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Abstract ─ Electrical Impedance Tomography (EIT) is 

an imaging technique that aims to reconstruct the spatial 

electrical conductivity distribution in sections of the 

human body. In this paper, in order to solve the EIT 

forward and inverse problems, a finite difference approach 

to the solution of Maxwell’s equations and the Newton-

Raphson algorithm have been employed, respectively. In 

particular, the inverse problem has been solved using  

the Tikhonov regularization with various choices of the 

regularization matrix. Moreover, different data collection 

methods have been tested on simulated measurements. 

The obtained results have been compared based on  

the average deviation of the estimated conductivity 

distribution with respect to the reference one. The 

reconstruction procedure has been validated through  

a comparison with the EIDORS open source software. 

The best image reconstruction has been obtained by 

using the neighboring data collection method with null 

regularization matrix, and using the truncated singular 

value decomposition to perform the matrix inversion. 

Moreover, the cross and opposite data collection methods 

showed better performance than the neighboring one in 

the presence of a random noise added to the measured 

signal, while the opposite method evidenced the best 

results with respect to electrode positioning uncertainties. 

 

Index Terms ─ Electrical impedance tomography, finite 

difference method, Newton-Raphson algorithm.  
 

I. INTRODUCTION 
Electrical impedance tomography (EIT) is an 

imaging technique, which leads to an estimation of the 

spatial electrical conductivity distribution in a section of 

the human body, by injecting currents and measuring 

voltages between pairs of electrodes distributed upon the 

body surface [1-3]. Compared with standard biomedical 

imaging techniques (e.g., Magnetic Resonance Imaging 

or Computed Tomography), the EIT has lower spatial 

resolution [4] but many advantages, mainly a simpler 

and cheaper experimental set-up, and the total absence 

of health risks for the patient. In particular, the typical 

frequencies and amplitudes of the driving currents, from 

10 kHz to 100 kHz, and lower than 10 mA, respectively, 

cannot interfere with the normal electrophysiological 

activities of excitable biological tissues. Typical EIT 

applications are the dynamic monitoring of respiratory and 

cardiac activities, the study of cerebral hemodynamics, 

stomach emptying, and fracture healing [1-3]. 

To reconstruct the spatial electrical conductivity 

distribution in the investigated section, EIT uses 

reconstruction algorithms requiring two data sets. One 

data set is represented by the measured voltages 

collected on the surface of the real body, and the other is 

constituted by the computed voltages on the surface of a 

body model with the same boundary of the real one and 

with an a priori established conductivity distribution. 

In order to compute the voltages on the body 

surface, the forward problem, namely Poisson’s equation 

with known boundary conditions, needs to be solved.  

For the solution of the EIT forward problem, various 

numerical techniques have been proposed. The finite 

element method (FEM) is the mostly used technique  

[1, 5], but finite difference (FD) methods have been also 

suggested [6-8]. 

With reference to reconstruction algorithms, the 

first to be developed were the back projection and the 

sensitivity methods [9-11], but today the most used is the 

modified Newton-Raphson method [12]. This method 

follows the nonlinear least square approach applied to 

the minimization of an error function. The minimization 

process leads to an updating equation, for the discrete 

conductivity distribution, involving the computation of 

the Jacobian matrix of the forward operator. Moreover, 

the solution of the conductivity updating linear system 

needs the inversion of a quadratic form of the Jacobian, 

which is an ill-conditioned matrix. In order to improve 

the conditioning of this matrix, Tikhonov regularization 

method [13] can be applied with different choices of the 

regularization matrix [8, 13-17]. 

For the measurement collection, a given number (E) 

of equally spaced electrodes are placed upon the surface 

of the object under investigation. In some techniques, 

like the neighboring [1], the opposite (polar) [2], or the 

cross [2], a current is injected through a pair of electrodes 
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and voltages are measured between the remaining pairs. 

Other techniques apply a current through all the 

electrodes and measure the resulting voltages at the same 

electrodes using one of them as reference [1]. In the latter 

approach, more data are collected with respect to the 

former methods, with the disadvantage that voltage 

measurements are dependent on the unknown contact 

impedance existing between skin and electrode. 

