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Abstract ─ Periodic gratings, such as Frequency 

Selective Surfaces (FSSs) and EBG (electromagnetic 

band gap) structures, are used in a wide variety of 

electromagnetic applications and are typically analyzed 

under the assumption that they are infinite periodic. 

Since the real-word structures are necessarily finite, and 

are derived by truncating the corresponding infinite 

structures, it is of interest to determine how large the 

finite structure needs to be so that it mimics its infinite 

counterpart. A related question is how to extrapolate the 

simulation results of a finite structure to predict the 

performance of the corresponding infinite structure in a 

computationally efficient manner. The objectives of this 

work are to address both of these questions and to present 

a novel computational technique which hybridizes 

analytical and numerical techniques to provide the 

answers. We illustrate the application of the proposed 

technique by considering the test case of plane wave 

scattering by a strip grating and investigate the 

asymptotic behavior of the solution for the current on a 

truncated periodic grating as we increase its size. The 

proportionality constant, relating the current distribution 

on the unit cell of the infinite grating to the 

corresponding distribution in the truncated grating,  

is computed, and its asymptotic value is accurately 

predicted by using an extrapolation algorithm presented 

in the paper. The required number of strips is estimated 

such that the current on the finite structure is sufficiently 

close to that on the infinite one. The results obtained for 

the current are found to be in excellent agreement with 

those derived from full-wave simulations. 

 
Index Terms ─ Current density, electromagnetic 

scattering, extrapolation algorithms, frequency selective 

surfaces, periodic strip gratings. 

I. INTRODUCTION 
Frequency selective surfaces (FSSs) composed of 

periodic arrays of perfectly conducting elements have 

been extensively used in several applications, e.g., 

controlling reflection and transmission of electromagnetic 

waves, electromagnetic band gap (EBG) materials, and 

metamaterials [1-3]. A review of techniques for the 

electromagnetic analysis of FSSs is presented in [4]. 

Established methodologies for the numerical solution  

of the pertinent boundary value problems entail the 

application of periodic boundary conditions [1]; the 

subdomain basis discretization and conjugate gradient 

techniques [5]; the finite difference time domain (FDTD) 

method [6]; the finite element method (FEM) [7]; as well 

as equivalent circuit modeling techniques [8]. Typically, 

the periodic Green’s function (PGF) is used to generate 

the interaction fields between the elements of the FSS; 

however, the expression of the PGF is a slowly-

convergent infinite series [9]. 

A representative class of FSSs used to model several 

applications of the type mentioned above is that of 

periodic perfectly conducting strip gratings. 

Electromagnetic scattering by infinite periodic perfectly 

conducting strip gratings located in free space has been 

investigated by a number of researchers [10-21], who 

have implemented both analytical as well as purely 

numerical methodologies. On the other hand, reported 

publications dealing with the problem of scattering by 

truncated periodic gratings, which provide more realistic 

models for real-world problems, have been relatively 

sparse and primarily based on the implementation of 

numerical techniques [22-26]. 

In this work, we consider a grating composed of 

periodic perfectly conducting strips as a test example  

to illustrate the application of a novel solution approach  

Submitted On: February 6, 2017 
Accepted On: April 23, 2017 1054-4887 © ACES 

463ACES JOURNAL, Vol. 32, No. 6, June 2017



of the problem at hand. The approach begins with a 

truncated (“finite”) periodic structure, with a moderate 

number of cells, and investigates the asymptotic 

behavior of its solution to develop a novel technique  

for predicting the performance of the corresponding 

“infinite” periodic structure. The current induced in the 

inner region of this truncated grating is computed 

numerically, and is next utilized as an initial estimate  

for the computation of the induced current on the 

corresponding “infinite” grating. We exploit the fact that 

the current distribution in the inner region of the 

truncated grating with only a moderate number of cells 

is found to be proportional in scale to that of the 

corresponding induced distribution on the unit cell of the 

infinite periodic grating, while its shape is essentially the 

same as that of the periodic one. The proportionality 

constant is calculated analytically as a sum of a doubly-

infinite series, by exploiting the integral representation 

of the electric field, expanding the unknown current as a 

Fourier series and then using suitable expressions of the 

involved functions in the spatial and spectral domains. 

