
performance but also the reduction of computation. 

The rest of the paper is organized as follows. The 
signal model is briefly introduced in Section II. The 
proposed algorithm is discussed in detail in Section III. 
In Section IV, simulation results are presented to verify 
the effectiveness of the proposed algorithm. Finally, 
some concluding remarks are made in Section V. 

For the purpose of description, the following 
notations are used. Boldface italic lower/upper case 
letters denote vectors/matrices. (·)*, (·)T and (·)H stand 
for the conjugation, transpose and conjugate transpose of 
a vector/matrix, respectively. The notation E(x), cum(x) 
and � separately denote the expectation operator, the 
cumulants, and the Kronecker product, respectively. 

II. SIGNAL MODEL 
Consider M narrowband far-field plane wave 

sources sl(t), (l=1,…,M) impinging on a uniform linear 
array (ULA) with N identical omni-directional sensors, 
where the inter-element spacing is half of the 
wavelength. Assume that the source signals are 
stationary and mutually independent. The noise is the 
additive white/color Gaussian one, and statistically 
independent of the sources. Let the first sensor of the 
ULA be the reference, and then the observed data 
received by the kth sensor can be expressed as:

1
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x t a s t n t k N1
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where si(t) is the ith source, nk(t) is the Gaussian noise at 
the kth sensor and αk(θi) is the response of kth sensor 
corresponding to the ith source; 

( ) exp( 2 ( ) sin ),k i ia j d k1 + � 1� (2) 
where λ is the central wavelength, d is the spacing 
between two adjacent sensors. Thus, one column vector,
which contains all the observed data received by N 
sensors, can be achieved: 
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where αi=exp(2π(d/λ)sinθi). Therefore, the matrix form 
of (3) can be modeled as: 

( ) ( ) ( ),t t t�� �X AS N (4)
where X(t)=[x1(t),…,xN(t)]T is the N×1 array output 
vector, S(t)=[s1(t),…,sM(t)]T is the M×1 source vector, 
A=[a(θ1),…,a(θM)] is the N×M array manifold matrix 
and N(t)=[n1(t),…,nN(t)]T denotes the N×1 complex 
Gaussian noise vector. 

Assume that the source signals are zero-mean 
stationary random process, the FOC can be defined as: 
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where ( 1,2,3,4)
mkx m � is the stochastic process. 

Apparently, cum(k1,k2,k3
*,k4

*) has N4 values with the 
change of k1,k2,k3,k4. For simplicity, equation (5) can be 
collected in matrix form, which is denoted by cumulants 
matrix C4. Therefore, the N4 values can be stored in the
N2×N2 matrix C4, and cum(k1,k2,k3

*,k4
*) appears as the 

[(k1-1)N+k2]th row and [(k3-1)N+k4]th column of C4; 
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where B and Cs represent the extended array manifold 
and the FOC matrix of incident source signals,
respectively. � 3B A A , and each column of B is

( ) ( ) ( )θ θ θ� 3b a a . It is obvious that b(θ) is a N2×1
vector, which means that the array aperture of ULA is 
extended. That is, the number of resolved source signals 
is no less than that of sensors. 

III. THE PROPOSED ALGORITHM 
A. The effective array aperture extended 

As proven in [17], an array of N arbitrary identical 
omni-directional sensors can be extended to at most of 
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N2-N+1. Especially, the number of virtual elements is 
2N-1 for ULA according to [17]. In order to discuss the 
effective aperture of ULA, three real elements (N=3) are 
considered, and b(θ) can be expressed in detail as 
follows: 
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where z=exp(j2π(d/λ)sinθ) and a(θ)=[1, z, z2]. Equation 
(7) shows that there is a lot of redundancy in expanded 
steering vector b(θ). That is, only from 1th to Nth and all 
kNth (k=2,…,N) items of the b(θ) are valid, while others 
are redundant ones. In order to eliminate these repetitive 
elements, a (2N-1)×(2N-1) matrix R4 is firstly defined. 
Next, the 1th to Nth and all kNth (k=2,…,N) rows of C4 
are taken out in sequence, and then store these rows in 
the 1th to (2N-1)th row of the new matrix R4. The same 
operation is performed on the 1th to Nth and all kNth 
(k=2,…,N) columns of C4 to obtain the 1th to (2N-1)th 
columns of R4. Similar to equation (6), R4 can be 
expressed as: 