Due to the availability of multiple reconstruction 

algorithms and data collection techniques, the question 

arises about the best choice for the implementation of  

an experimental set-up. In [12] many reconstruction 

algorithms have been compared, evidencing the superior 

capability of the modified Newton-Raphson method 

with regularization. Various data collection techniques 

have been compared with respect to their performance 

and resolution, by using a modified back projection 

technique, and the superiority of the neighboring method 

has been evidenced [18]. However, in [12] and [18] only 

very simplified models of the investigated region have 

been considered, not allowing a realistic study of the 

performance of the various techniques. Moreover, in 

order to thoroughly test a technique it is also important 

to check its robustness with respect to sources of error 

like the random noise affecting the measured data and 

the misalignment between measurement electrodes on 

the subject and on the numerical phantom.  

For these reasons, in this work an anatomical model 

will be considered. The neighboring, cross and opposite 

methods of data collection will be compared by using  

a regularized version of the Newton-Raphson method 

with various choices of the regularization matrix. A FD 

solution of Maxwell’s equations in quasi-static conditions, 

namely the admittance method, will be used for the 

solution of the direct problem involved in EIT. The  

effect of noise sources and electrode misalignment  

on the reconstruction algorithms will be investigated. 

Preliminarily, the proposed reconstruction procedure 

will be validated by studying a canonical body model 

constituted by a square geometry with a square anomaly 

and comparing the results with those achieved by using 

the EIDORS open source software [19]. 

 

II. METHODS AND MODELS 

A. Considered models 

Two thorax models have been considered in this 

study. The first is a simple square geometry with a 

conductivity of 0.12 S/m filled with a square central 

anomaly with conductivity equal to 0.24 S/m (see Fig.  

1 (a)). These two values roughly correspond to the average 

conductivity of the thorax and of the deflated lung, 

respectively. 

The second is an anatomical thorax model (45  45 

pixels, 1 cm side) obtained by under-sampling a section, 

at the thorax level, of the Visible Human (VH) data set 

[20], and it comprises skin/fat, muscle, bone, lung, and 

heart tissues. The conductivity values of the various 

tissues at the frequency of 50 kHz have been taken  

from literature data [21]. For skin/fat, heart, muscle, and  

bone, these values are 0.03, 0.45, 0.35, and 0.02, S/m, 

respectively. Finally, for the lungs a conductivity value 

of 0.25 S/m has been assumed corresponding to the 

deflated lung condition. Figure 1 (b) shows a conductivity 

map of the considered section. 
 

 
 (a) 

 
 (b) 

 

Fig. 1. Conductivity map of the square geometry (a) and 

of the under-sampled visible human section at thorax 

level (b). Black squares represent the electrodes. 

 

B. Data collection methods 

Three data collection techniques have been 

considered, namely the neighboring, the cross, and  

the opposite methods. In all cases, 16 equally-spaced 

electrodes are placed upon the surface of the body, as 

shown in Fig. 2. Concerning the neighboring method, the 

current is injected through a pair of adjacent electrodes 

(1 and 2 in Fig. 2 (a)) and voltages are measured between 

the remaining different pairs of adjacent electrodes [1]. 

Then, the driving pair is changed and the measuring 

process is repeated, until each pair has been used as 

driving. In this way, 16  13 = 208 potential differences are 

collected, but only 104 of these are linearly independent 

due to the reciprocity theorem. 

S/m

S/m
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In the cross method, the current is injected through 

a couple of odd electrodes (1 and 3 in Fig. 2 (b)) and 

voltages are measured between the other electrodes, 

except the current ones, with electrode 2 chosen as 

voltage-reference [2]. Then, the current is applied to the 

remaining odd electrodes (1-5, 1-7 etc.) and voltages are 

measured using the electrode 2 as voltage reference. In 

this manner 7  13 = 91 potential differences are collected. 

The measurement sequence is then repeated applying 

currents through even electrodes and measuring with  

the electrode 1 as voltage reference. A total number of 

182 measurements is finally collected, with only 104 

independent. 

In the opposite method, current is injected through  

a pair of diametrically opposed electrodes (1-9 in Fig.  

2 (c)) and voltages are measured on each electrode,  

with respect to a reference node adjacent to the current-

injecting electrode [2]. Then, the driving pair is switched 

to the next pair of opposite electrodes in the clockwise 

direction, changing the voltage reference node accordingly. 

Here again 208 potential differences are collected, but 

only 104 of these are linearly independent for reciprocity. 

 

 
   (a)  (b) (c) 

 

Fig. 2. Data collection techniques: neighboring (a), cross (b), and opposite (c). 