By following the above approach, we analyze how 

the solution of the finite problem converges to that of the 

infinite one and, also, address the important issue of the 

minimum number of strips we need in the finite structure 

in order for it to mimic its infinite counterpart. Examining 

particular features of the solution of the finite problem  

is always useful because, realistically, a physical FSS  

is always finite. The developed approach offers an 

alternative route for achieving possible speedup in 

obtaining the solution of the infinite problem by first 

treating the respective finite problem. Moreover, it 

circumvents the need to derive the PGF, as well as issues 

related to convergence of slowly varying infinite series 

associated with the PGF. 

The validity of the derived formulas is tested by 

examining two limiting cases for which the current is 

known a priori. Numerical results are presented for the 

computation of the proportionality constant relating the 

current on the unit cell of the infinite grating to that of 

the distribution in the inner region of the corresponding 

finite truncated grating; the latter is computed numerically 

by an electromagnetic field simulation software. The 

numerical convergence of this constant with respect to 

the number of terms retained in the involved series 

representation is analyzed. It is shown that the limiting 

value of the constant can be quickly and accurately 

obtained by using a numerical extrapolation algorithm, 

which first smoothens the initial oscillations and then 

predicts the exponentially-decaying behavior of the 

resulting functions. The current computed by the proposed 

approach is found to be in excellent agreement with that 

computed from a full-wave numerical simulation of the 

infinite periodic structure. 

 

II. ANALYTICAL CONSIDERATIONS 
Figure 1 depicts the scattering geometry comprising 

a grating with period D composed of perfect electric 

conducting (PEC) strips of width w and illuminated by a 

normally incident plane wave with electric field given by 

(under the assumption of exp(+jωt) time dependence): 

 
0

ˆ ˆ( )= ( ) = exp( )inc incz E z jk zE y y , (1) 

where k0 is the free-space wavenumber. The developed 

approach can be generalized to the oblique incidence 

case with only minor modifications. 

 

 
 
Fig. 1. Geometry of the periodic strip-grating scattering 

configuration. 

 

First, we consider the truncated finite grating 

comprising of a moderate number of cells and solve  

the problem for the current distribution 
0 0

ˆ( ) ( )x J xJ y , 

induced in the center region (i.e., on the unit cell which is 

indexed as n=0). This distribution is expanded in a Fourier 

series: 
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where Z0 denotes the free-space impedance. The Fourier 

coefficients Αν are calculated in the standard way and 

found to be: 
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 (3) 

In case that 
0

J  is a constant, then the latter expressions 

are simplified to: 
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where J1 denotes the first-order cylindrical Bessel 

function. 

On the basis of past experience with similar grating 

problems (see, e.g., [19-20]), we postulate that the true 

current induced on the unit cell of the infinite grating 

structure would simply be 
0
( )cJ x , i.e., proportional to 

the current in the center cell of the finite grating, where 

c is a complex constant, as yet undetermined. The 

physical justification of the latter postulate is as follows. 

In a truncated periodic structure there are reflections 

from the edges, which decline gradually as we move 

inwards from the edges. As the size of the grating 

becomes sufficiently large, the edge effect is substantially 

reduced in the center region, where only the dominant 

mode survives. This, in turn, just changes the scale of the 

field distribution on the unit cell but not its shape, which 

has presumably stabilized. The scale factor is calculated 

next, by applying the boundary condition on the unit cell, 

to eliminate the contributions from the edge reflections. 

Next, we show how to determine the scale factor  

c in a systematic way. The current 
0
( )cJ x  is induced  

on every grating’s cell indexed by n (under a shift of  

the spatial variable x so that it is centered at the center  

on the n-th cell). Hence, we begin by computing the 

contributions of the currents: 
 

0 2 2
( ) ( ), w w

nJ x cJ x nD nD x nD      , (5) 

induced on the cells n≠0 to the unit cell n=0. The electric 

fields generated by these currents are given by: 
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where G is the free-space Green’s function, 
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j
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with 
( 2)

0
H  denoting the zero-order cylindrical Hankel 

function of the second kind. 

