
An Efficient Algorithm for SAR Evaluation from Anatomically Realistic 

Human Head Model Using DGTD with Hybrid Meshes 
 

 

Lei Zhao 1,2, Geng Chen 1, and Wenhua Yu 1 
 

1 Center for Computational Science and Engineering, School of Mathematics and Statistics 

Jiangsu Normal University, Xuzhou, China 

leizhao@jsnu.edu.cn, gengchn@163.com, yuwenhua@jsnu.edu.cn 

 
2 State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, China 

 

 

Abstract ─ In this paper, an efficient and fast algorithm 

is proposed to analyze the specific absorption rate (SAR) 

in the anatomically realistic human head model with 

voxel data format exposed a handset antenna. The 

algorithm is based on the discontinuous Galerkin time-

domain (DGTD) method with conformal region division 

and hybrid meshes. The proposed algorithm is done by 

dividing the computational domain into a sub-region 

with head model and a sub-region with handset antenna. 

As the realistic head model is voxel data format, the 

voxel-based meshes are used to divide the sub-region 

with head model. The tetrahedral meshes are used to 

divide the antenna, and are suitable for antennas with 

curved features and thin objects. And the pyramid 

meshes are used to connect voxel-based mesh and 

tetrahedral mesh regions. The accuracy and efficiency of 

the proposed algorithm are verified by comparing 

numerical results with analytical solutions.  

 

Index Terms ─ Anatomically realistic human head 

model, discontinuous Galerkin time-domain (DGTD), 

hybrid meshes, specific absorption rate (SAR). 
 

I. INTRODUCTION 
Electromagnetic energy absorption in human body 

exposed to electromagnetic radiation has brought about 

tremendous concerns for the possible consequences of 

electromagnetic radiation on human health in the past 

few decades. Many studies have been performed for 

calculating the RF specific absorption rate (SAR) in a 

human body exposed to the electromagnetic (EM) field 

[1-4]. The uncertainty of the calculated SAR distribution 

exists and is contributed by a number of factors including 

the implementation of numerical algorithm, the modeling 

of radiating source and the human head model. In the late 

1970s, the human body was approximated as the 

composition of homogenous prolate spheroids, ellipsoids 

and cylinders. Then, the layered tissue models consisting 

of a few tissue types with different dielectric properties 

were used to approximate the human anatomy. Recently, 

a number of realistic partial or whole body human 

models have been created. Those voxel models can be 

constructed from cross-sectional images generated by 

computer tomography (CT) or magnetic resonance 

imaging (MRI), and the feature size and the number of 

tissues, and resolution of the model play an important 

role in the SAR calculation. 

For voxel human body models, the finite difference 

time domain (FDTD) [5] is widely used to analyze the 

SAR in head model exposed to antennas. However, the 

FDTD method with Yee grid suffers from serious 

accuracy degradation for dealing with the curved objects 

or treating curved material interfaces [6]. A number of 

finite difference methods have been proposed in the past 

for the treatment of curved interfaces or complex objects 

[7-9]. Indeed, the so-called stair-casing approximation 

may lead to local zeroth-order and at most first-order 

accuracy, which may also produce locally non-convergent 

results. DGTD algorithm has most of the advantages of 

FDTD. Besides and contains the adaptability of the 

unstructured meshes and spatial super-convergence, 

which allows us to effectively handle many practical 

electromagnetic (EM) problems where the required 

precision is different over the entire domain, or when the 

solution lacks smoothness [10-13]. For SAR evaluation, 

Hassan uses DGTD method to calculate SAR of human 

head with tetrahedral mesh in their paper, the head model 

contains four kinds of tissues [14]. 

In this paper, the electromagnetic scattering 

problem from a high resolution 3D anatomically realistic 

head model was considered. The DGTD with hybrid 

meshes is proposed to analyze the SAR in the 

anatomically realistic head model exposed to a handset 

antenna. In the proposed algorithm, the computational 

domain is divided into two sub-regions. One sub-region 

includes head model and voxel-based grids are used for 

the simulation. Another sub-region includes the antenna 

and the tetrahedral meshes are used to describe the 

antenna with curved features and thin objects. And the 

pyramid meshes are used to connect voxel-based mesh 
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with tetrahedral mesh regions. We have verified the 

accuracy and efficiency of the algorithm by comparing 

the numerical results with analytical results. Numerical 

results show that the proposed method has a better 

performance than the conventional techniques. 