 

C. The admittance method 

In the EIT forward problem the section is discretized 

in a bi-dimensional grid of N square (homogeneous) cells 

and the continuous conductivity distribution is discretized 

in a real matrix C whose generic element c(x,y) is the 

discretized conductivity value at the grid nodes (cell 

center). The admittance method is a finite difference 

approach to the solution of Maxwell’s equations in quasi-

static conditions [22]. In this method, the discretized 

domain is modeled as a network of admittances (see  

Fig. 3) and the application of Kirchhoff’s current law 

gives rise, for each cell, to the following linear equation: 

   

𝑉(𝑥, 𝑦) =  
1

𝑌𝑥+ + 𝑌𝑥−+ 𝑌𝑦++ 𝑌𝑦−
  ∙ 

(
𝑌𝑥+𝑉(𝑥 + Δ𝑥, 𝑦) + 𝑌𝑥−𝑉(𝑥 − Δ𝑥, 𝑦) +

𝑌𝑦+𝑉(𝑥, 𝑦 + Δ𝑦) + 𝑌𝑦−𝑉(𝑥, 𝑦 − Δ𝑦) − 𝐼𝑖𝑒
) ,

 (1) 

where 𝑉(𝑥, 𝑦) represents the discretized potential at the 

(𝑥, 𝑦) node, 𝐼𝑖𝑒  is the known forcing term (source) of the 

equation, and the admittance terms are computed, looking 

for example, at 𝑌𝑥+ , as follows: 

  𝑌𝑥+ =  𝑐𝑥+
Δ𝑦Δ𝑧

Δ𝑥
 =  

2 c(x,y)∗𝑐(𝑥+Δ𝑥,𝑦)

c(x,y)+𝑐(𝑥+Δ𝑥,𝑦)
 
Δ𝑦Δ𝑧

Δ𝑥
. (2) 

The resulting linear system of N equations in N 

unknowns can be solved by using either an iterative or a 

direct approach.  

In the iterative technique, an estimation of the 

potential 𝑉𝑛+1(𝑥, 𝑦) of the (𝑥, 𝑦) cell at the (n+1)th step 

can be obtained by adding to the previous estimation,  

𝑉𝑛(𝑥, 𝑦), a correction term as follows: 

 𝑉𝑛+1(𝑥, 𝑦) =  𝑉𝑛(𝑥, 𝑦) +  [𝑉(𝑥, 𝑦) − 𝑉𝑛(𝑥, 𝑦)], (3) 

where 1 <  𝛼 < 2 is called the over-relaxation parameter 

and 𝑉(𝑥, 𝑦) is given by (1). The iterative procedure stops 

when, for every cell, the following condition is met: 

 |𝑉𝑛+1(𝑥, 𝑦) −  𝑉𝑛(𝑥, 𝑦)|  <  𝜀, (4) 

with  an arbitrarily small positive quantity. 

In the direct approach, in order to obtain linearly 

independent equations, the (NN) system matrix described 

by (1), which associates a unique integer number to each 

cell, is reduced to a (N-1N-1) matrix by choosing a 

reference cell with respect to which every voltage is 

computed. This system can be written in a matrix form 

as: 

  𝑌 ∙  𝑉  =   𝐼, (5) 

where 𝑉 is the (N-11) vector of the unknown discrete 

voltage distribution, 𝐼 is the (N-11) vector of the known 

discrete current distribution, and 𝑌 is the (N-1N-1) 

admittance matrix, each row of which has all zero 

elements, except usually for five of them. By inverting 

𝑌, the solution vector 𝑉 to the linear system (5) can be 

obtained. 

To collect the computed voltages a number P (with 

P equal to 16 or 14, see Section II.B) of current injection 

patterns are applied through the electrodes placed upon 

the body surface. All the implemented reconstruction 

algorithms need to compute, for each injection pattern, a 
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number G (typically 13) of voltage differences between 

well-defined electrode pairs. The computed voltages are 

stored into an (M1) vector gcomp (M = PG). 

In order to collect the measured voltages, the same 

current injection patterns used in the simulations are 

applied through electrodes placed upon the surface of the 

real body whose conductivity has to be estimated. In this 

work, the measured voltages have been obtained through 

simulations performed on the considered conductivity 

distributions (see Fig. 1) by using the admittance method, 

and stored into the (Mx1) vector gmeas. 

 

 
 

Fig. 3. Network of admittances modeling the discretized 

domain. 