By combining (2)-(7), we get: 
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Then, by performing the change of variables x nD     

and summing up all the infinite contributions, we can 

write the total electric field induced on the unit cell as: 
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. (9) 

The involved series and integrals in (9) can be handled 

analytically as follows. First, we recall the well-known 

Fourier integral expression of the Hankel function: 
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Now, by substituting (10) in (9), changing the orders of 

integration and taking into account that (see, e.g., [14]): 
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(11) 

where J0 denotes the zero-order cylindrical Bessel 

function, we get that, 
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(12) 

Moreover, we use the following relation (resulting 

by the Fourier series expression of the Dirac comb): 
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to obtain that the total electric field induced on the unit 

cell takes the form, 
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Finally, we impose the boundary condition on the 

PEC strip of the unit cell as follows: 

 ( ,0) ( ,0) (0)=1inc

n
n

E x E x E




   , (15) 

to determine the unknown constant c as, 
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The current distribution on the strip in the unit cell of the  
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infinite grating can now be obtained, once c has been 

computed and all the subsequent field quantities of 

interest can be readily determined. 

 

III. LIMITING CASES 
The developed approach is validated by examining 

two limiting cases. The first is a “test” case and 

corresponds to normal incidence plane wave scattering 

by an infinite PEC plane, which is decomposed into 

periodic cells as shown in Fig. 2. 
 

 
 

Fig. 2. Geometry of the “test” case corresponding to 

normal incidence plane wave scattering by an infinite 

PEC plane. 

 

The approximate initial electric current distribution 

induced on the unit cell n=0 is assumed to be: 
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is the magnetic field of the incident plane wave (see (1)). 

Equation (17) is actually the correct “physical optics” 

current induced on the infinite PEC plane. 

Now, we follow the methodology described in 

Section II above. The current induced on the unit cell of 

the infinite structure is taken to be 
0 0

2 /cJ c Z  , with 

c is yet to be determined. The currents induced on the 

cells n≠0 are given by: 
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By combining (10) and (18), we find: 
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where sinc(z)=sin(z)/z. Then, we apply the boundary 

condition (15) on the unit cell and determine c as: 
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The latter is written by means of (13) as: 
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which by taking into account that sinc(nπ)=0, n≠0, gives 

the expected result that c=1 (since we have considered in 

(17) as the initial current on the unit cell the correct 

current induced on the infinite PEC plane.) 

The second limiting case is for w→D, when the 

infinite periodic grating is reduced to an infinite PEC 

plane. The approximate initial current distribution 

induced on the unit cell is taken again to be given by (17). 

The Fourier coefficients are calculated by (4) as: 
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By following the methodology of Section II, we find that 

c is given by (16) where Av are given by (20). By letting 

w→D in (16), and using (20), we obtain: 
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(21) 

The series appearing in (21) are computed 

numerically. Figures 3 and 4 depict the real and 

imaginary parts of c as computed by (21) vs N2 for 

constant N1=10 and vs N1 for constant N2=30, where N1 

and N2 denote the truncation orders of the series in (21) 

with respect to the variables n and ν, respectively. In the 

numerical computations, we take x=0 and tested that 

other values of x give similar results. It is evident that c 

converges to 1 as expected because as w→D the problem 

is reduced to scattering by an infinite PEC plane for 

which it is known that (17) gives the correct “physical 

optics” current induced on the plane. A technique for the 

fast extrapolation of oscillatory curves, such as the one 

in Fig. 4 (b), is analyzed in the next section by retaining 

a smaller number of terms in the series. 
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(a) 

 
(b) 

 

Fig. 3. Real and imaginary parts of c as computed by (21) 

vs the truncation order N2 of the series with respect to v 

for N1=10 retained terms of the series with respect to n. 
 

 
(a) 

 
(b) 

 

Fig. 4. Real and imaginary parts of c as computed by (21) 

vs the truncation order N1 of the series with respect to n 

for N2=30 retained terms of the series with respect to v. 