 

II. THEORY AND METHOD 

A. Governing equations and DGTD formulation 

We consider the time-domain Maxwell equations in 

three space dimensions for heterogeneous linear isotropic 

media: 
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where ( , ) ( , , ),x y zt E E EE x  ( , ) ( , , )x y zt H H HH x

are the electric and magnetic fields, ,  ,    denote 

dielectric permittivity, magnetic permeability and 

conductivity respectively, and J  represents the current 

density. This system of equations is supplemented with 

appropriate boundary conditions. Two different 

boundary conditions are involved in the examples 

considered in this work: perfect electrical conductor 

(PEC) and non-reflecting boundary. On the PEC surface, 

the tangential component of the electric field vanishes 

and the condition 0 n E  is applied, where n  denotes 

the unit normal vector to the PEC surface. For problems 

posed on unbounded domains, the computational domain 

is truncated and a uniaxial perfectly matched layer 

(UPML) is imposed on the truncated boundary [13].  

We first discretize the computational domain   

into a set of elements 
i  and, 
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For each element 
i , the local electric and magnetic 

fields 
iE and 

iH  are expressed as linear combination of 

linearly independent vector 
il (1 3 il d  ): 
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where id  is the local number of degrees of freedom and 

associates to the interpolation degree of ip , and ,il ilE H

denote the nodal values of iE  and iH , respectively. The 

global solution of Maxwell’s Eqs. (1)–(2) is given by: 
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To avoid any ambiguity, we introduce the following 

notations: 
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and similarly for the sequence  
1 3

.
i
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Multiplying Eqs. (1)-(2) by the test function  , we 

get: 
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Integrating by part Eqs. (10)-(11), we have: 
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where n is the unit outward normal vector of faces on 
i . 

In the DGTD method 
iE  and 

iH  on element boundary 

can be discontinuous across the boundary. For two 

distinct elements 
i  and 

k  in ,h  then let
ik i ka    

be the common interface of 
i  and

k . Here we use the 

central flux, which is defined as follows: 
| | | |

| , |
2 2

i ik k ik i ik k ik

h ik h ik

a a a a
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Evaluating the volume integrals and surface 

integrals in Eqs. (12)-(13) with central flux and re-

integrating by parts, we can obtain: 
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Replace ,hE  hH and   in Eqs. (15)-(16) by 
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can get an equivalent system: 
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in which 
iM   and 

iM  are the symmetric positive 

definite mass matrices, ,iK  
ikS  and 

iD  are stiffness 

matrix, rectangular interface matrices and conduction 

matrix, respectively. They are defined as: 
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The set of local system of ordinary differential equations 

for each 
i  can be formally transformed in a global 

system. We suppose that all electric and magnetic fields 

are gathered in a column vector  and  with size of

1
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where ,   and  are 3 3d d  block diagonal 

mass and stiffness matrices with diagonal blocks equal 

to ,iM 

iM   and 
iK  respectively.  is a block sparse 

matrix whose non-zero blocks are equal to 
ikS  when 

ika  

is an internal interface. 
E

 and 
H

 are the block 

diagonal matrices associated with boundary integral 

terms.  is a positive semi-definite block diagonal 

matrix with diagonal blocks equal to .iD  

The semi-discrete system Eqs. (24)-(25) is time 

integrated using a second order leap-frog scheme as: 
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where     and 1n nt t t     denotes the time 

step size. This algorithm is conditionally stable with a 

critical time step size proportional to 
1.h

 And the time 

step is determined by the smallest grid element as: 
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B. Hybrid meshes and basis functions 

For the SAR calculation from anatomically realistic 

human head model exposed handset antenna, as shown 

in Fig. 1, a hybrid mesh approach [15, 16] is adopted in 

which an unstructured tetrahedral or pyramid mesh is 

used to discretize the sub-region containing the handset 

model, a structured Cartesian mesh is used to discretize 

the remainder of the computation domain containing the 

voxel head model. In three dimensions, the nodal 

distribution proposed in [10] for the tetrahedron and in 

[16] for the pyramid is used. A tensor product of one-

dimensional Gauss-Lobatto points is used for hexahedron. 