 

D. The Newton-Raphson reconstruction algorithm 

The Newton-Raphson (N&R) method has been 

specifically developed for problems whose mathematical 

models are non-linear and it has been extensively 

described by Yorkey [12]. The aim of this technique  

is to minimize an error function (e), where e is the 

difference vector between the voltages measured on the 

real conductivity distribution and those calculated on  

a known, discretized conductivity distribution. (e) is 

defined as: 

  Φ(e) =  
1

2
 ‖gcomp(c) −  gmeas‖

2

, (6) 

where ‖ ‖2 represents the standard 2-norm of a vector. 

Starting from (6), it can be shown that the conductivity 

update distribution at kth step is approximately given by: 

 Δck  =  − [Jk
T Jk ]

−1

⋅  Jk
T   ⋅  [gcomp(ck) −  gmeas], (7) 

where Jk = J(ck) is the (MN) Jacobian matrix of the 

forward transformation gcomp(ck) defined as [1]: 

  𝐽(c) =  
𝜕gcomp(c)

𝜕c
. (8) 

Finally, the conductivity at the (k+1)th step is given by: 

  ck+1 = ck + ck. (9) 

This procedure is repeated until (e) is less than an a 

priori chosen value. 

The updating Equation (7) of the N&R algorithm 

needs the inversion of the matrix Jk
T Jk , which is a very 

ill conditioned matrix. The best way to solve this problem 

is to use regularization techniques, like the one proposed 

by Tikhonov [13].  

The basic idea is to modify the functional (e) in (6) 

as follows: 

 T(c) =
1

2
 ‖gcomp(c) − gmeas‖

2

+  α‖L  ⋅  c ‖
2

, (10) 

where α is called the regularization parameter and L is a 

real banded regularization matrix.  

For the iterative linearized problem, the conductivity 

updating term becomes [3]: 

Δck  =  − [Jk
T Jk +  αLTL]

−1

⋅   Jk
T   [(gcomp(ck) −

gmeas) −  αLTL ck].  (11) 

In this work, various choices for L have been 

implemented. First of all the L = 0 null matrix has been 

considered (L0 condition). In this case, to perform the 

matrix inversion, a suitable technique is the singular 

value decomposition (SVD) [23]. Let A be the matrix to 

be inverted, U the matrix of the eigenvectors of A AT, V 

the matrix of the eigenvectors of ATA, and  the matrix 

whose main diagonal contains the square root of the 

eigenvalues of ATA in descending order; the following 

result is obtained: 

    𝐴−1 =  𝑉   Σ−1 𝑈𝑇 . (12) 

In EIT problems, the truncated SVD (TSVD) is 

generally employed. In the TSVD, only the largest 

singular values (beyond a certain established tolerance) 

are considered, setting to zero the smaller ones (with the 

corresponding singular vectors). This choice avoids to 

introduce "noise" in the solution produced by the small 

singular values. 

Another considered choice is L = I where the 

regularization matrix is equal to the identity matrix (LI 

condition). Finally, the matrix L has been taken as a 

discretization of the second order differential operator 2 

(LD2 condition). In the latter cases, the matrices to be 

inverted are all full rank and standard LU factorization 

can be applied for their inversion. 

 

III. RESULTS 
The Newton-Raphson algorithm has been 

implemented in Fortran 90 language and the IMSL 

libraries have been used for the classical and generalized 

inversion of the involved matrices.  

In order to quantitatively compare the reconstructed 

voltages, a weighed version of the functional defined in  

 V(x, y+y) 

V(x, y) 

V(x+x, y) 

V(x, y-y) 

Yx
+ Yx

- 

Yy
+ 

Yy
- 

V(x-x, y) 
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(6) for the kth step of iteration has been used, given by: 

 eg
k

=
[gcomp(ck) − gmeas]

T

⋅  [gcomp(ck) − gmeas]

(gmeas)
T

⋅ gmeas.
  100 

 (13) 

Moreover, in order to better quantify the accuracy of 

the reconstructed images, a second error, namely  

the percentage average deviation of the estimated 

conductivity distribution ck with respect to the real one 

c, has been defined as: 

  ec
k =

[c −  ck]
T

 ⋅ [c −  ck]

cav
T  ⋅ cav

  100, (14) 

where cav is a vector with elements equal to the 

arithmetic average of c. 