IV. NUMERICAL RESULTS AND 

DISCUSSION 
First, we consider a periodic grating with parameters 

D=λ/2 and w=D/3 and frequency of the incident field at 

f=1 GHz. Figure 5 depicts the real and imaginary parts 

of the current induced on the unit cells, as computed by 

the commercial code Ansoft HFSS [27], for a finite 

grating with 5, 7, and 21 strips. Magnifications in the 

region of the center of the unit cells are depicted in  

Fig. 6. In addition to these results, we have carried out 

extensive numerical experiments by increasing the 

number of strips from 5 to 21 in steps of 2. We have 

concluded that convergence in the second decimal digit 

of the induced current is attained for 7 to 9 strips, while 

we can realize convergence in the third decimal place by 

using 15 strips. The current induced on the center strip 

of a truncated grating with 7 strips, shown in Fig. 5, will 

be considered as the initial approximate current 
0
( )J x  in 

the numerical algorithm implementing the developed 

methodology. Figure 7 depicts the real and imaginary 

parts of c, as computed by means of (16), versus the 

number N1 of retained terms in the series of (16) with 

respect to n for constant number N2=10 of terms in the 

series with respect to ν. 

 

 
(a) 

 
(b) 

 

Fig. 5. Real and imaginary parts of the considered 

approximate initial current 
0
( )J x  induced on the unit cell 

of a finite grating with 5, 7, and 21 strips, as computed 

by the HFSS. 
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(a) 

 
(b) 

 

Fig. 6. Magnifications of Fig. 5 in the region of the center 

of the unit cell. 
 

The limiting values of the oscillatory curves of  

Fig. 7 can be extrapolated by following the numerical 

procedure described below. The first two periods of  

the oscillations are excluded from the extrapolation 

procedure we follow. Then, from the third period on,  

we take the averages between successive maximum  

and minimum values. In this way, we obtain a new set of 

curves where the initial oscillations are smoothened. The 

outcomes of this procedure on the oscillating curves of 

Figs. 7 (a) and 7 (b) are shown in Figs. 8 (a) and (b). By 

repeating the procedure a second time on the curves of 

Figs. 8 (a) and 8 (b), we finally obtain the curves of Figs. 

8 (c) and 8 (d), where the oscillations are significantly 

suppressed. 

Now, the monotonic behavior of the curves of Re(c) 

and Im(c) of Figs. 8 (c) and 8 (d) can be predicted in the 

following way. A two-term exponential model of the 

form: 

 * * * *( ) exp( ) exp( )y x a b x c d x  , (22) 

is fitted to the data yielding the results of Fig. 9, where it 

is observed that the fitted curves provide very good 

approximations of the initial data. The obtained limiting 

value of the complex constant c is very close to the value 

c=1.007–0.004j, which is obtained by dividing the 

current induced on the unit cell of the infinite grating 

over the corresponding current on the truncated grating 

with 7 strips (the latter quantities were both computed  

by using HFSS simulations). As shown in Fig. 10,  

the current computed by the proposed approach is in 

excellent agreement with that computed from the HFSS 

simulation of the infinite periodic grating. 

 

 
(a) 

 
(b) 

 

Fig. 7. Real and imaginary parts of c vs the truncation 

order N1 for N2=10, D=λ/2, w=D/3, and f=1 GHz. The 

black lines show the mean values of the oscillatory 

curves. 

 

Furthermore, we are interested in predicting/ 

extrapolating the behaviors of Re(c) and Im(c) by 

reducing the total number of terms considered (that is 

without retaining up to N1=100, for instance, as in Fig. 

9). The variations of Re(c) and Im(c) when only N1=20 

and 30 terms are retained in the series (16) are depicted 

in Figs. 11 (a), (b) and (c), (d), respectively. The respective 

fitted curves by means of the two-term exponential 

model (22) are also depicted. We observe that truncating 

these exponentially-decaying curves at N1=20 or 30 and 

applying the above described extrapolation algorithm 

can provide quite accurate results for the limiting value 

of c. 