 

( ) ( ) ( ) ( )

( ( ) ( ) ( ) ( ))

( ) ( ) ( ) ( )

( ( ) ( ) ( ) ( ))

,

M M M M

l m i j
l m= i= j=

l m i j

M

l l l l
l=

l l l l
H

s

= k k k k

cum s t s t s t s t

   = k k k k

cum s t s t s t s t

' '

�

' '

�

����

�

R d d d d

d d d d

DC D

4 1 2 3 4
1 1 1 1

1 2 3 4
1  (8) 

where D denotes the extended array manifold without 
redundancy, and each column of D has the form of d(θ)= 
[1,z,…,z2N-2]T. Therefore, the reduced-dimension R4 not 
only contains all of the information about the original 
matrix C4, but also keeps the extended array aperture 
unchanged. 
 
B. The MFOC-OPM algorithm 

In practical applications, the actual C4 cannot be 
achieved. Therefore, we have to estimate 4Ĉ from the 
received data by array measurements. Instead, we utilize 
the estimated value 4R̂ in place of R4, and then the DOAs 
estimation can be achieved by performing OPM on the 

4R̂ . Under the assumption of the independent sources, 
since D is a Vandermonde matrix as long as θi comes 
from M different directions, the matrix D is column full 
rank. That is, only M rows of the matrix D are linearly 
independent, and the remaining rows of matrix D can be 
expressed as a linear combination of the M rows. 
Without loss of generality, assume that the first M rows 
of matrix D are linear independent, and then the matrix 
D can be partitioned as follows: 
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D

D
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where the dimension of D1 and D2 are M×M and (2N-1-
M)×M, respectively. The propagator matrix P, which is 
a unique linear operator, can be written as: 
 H

1 2.�P D D  (10) 
Defining: 
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According to (9) and (11): 
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where I(2N-1-M) is a (2N-1-M)×(2N-1-M) identity matrix. 
The equation (12) shows that the columns of Q are 
orthogonal to the extended steering vectors d(θ) and the 
subspace of the d(θ) is equal to the signal subspace. 
According to the orthogonal principle between the signal 
subspace and the noise subspace, the subspace of Q is 
equivalent to the noise subspace. 

Now, the spatial spectrum of the PM algorithm is 
defined as: 

 
H H

1( ) .
( ) ( )

p 1
1 1

�
d QQ d  
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The key problem of the PM is how to estimate the 
propagator matrix P from the array manifold matrix. 
However, in real environments, the array manifold 
matrix is usually unknown. Obviously, it is known from 
equation (8) that the matrix D is included in the R4. 
Therefore, the propagator matrix P can be estimated by 
substituting R4 for D. In order to improve the estimation 
accuracy, the reduced-dimension 4R̂ is partitioned into 
two submatrices: 

 
41
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where the dimension of 41R̂ and 42R̂ are M×(2N-1) and 
(2N-1-M)×(2N-1), respectively, and then the estimated 
propagator matrix P̂ can be obtained by minimizing the 
cost function ˆ( )4 P : 

 
2H

42 41
ˆ ˆ ˆ ˆ( ) ,

F
4 � �P R P R  (15) 

where ||·||F indicates the Frobenius norm, and then the 
optimal solution P̂ is given by: 
 H 1 H

41 41 41 42
ˆ ˆ ˆ ˆ ˆ= ( ) .�P R R R R  (16) 

Then, 
 H H

2 1
ˆ ˆ[ ].N M� �� �Q P I  (17) 

The difference between PM and MUSIC algorithm 
is that the columns of Q̂ are not orthogonal. In order to 
introduce the orthogonalization, the orthonormalized 
matrix 0Q̂ is obtained as follows: 
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H 1/2
0

ˆ ˆ ˆ ˆ( ) .��Q Q Q Q (18) 
Till now, the implementation of the proposed 

algorithm with finite array data can be summarized as 
follows: 
Step 1 Estimate 4Ĉ from the received data by (6).

Step 2 Obtain the reduced-dimension matrix 4R̂ by
removing the redundant items of the expanded 
matrix 4Ĉ  according to (8). 