Figure 2 shows the reference tetrahedron, pyramid and 

hexahedron with a nodal distribution corresponding to 

polynomial order 2p  . 

For tetrahedron meshes, the basis function on 

reference element is described as: 
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For pyramid meshes, the basis function on reference 

element is: 
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And the following basis function is used for hexahedron 

meshes: 
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 is the Lagrange interpolation 

function. 

With this approach, the benefits of using affine 

elements can be exploited, not only for tetrahedral but 

also for the hexahedral and pyramidal elements. 

Moreover, compared to tetrahedral meshes, the use of 

hexahedral meshes results in a significant reduction in 

the number of internal faces. It can be expected that 

hybrid meshes will lead to a reduction in the CPU time 

requirements, as the computational cost of integration 

over element faces is an important portion of the DGTD 

scheme.  

 

 
 

Fig. 1 Human head model exposed in dipole antenna. 
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Fig. 2. Reference elements with showing the location of 

the nodes: (a) tetrahedron, (b) pyramid, and (c) hexahedron. 

 

III. NUMERICAL RESULTS 
To illustrate the accuracy and efficiency of the 

proposed DGTD with hybrid meshes, we first consider 

the EM propagation of a mode inside a perfect metallic 

cubic cavity. The cavity is a cube with a PEC boundary, 

the edge length of the cube is 1m with the center at

0.x y z    We evaluate the field at a test-point

0.167 .x y z m     The propagative mode is given by 

following formulations: 
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 (32) 

The comparison of numerical results of the internal 

electric fields obtained by using DGTD with hexahedron 

mesh, the FDTD method and analytical results

 2m n   is illustrated in Fig. 3, where the mesh size 

for DGTD and FDTD is /10 . From Fig. 3, we clearly 

observe a very good agreement between the DGTD 

method and analytical results, which is much better than 

the FDTD results. We have also computed the electric 

fields at the observation point 0.167x y z m     

using DGTD with tetrahedron meshes and hybrid 

meshes, and the FDTD method with mesh size / 30 , as 

demonstrated in Fig. 4. Good agreements can be 

obtained between the GDTD results and analytic results. 

Comparing with analytic results, the FDTD method with 

mesh size / 30  is much better than the FDTD results 

with mesh size /10,  as shown in Fig. 3 and Fig. 4. 

However, the FDTD method with / 30  cannot still get 

a good agreement with the analytic results. The detailed 

computational parameters such as mesh size, degrees of 

freedom, time step and computational time are listed in 

Table 1. The benefit of using hexahedron elements  

can be clearly seen in Table 1 by comparing the 

computational cost. The reason for the benefit obtained 

is that tetrahedral meshes possess more elements and 

more internal faces than hexahedral meshes for a given 

number of degrees of freedom in DG framework. 

Meanwhile, the computation of numerical fluxes at 

internal faces represents an important part of the overall 

computational cost of the algorithm. For the EM 

problems from simple 3D geometries, the potential 

computational advantages of hexahedral elements can 

often be exploited. However, this is totally unfeasible for 

complex geometries. For this reason, it is a good choice 

to use hybrid meshes, employing tetrahedral elements 

near objects of complex geometrical shape, with affine 

hexahedral elements used to fill the remainder of the 

computational domain. 

 

 
 
Fig. 3. Electric field distribution at point 

0.167 .x y z m     

 

 
 
Fig. 4. Electric field distribution at point 

0.167 .x y z m     

 

Table 1: Mesh size, degrees of freedom, time step and 

computational time 

Mesh Type Mesh 

Size 

t  
(s) 

Dofs CPU 

Time(s) 