Finally, we consider as a second example, an infinite 

periodic grating with parameters D=λ and w=D/2 at the 

same frequency of f=1 GHz. Figure 12 depicts the real 

and imaginary parts of c, as computed by means of (16), 

versus N1 for N2=10. Also in this case, the obtained result 

converges to the expected one for the current induced on 

the unit cell of the infinite grating structure. As in the 

previously examined example, the obtained curves can 

be extrapolated by using the algorithm described above 

to predict their monotonic behavior by considering a 

relatively small number of N1 terms. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 8. (a) and (b) Real and imaginary parts of c vs  

N1 after implementing the numerical algorithm of 

smoothening the oscillations on the curves of Figs.  

7 (a) and 7 (b). (c) and (d) Corresponding results after 

implementing a second time the oscillations smoothening 

algorithm on the previously derived curves of Figs. 8 (a) 

and 8 (b). 

 
(a) 

 
(b) 

 

Fig. 9. Real and imaginary parts of c (bullets denoted as 

“data”) for the parameters values of Figs. 8 (c) and 8 (d) 

together with the respective fitted curves by means of the 

model (22). 
 

 
(a) 

 
(b) 

 

Fig. 10. Current induced on the unit cell of the infinite 

grating for the parameters of Fig. 5, as computed by the 

proposed method [c.f. model (22)] and by the HFSS. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 11. Real and imaginary parts of c (bullets denoted as 

“data”) for the parameters values of Figs. 8 (c) and 8(d) 

when only N1=20 in (a) and (b) and N1=30 in (c) and (d) 

terms are retained in the series (16). In every figure,  

the respective fitted curves by means of the two-term 

exponential model (22) are also depicted. 

 

 
(a) 

 
(b) 

 

Fig. 12. Real and imaginary parts of c vs the truncation 

order N1 for N2=10, D=λ, w=D/2, and f=1 GHz. 
 

V. CONCLUSIONS 
The problem of electromagnetic scattering by a 

periodic perfectly conducting strip grating was 

considered. An analytical methodology was developed 

for extracting the solution for the current induced on the 

infinite grating from that induced on the respective finite 

grating with a moderate number of cells. The validity 

was tested by examining two limiting cases for which  

the current is known a priori. Numerical results were 

presented for the proportionality constant relating the 

current on the unit cell of the infinite grating to that of 

the distribution in the inner region of the corresponding 

truncated grating. The convergence of this constant with 

respect to the number of retained terms in the involved 

series representation was investigated. It was shown that 

the limiting value of the constant can be quickly and 

accurately obtained by using a numerical extrapolation 

algorithm which first smoothens the initial oscillations 

and then predicts the monotonic behavior of the resulting 

functions. 

The procedure presented in the paper is general. It 

was applied here to one-dimensional (1-D) gratings with 

infinite perfectly conducting strips of arbitrary width and 

can be easily generalized to the oblique incidence case 

as well as to other similar grating structures, including 

gratings lying on dielectric substrates (infinite gratings 

of the latter type have been analyzed by different 

methodologies; see e.g. [28]). The suitable initial number  
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of cells of the truncated finite grating is chosen by 

examining the field’s distribution in the region of the 

center cell. When this distribution is stabilized, then the 

current on the center strip of the infinite grating will be 

the current on the center strip of the corresponding finite 

grating times a scale factor which has to be determined. 

By following this approach, we also gain an 

understanding of the convergence behavior of the current 

distribution of the finite grating, and how it relates to that 

of the infinite grating, to determine when the scattering 

characteristics of the truncated grating are close to those 

of the infinite one. Additionally, by implementing the 

proposed approach and examining the aforementioned 

convergence, we do not need to rely upon commercial 

codes to validate the results for the current on an infinite 

grating. 

The basic principles of the developed methodology 

were demonstrated for 1-D FSSs. The methodology  

can be generalized to two-dimensional (2-D) FSSs, for 

example phased antenna arrays. The field in the center 

region of a truncated 2-D antenna array stabilizes to a 

shape distribution, as one increases the dimensions of  

the array along the x- and y-axis, which is the same as  

the corresponding distribution in the center cell of the 

infinite 2-D antenna array. This fundamental property 

was shown in [29]. In this way, we can extend the 

numerical procedure presented in the paper and compute 

the scale factor of the current on the center cell of the 

infinite 2-D antenna array over the respective current of 

the corresponding truncated 2-D array (composed of that 

number of elements for which the field’s distribution was 

already found to have stabilized). 
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