 

A. Numerical codes validation 

The square model with a square central anomaly 

shown in Fig. 1 (a) has been studied by using the 

neighboring data collection method and LI reconstruction 

algorithm with α = 10-3 and background conductivity 

equal to 0.12 S/m. The same problem has been solved with 

the EIDORS absolute solver with hyperparameter equal 

to 10-3 and background conductivity equal to 0.12 S/m 

[19]. 

Figure 4 shows the simulated electrode voltages, for 

the first injection couple, obtained by using as direct 

solver the FD method proposed in this work, compared 

with those achieved by using the FEM method 

implemented in EIDORS. A very good agreement 

between the two techniques can be observed. 

 

 
 

Fig. 4. Electrode voltages for the square geometry with 

square anomaly computed by using the FD method and 

the FEM method implemented in EIDORS. 

 
The reconstructed conductivity distribution obtained  

with EIDORS is reported in Fig. 5 (a) and the one 

obtained by using the approach proposed in this paper  

in Fig. 5 (b). The two reconstructions look very similar. 

In fact, the application of (14) gives a reconstruction 

error of 0.9697% and 0.9696% for the EIDORS and the 

proposed method, respectively. 

 

 
    (a) 

 
    (b) 

 

Fig. 5. Reconstructed conductivity maps for the square 

geometry by using EIDORS (a), and the technique 

proposed in this paper (b). 

 

With reference to the best case for the voltage  

driven approach (opposite with L0), Fig. 6 shows the 

reconstructed images and voltages. In particular, Fig.  

6 (a) shows the reconstructed image after seven iterations 

(c = 22.59%), while Fig. 6 (b) reports a comparison 

between the simulated voltage measurements and the 

reconstructed voltages after seven steps (g = 0.0001%). 

Figure 7 (b) shows that after seven iterations of the 

opposite L0 method, the reconstructed voltage  
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measurements almost perfectly match the measurement 

on the phantom, but a considerable error on the 

reconstructed image is present. Concerning the voltage 

driven approach, the best-reconstructed image is obtained 

by using the cross method with LI (c = 18.07%), in this 

case the error on the voltage is very small (g = 0.0098%) 

but higher than the previous case. 

By using the image driven approach, the best image 

reconstruction is achieved by the neighboring method 

with L0 (see Fig. 7 (a)). The superiority of this image 

reconstruction with respect to the previous ones is 

evident. By comparing this figure with Fig. 1 (b), the 

good contour identification of all the thorax tissues is 

well evidenced. 
 

B. Comparisons among different data collection and 

reconstruction algorithms 

In the following, the anatomical thorax model has 

been considered and two sets of simulations have been 

performed. Each set contains simulation performed  

by using L0, LI and LD2 reconstruction methods and  

the neighboring, cross, and opposite data collection 

techniques. 

In the first set (called voltage driven) the background 

conductivity, and the tolerance or the regularization 

parameter have been optimized in order to achieve  

the lowest error as defined in (13), while in the second 

set (called image driven) the parameters have been 

optimized in order to achieve the lowest error as defined 

in (14). The first approach is representative of the 

situation encountered in realistic experiments, where  

the goal of the reconstruction procedure is to achieve  

a distribution of the simulated voltages between the 

electrodes placed on the body surface as close as possible 

to the measured one. The second approach, instead, gives 

a better evaluation of the ability of the various techniques 

in reconstructing the internal geometry of the body.  

The results obtained with the voltage driven 

approach are reported in Table 1. The table shows that 

the lowest reconstruction error is obtained by using the 

opposite method with L0 (0.00001%), while the highest 

error is obtained with the neighboring method with LI 

(0.1745%). In these simulations, the image reconstruction 

errors (as defined in (14)) are always higher than 18%. It 

is worth noting that the method with the lowest voltage 

reconstruction error gives rise to a very high image 

reconstruction error (22.59%). The table also shows that 

in all the situations the best background conductivity is 

equal to 0.12 S/m.  

The results obtained with the image driven approach 

are reported in Table 2. In this case, the lowest 

reconstruction error is obtained by using the neighboring 

method with L0 (13.44%), while the highest error is 

obtained with the opposite method with LD2 (23.55%). 

Moreover, in all cases the best results are obtained by 

using a background conductivity equal to 0.06 S/m. 