Tetrahedron 10  0.021 18240 36.8 

Hexahedron 10  0.047 3375 1.2 

Hybrid meshes 10  0.028 5550 6.2 

FDTD 10  0.025 8000 0.2 

FDTD 30  0.01 216000 16.1 
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After verification of the accuracy and efficiency,  

we apply the proposed DGTD method with hybrid 

meshes to study the scattering problem from 3D 

anatomically realistic human head model exposed to a 

handset antenna, as shown in Fig. 5. The Chinese 

electromagnetic human model (CMODEL) used in the 

simulation setup is voxel format model, in which 15 

different biological tissues can be identified, as shown in 

Fig. 6. The electromagnetic properties (
r  and  ) of 15 

different tissues in the model can be obtained from FCC 

directly [17], as listed in Table 2. The resolution of this 

model is 5 mm. The handset antenna is a half wave 

dipole working at 2.1 GHz, and the distance between 

head model and antenna is15 mm. To accurately describe 

the antenna, tetrahedral meshes are used for the sub-

region containing the antenna. As the head model is 

voxel-based format, the hexahedral meshes are used to 

describe the sub-region containing the human head 

model. And two parts are connected by affine pyramid 

meshes. 

As the dipole antenna has 15 degrees rotation, it is 

hard for the computational methods with cube grids to 

solve the problem. DGTD method with tetrahedral 

meshes is suitable to handle the EM problem from 

complex and thin objects. Figure 7 shows the return loss 

of the dipole antenna with 15 degree rotation, a good 

agreement can be obtained for different antenna postures. 

To evaluate the performance of different elements 

employed for the numerical solution of the Maxwell’s 

equations in three dimensions using a DGTD 

formulation, the tetrahedral and hybrid meshes are used 

to solve the EM problem of 3D anatomically realistic 

human head model exposed to an antenna, respectively. 

Table 3 shows the number of degrees of freedom and 

CPU time for solving the same problem with tetrahedral 

and hybrid meshes, where the mesh distributions are 

generated by using the same mesh size. It is observed 

that the reduction in number of degrees of freedom is 

translated into a corresponding reduction in computational 

cost. For an order of approximation p=2, hybrid elements 

provide the same accuracy as tetrahedral elements by 

reducing the CPU time by a factor of about 5, as shown 

in Table 3. Figure 8 shows the electric field distribution 

on the head surface, bone, brain and blood. The electric 

field distribution on slices of x=200 mm and y=170 mm 

is demonstrated in Fig. 7. The following definition of the 

point SAR value is used in this work [2]: 

 
2

ESAR



 , (33) 

where  is the electric conductivity,  the density of 

the tissue, and E the computed electric field intensity. 

The SAR distribution is shown in Fig. 9. 

 

 
 

Fig. 5. CMODEL exposed to a dipole antenna working 

at 2.1 GHz. 

 

 
 

Fig. 6. CMODEL with 15 tissues. 

 

Table 2: Dielectric properties of human head tissues at 

2.1 GHz 

Tissue r    

Skin 38.871857 1.184768 

Fat 5.349368 0.078385 

Muscle 55.335312 1.437796 

Cartilage 40.215481 1.286782 

Cerebro spinal fluid 68.638336 2.412575 

Eye tissue 53.567787 1.601727 

Vitreous humour 68.573364 2.032478 

Lens nucleus 34.649647 0.787477 

Grey matter 50.078876 1.391190 

White matter 37.010921 0.914969 

Spinal chord 32.530067 0.573612 

Thyroid thymus 58.142151 1.500878 

Tongue 53.567787 1.371193 

Bone cancellous 19.343237 0.588224 

Blood 59.372261 2.043690 
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Fig. 7. Return loss for dipole antenna. 

 

Table 3: Comparison of Dofs and computational cost 

with tetrahedron and hybrid meshes 

Mesh Type t  
(sec.) 

Dofs CPU 

Time(sec.) 

Tetrahedron 0.53 24714168 60801 

Hybrid Meshes 1.40 13355664 12819 
  

 
  

 

 

Fig. 8. Electric field distribution on tissues. 
 

 
Fig. 9. Point SAR distribution. 

 

IV. CONCLUSION 
The efficiency of the DGTD method with hybrid 

mesh for the realistic human head SAR evaluation has 

been studied. Using an unstructured mesh around 

complex geometric objects, geometric flexibility is 

achieved. And computational efficiency is then improved 

by using a Cartesian mesh of affine hexahedra to fill the 

remainder of the domain.  
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