Step 3 Achieve the linear operator P̂ according to (15)
and (16), and then calculate the orthonormalized 
matrix 0Q̂ based on (18).

Step 4 Estimate the DOAs of source signals with the 
help of the following spatial spectrum 0ˆ ( )p 1 . 

0 H H
0 0

1
ˆ ( ) .

ˆ ˆ( ) ( )
p 1

1 1
�

d Q Q d
 (19) 

C. Complexity analysis 
Regarding the computational complexity, we only 

consider the major part, which involves in cumulant 
matrix construction, the linear operation, EVD 
implementation and one-dimensional (1-D) spectrum-
peak searching. The computational complexity of 
proposed algorithm is analyzed in comparison with the 
MFOC-MUSIC algorithm [14]. For MFOC-MUSIC 
algorithm, the major computations involved are to 
calculate the N2×N2 cumulant matrix C4, to perform EVD 
of the reduced-dimension (2N-1)×(2N-1) cumulant 
matrix R4 and to perform 1-D spectrum-peak searching. 
Therefore, the computational complexity of the MFOC-
MUSIC algorithm is O((9N4L)+(4/3)(2N-1)3+ 
(180/∆θ)(2N-1)2), where L and ∆θ denote the number of 
snapshots and the scanning interval, respectively. For 
proposed MFOC-OPM algorithm, the major 
computational complexity is to form one N2×N2

cumulant matrix C4 and perform the linear operator on
the reduced-dimension (2N-1)×(2N-1) cumulant matrix
R4, since it doesn’t require EVD and spectrum-peak 
searching. Therefore, the computational complexity of 
the proposed algorithm is O((9N4L)+(M(2N-1)2)). From 
the analysis above, it is obvious that the proposed 
algorithm has lower computational cost than the MFOC-
MUSIC algorithm, especially when the number of 
sensors and snapshots increases. 

IV. SIMULATION RESULTS 
In this section, simulation results are provided to 

validate the effectiveness of the proposed algorithm both
in spatially-white noise and spatially-color noise 
environments, respectively. A three-element ULA (N=3) 
with λ/2 spacing is employed. Consider three mutually 
independent far-field source signals (M=3) coming from 
{-20°, 20°, 45°}. The noise is assumed to be spatial white 
or color complex Gaussian, and the SNR is defined 

relative to each source signal. The mentioned algorithms 
are carried out by 500 independent Monte-Carlo trials. 
Two performance indices, called normalized probability 
of success (NPS) and average estimate variance (AEV), 
are defined to evaluate the performance of the two
algorithms: 

1
ˆvar

AEV ,  1,
M

ii i M
M

1
�� ��  (20) 

NPS= suc

total

5
6

(21) 

where î1 is the estimate of real i1 . The ϒsuc and Ttotal

denote the times of success and Monte-Carlo trial, 
respectively. Furthermore, a successful experiment is 
that satisfies ˆmax(| |)i i1 1 �� - , and ε equals 0.8 and 1.6 
for comparison versus SNR and snapshot, respectively. 

Experiment 1: AEV and NPS versus SNR 
In the first experiment, we examine the performance 

of the proposed algorithm against SNR. The number of 
snapshots L is 2000, and the SNR is varied from 5 to 25 
dB. Figures 1 and 2 show the AEV of the DOAs 
estimation against input SNR in both spatially-white 
noise and spatially-color noise environments,
respectively. It can be observed from Figs. 1 and 2 that 
the MFOC-OPM provides almost the same performance 
as the MFOC-MUSIC algorithm at low SNR. Figure 3 
displays the NPS of the DOAs estimation against the 
SNR. Similar to Figs. 1 and 2, Fig. 3 achieves a similar 
performance to the MFOC-MUSIC algorithm even if at 
low SNR. Moreover, as the SNR increases, the 
performance curves of each figure tend to become 
consistent. Although the MFOC-OPM performs quite 
like MFOC-MUSIC algorithm at low, medium and high 
SNR, the computational complexity of the proposed 
method is significantly lower than that of the MFOC-
MUSIC algorithm. The reason is that the proposed 
algorithm doesn’t require EVD and spectrum-peak 
searching. 