 

Table 1: Parameters that give rise to the best eg
k for the L0, LI and LD2 reconstruction methods and the neighboring, 

cross, and opposite data collection techniques for the voltage driven approach. In the table the ec
k obtained at the last 

step are also reported 

  L0 LI LD2 

Neighboring Method 

BG 0.12 0.12 0.12 

Tol 1.0e-2 / / 

 / 2.0e-1 1.0e-2 

N
ge  0.0279% 0.1745% 0.0204% 

N
ce  24.32% 18.97% 18.16% 

Cross Method 

BG 0.12 0.12 0.12 

Tol 1.0e-2 /  

 / 2.0e-1 5.0e-1 

N
ge  0.0004% 0.0098% 0.0107% 

N
ce  21.31% 18.07% 19.31% 

Opposite Method 

BG 0.12 0.12 0.12 

Tol 1.0e-2 / / 

 / 5.0e-2 5.0e-2 

N
ge  0.0001% 0.0167% 0.0035% 

N
ce  22.59% 18.90% 19.84% 
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Table 2: Parameters that give rise to the best ec
k for the L0, LI and LD2 reconstruction methods and the neighboring, 

cross, and opposite data collection techniques for the image driven approach. In the Ttble the eg
k obtained at the last 

step are also reported 

  L0 LI LD2 

Neighboring Method 

BG 0.06 0.06 0.06 

Tol 1.0e-4 / / 

 / 1.0e-3 5.0e-4 

N
ce  13.44% 15.98% 23.37% 

N
ge  1.00% 2.98% 1.91% 

Cross Method 

BG 0.06 0.06 0.06 

Tol 1.0e-4 /  

 / 1.0e-3 5.0e-4 

N
ce  15.52% 17.19% 22.61% 

N
ge  0.09% 3.21% 3.34% 

Opposite Method 

BG 0.06 0.06 0.06 

Tol 1.0e-4 / / 

 / 1.0e-3 5.0e-4 

N
ce  16.92% 15.50% 23.55% 

N
ge  0.08% 0.38% 2.72% 

C. Effects of noise and electrode misalignment 

The above reported image reconstructions have 

been performed by neglecting the presence of noise on 

the measured data and supposing that measured and 

simulated data are collected by means of electrodes 

placed in the same positions. In an experimental set up 

the measuring apparatus introduces a random noise. 

Moreover, measurements are performed by placing the 

electrodes on a belt in approximately equally spaced 

positions, while the simulations are performed on a 

phantom that roughly mimics the real electrode 

positioning. 

In order to investigate the relevance of the random 

noise on the reconstructions, the simulated measurements 

have been modified by adding to the voltage data (gmeas) 

a Gaussian voltage noise with zero mean and with 

various levels of standard deviation. Figure 8 shows  

the obtained image reconstruction error as a function of 

the noise standard deviation, by considering three data 

collection methods and the L0 reconstruction algorithm. 

The figure evidences that for low noise levels the 

neighboring method allows the best image reconstruction 

while, increasing the noise standard deviation, the cross 

and opposite methods give better results. This is 

probably because, as evidenced in Fig. 6 (b), the opposite 

technique gives rise to higher electrode voltages that are 

less influenced by noise. On the same figure, the image 

reconstruction error achieved with the opposite method 

with LI is also reported. This curve shows a strong 

increase, with the noise standard deviation, of the error 

at low noise levels. This result suggests that the L0 

technique is more efficient in reducing the effect of noise. 

In order to study the effect of the electrode 

misalignment, a set of reconstructions has been 

performed by using simulated measurement data 

obtained by shifting of one cell (about 1 cm) a single 

electrode and evaluating the image reconstruction error 

with simulations performed with the electrode in its 

initial position. In all the simulations, the L0 reconstruction 

method with a background conductivity of 0.06 S/m has 

been used  

These simulations have been repeated for all the 

sixteen electrodes, by considering the neighboring, cross, 

and opposite data collection techniques.  

The variations of the image reconstruction error 

with respect to the aligned case are reported in Fig. 9. 

The figure shows that the variations are generally lower 

than 2%. However, by evaluating the average over the 

sixteen positions, values of 1.425%, 1.474% and 1.097% 

are obtained for the neighboring, cross and opposite 

methods, respectively. In conclusion, this analysis seems 

to indicate that the opposite method is the most robust 

data collection technique with respect to the electrode 

misalignment. 
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  (a) 

 
   (b) 

 

Fig. 6. Opposite method with L0: (a) conductivity 

distribution, and (b) comparison between measured and 

simulated electrode voltages after seven iterations. 

 
  (a) 

 
     (b) 

 

Fig. 7. Neighboring method with L0: (a) conductivity 

distribution, and (b) comparison between measured and 

simulated electrode voltages after seven iterations.  

 

 
 

Fig. 8. Image reconstruction error as a function of the 

noise standard deviation.  
 

 
 

Fig. 9. Variations of the image reconstruction error due  

to electrode misalignment as a function of the electrode 

position. 

 

IV. CONCLUSION 
In this paper, the mathematical background and the 

implementation details of the admittance and Newton-

Raphson methods, applied to the EIT problem, have been 

described.  

The reconstruction procedure has been validated  
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through a comparison with the EIDORS open source 

software. The obtained results show that the FD method 

gives electrode voltage distributions in very good 

agreement with the FEM method implemented in 

EIDORS. Moreover, the errors on the image 

reconstruction are comparable. It is worth to be noted 

that FEM is a very accurate technique but needs complex 

mesh generators. On the contrary, the use of FD methods 

with square cells in a Cartesian reference system makes 

the modeling and computation of voltage distributions 

easy and accurate. Moreover, the memory occupation of 

FEM technique grows as the square of the number of 

cells while the memory occupation of the FD technique 

grows linearly with the cell number. This makes the FD 

a preferred choice for 3D problems with a high number 

of cells [24].  

It is worth noting that for the considered EIT 

problem the FD method has been solved by considering 

only the real part of the tissue conductivity. However, the 

same method can also be applied by considering both the 

real and the imaginary part (related to the permittivity) 

of the conductivity of the tissues. This last approach 

could be useful in applications where it is necessary to 

increase the operating frequency. Moreover, by adding 

to the circuit in Fig. 3 current generators related to the 

vector potential distribution [22] the same method can be 

used to study the magnetic detection electrical 

impedance tomography [25, 26]. 

Various reconstruction algorithms and data collection 

techniques have been compared by using a realistic 

model instead of the simplified square or cylindrical 

models previously considered in papers where different 

EIT techniques were compared [12, 18, 27]. In fact, as 

evidenced by Grychtol et al. [28], for testing inversion 

algorithms and data collection techniques it is important 

to use anatomical, morphologically accurate, models. 

This is another advantage of the FD method that allows 

to study realistic, pixel based, anatomical human models 

easily imported in the FD grid. Recently, realistic human 

models, generated from the visible human data set [20]  

to be used with FEM mesh, have been proposed [29, 30]. 

However, these models take into account only the 

external body surface and a few organs. The FD method, 

on the contrary, by using the full pixel based models, can 

consider the high variability of the human anatomy.  

The reconstruction problem has been solved using 

Tikhonov regularization with various choices of the 

regularization matrix and of the data collection method. 

The obtained results have been compared by using the 

percentage deviation of the simulated electrode voltages 

with respect to the measured one and the percentage 

deviation of the evaluated conductivity distribution with 

respect to the real one. By using the first metric to stop 

the simulations, very low voltage reconstruction errors 

are achieved but this does not give rise to good image 

reconstructions, as compared with those obtained by 

using the image driven approach. In particular, in the 

performed study the best image reconstruction has been 

obtained by using the neighboring method with null 

regularization matrix and using the truncate singular 

value decomposition to perform the matrix inversion.  

In conclusion, the better reconstruction properties of  

the neighboring technique with respect to the other 

approaches, previously evidenced by using simplified 

body models and a back projection algorithm [18, 31], 

have been confirmed, in the present paper, by using a 

more realistic anatomical model and various forms of the 

Newton-Raphson algorithm. 

Various inversion and data collection techniques 

have been compared in terms of robustness to random 

noise and electrode misalignments. To this end, the cross 

and opposite methods show better performance with 

respect to the neighboring method in the presence of a 

random noise over imposed to the measured signals. This 

is probably because the cross and opposite techniques 

give rise to higher electrode voltages, that are less 

influenced by the noise. This result is in agreement  

with literature data [18] achieved on simplified circular 

geometries. The opposite method showed the best 

performance with respect to electrode positioning 

uncertainties. A possible explanation is the uniform field 

distribution produced by the electrodes excitation used  

in the opposite technique that is less influenced by an 

electrode misalignment. 

Finally, it is important to note that the EIT 

reconstructed images lack a good resolution and give 

only a rough representation of the body section. 

However, their acquisition is very fast thus allowing, for 

example, the monitoring of lung movement and 

conductivity variations during the breathing cycle [32]. 
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