Fig. 1. AEV comparisons versus SNR in white situation.

5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

SNR(dB)

A
ve

ra
ge

 e
st

im
at

e 
of

 v
ar

ia
nc

e

 

 

-207White-MFOC-MUSIC

207White-MFOC-MUSIC

457White-MFOC-MUSIC

-207White-MFOC-OPM

207White-MFOC-OPM

457White-MFOC-OPM

641 ACES JOURNAL, Vol. 30, No. 6, June 2015



 
 
Fig. 2. AEV comparisons versus SNR in color situation. 
 

 
 
Fig. 3. NPS comparisons versus SNR. 
 
Experiment 2: AEV and NPS versus snapshots 

In the second experiment, we consider the same 
scenario as the first one at different number of snap-
shots. When the SNR is set to be 10 dB, the performance 
curves of AEV and NPS versus the number of snapshots 
in both spatially-white noise, and spatially-color noise 
environments are plotted in Figs. 4, 5 and 6, respectively. 
It can be seen from Figs. 4, 5 and 6 that the performance 
of the MFOC-OPM is approximately identical to that of 
the MFOC-MUSIC algorithm at low SNR. Furthermore, 
due to the small snapshots case, the curves of the two 
algorithms display sharp fluctuation as the number of 
snapshots is varied from 400 to 800. Moreover, Figs. 4, 
5 and 6 illustrate the performance of the two algorithms 
under the white noise situation is better than that of the 
color noise situation. As the snapshots increases, the 
performance curves of each figure tend to become 
stabilized. Therefore, we can come to a conclusion that 
the estimated performance of the MFOC-OPM and 
MFOC-MUSIC algorithms becomes optimal when the 
snapshots number goes to infinity. However, as the 
analysis given in section III.C, the complexity of the 
MFOC-OPM is obviously smaller than that of the 
MFOC-MUSIC algorithm, and the convergence speed of 

the MFOC-OPM is much faster than that of the MFOC-
MUSIC algorithm due to without using EVD and 
spectrum-peak searching. The merit of the proposed 
algorithm lies in the simple and efficient implementation 
in comparison to the MFOC-MUSIC algorithm. 
 

 
 
Fig. 4. AEV comparisons versus snapshots in white 
situation. 
 

 
 
Fig. 5. AEV comparisons versus snapshots in color 
situation. 
 

 
 
Fig. 6. NPS comparisons versus snapshots. 
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Experiment 3: Computational complexity versus 
number of sensors and snapshots 

In the last experiment, the computational burden 
required by the proposed algorithm is compared with the 
MFOC-MUSIC algorithm. The number of the source 
signals is set to be M=3. For MFOC-MUSIC algorithm, 
the scanning interval is defined as ∆θ=0.01. Figure 7 
shows the computational complexity of the two 
algorithms as a function of the number of sensors (from 
N=3 to N=10) when the number of snapshots is L=50. 
Figure 8 shows the computational complexity of the two 
algorithms as a function of the number of snapshots 
(from L=100 to L=1000) when the number of sensors is 
N=3. Figures 7 and 8 clearly show that the proposed 
algorithm achieves less computational load than MFOC-
MUSIC algorithm as the number of sensors and 
snapshots increases, respectively. This is consistent with 
the theoretical analysis given in Section III.C. 

Fig. 7. Computational complexity comparison versus the 
number of sensors.

Fig. 8. Computational complexity comparison versus the 
number of snapshots.

V. CONCLUSION 
In this paper, a low complexity DOA estimation 

algorithm called the MFOC-OPM has been proposed. In 
the proposed algorithm, the extended effective array 
aperture can resolve the number of sources more than or 
equal to that of the array elements, and the proposed 
algorithm can almost perform like MFOC-MUSIC 
algorithm especially in low SNR and small number of 
snapshots. Moreover, the proposed algorithm has the 
advantage of reduced computational load due to the fact 
that it doesn’t require EVD and spectrum-peak to obtain 
its signal subspace and noise subspace. Therefore, such
an advantage is highly desirable for practical 
applications when the low-computational cost and 
highly real-time data process are required. Simulation 
results demonstrate the effectiveness of the proposed 
algorithm both in spatially-white noise and in spatially-
color noise environments. 
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