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Abstract ─ Magnetic excitation of eddy currents in a thin 

metal sheet is a difficult problem that has many useful 

applications to scrap metal recycling. Using finite-

difference approximations on both the curl and divergence 

of the current density, we develop a numerical algorithm 

that is simple to implement, quick to solve, and capable 

of modeling excitation from arbitrary magnetic field 

distributions. For the special case of a weakly-induced 

eddy field, the self-inductance terms can be neglected, 

resulting in a sparse system matrix that is easily inverted. 

For a strongly-induced eddy field, self-inductance must 

be included at the cost of a more complex, denser system 

matrix. The method is validated against the CST EM 

Studio software suite and produces nearly identical 

results on a thin-sheet simulation in only a tiny fraction 

of the time. 

 

Index Terms ─ Current density, eddy currents, finite-

difference method, quasistatics. 
 

I. INTRODUCTION 
The excitation of electrical eddy currents in metal 

objects is a well-known phenomenon with many practical 

applications. For example, eddy current testing is a  

form of nondestructive probing that detects the presence 

of cracks in a metal plate by measuring changes in 

impedance to a current-carrying coil [1, 2]. Levitation 

melting is a technology that uses eddy currents to repel 

particles against gravity to avoid contact contamination 

with a physical container [3, 4]. Eddy current separation 

is a popular method for separating nonferrous metal 

particles from other nonmetallic fluff [5]. Electrodynamic 

sorting is a recent technology that uses high-frequency 

electromagnets to separate nonferrous metal particles 

from other dissimilar metals [6, 7, 8]. 

For all of its industrial applications, the 

mathematical theory behind eddy current induction is 

notoriously complex. Although some canonical problems 

can be solved analytically [9] (e.g., spheres, cylinders, 

etc.), many basic geometries are still difficult to model 

accurately. In particular, the thin metal sheet is especially 

interesting due to its prevalence among scrap metal 

particles encountered throughout the recycling industry. 

Some authors have been able to generate approximate 

solutions for thin metal rectangles under the assumption 

of uniform excitation by a magnetic field [10] but only 

by neglecting the self-inductance of the induced currents. 

For the purposes of electrodynamic sorting, however,  

the net force acting on a particle relies on both the 

nonuniformity of the magnetic field as well as the self-

inductance of the induced currents [8, 11]. 

When analytic solutions are unavailable, the next 

best alternative is to utilize numerical approximations  

for the induced eddy currents throughout an object. This 

is usually accomplished through some variation of the 

finite-element method (FEM), with many competing 

formulations to choose from [12, 13]. Generally speaking, 

however, the majority of such methods tend to fall into 

one of two distinct categories. The first formalism is 

commonly referred to as the 𝐀 − 𝜙 method because it 

utilizes on the magnetic vector potential 𝐀 and electric 

scalar potential φ [14]. The second formalism is called 

the 𝐓 − Ω method because it utilizes the electric vector 

potential T and magnetic scalar potential Ω [15].  

A key problem with both of these formalisms is  

the imposition of boundary conditions, which cannot 

necessarily terminate at the edge of a body of interest 

[16]. Instead, the simulation must often include a large 

void of empty space surrounding the particle so that 

meaningful boundary conditions may be applied far away 

at near-infinity. As a result, significant computational 

memory must be devoted to the uninteresting samples of 

empty space beyond the object of interest. This can be 

especially wasteful for the case of thin metal sheets, 

which presumably ought to simplify into much more 

compact expressions in only two dimensions. 

What is needed is a fast, accurate method for 

calculating the induced eddy current density along a thin 

metal sheet as it is excited by an arbitrary magnetic field 

profile. More specifically, we would like a method that 

only requires sampling along the region of space inside 

the metal object and that does not waste resources on  

the empty void of space beyond the particle of interest. 

To fill that need, this paper reexamines the governing 

equations of eddy current theory and derives a simplified 

numerical algorithm accordingly. Rather than invoke the 
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use of any specialized potential functions, we may 

instead solve directly for the desired field components by 

expressing the problem in terms of divergence and curl. 

The method shares many similarities with the well-

known finite-difference method (FDM), and thus follows 

a similar derivation to that found in [17]. This makes the 

algorithm relatively simple to implement by avoiding 

many of the complex meshing problems typically 

associated with finite element methods. 

 

II. THEORETICAL BACKGROUND 
Figure 1 shows the geometry of interest considered 

for this work. A rectangular metal sheet with spatially-

varying conductivity 𝜎(𝑥, 𝑦) has length 𝐿𝑥, width 𝐿𝑦, 

and thickness 𝐿𝑧. The sheet is assumed to be very thin 

such that 𝐿𝑧 ≪ 𝐿𝑥 and 𝐿𝑧 ≪ 𝐿𝑦 . This allows us to 

consider only the normal component to the magnetic field, 

since the sheet is too thin to experience any significant 

excitation by parallel components. We therefore express 

the impressed magnetic field distribution as 𝐵𝑖(𝑥, 𝑦) �̂�, 

which is assumed to excite the system in a sinusoidal 

steady state with angular frequency 𝜔 = 2𝜋𝑓. Our goal 

is to solve for the eddy current density J(𝑥, 𝑦) induced 

throughout the plate. 

 

 

We begin with Maxwell's curl equations for linear, 

isotropic, nonmagnetic media in phasor form. Assuming 

a phasor convention of 𝐴𝑒𝑗𝜔𝑡, we let 𝑑/𝑑𝑡 = j𝜔. Given 

a magnetic field intensity B, electric field intensity E, 

and current density J, Ampere's law states that: 
 

∇ × 𝐁 = 𝜇0J+ j𝜔𝜇0𝜖0𝐄 , (1) 
 

where 𝜇0 is the permeability of free space and 𝜖0 is the 

permittivity. In the context of eddy current excitation by 

time-varying magnetic fields, the last term in Ampere's 

law is assumed to be negligibly small. This condition is 

commonly known as the quasistatic approximation and 

allows us to rewrite: 
 

∇ × 𝐁 ≈ 𝜇0J . (2) 
 

If we now take the divergence of both sides, the curl term 

vanishes to produce: 
 

∇ ∙ J = 0 . (3) 
 

What (3) tells us is that no free charges will ever 

accumulate under quasistatic excitation by a time-

varying magnetic field. However, simply knowing the 

divergence of a vector field does not uniquely define that 

field. According to the Helmholtz theorem, a unique 

vector field is only specified if we also know the curl of 

J within a simply connected region, as well as its normal 

component over the boundary [18]. 

With such criteria in mind, we now turn our 

attention to Faraday's law, which states: 
 

∇ × 𝐄 = −j𝜔𝐁 . (4) 
 

Given a conductive material with conductivity 𝜎, Ohm's 

law further states that J = 𝜎𝐄. Note, however, that it  

is actually much more convenient to express this law  

in terms of the resistivity function 𝜌 = 1/𝜎 such that 

𝜌J = 𝐄. Substitution back into Faraday's law then reveals: 
 

∇ × (𝜌J) = −j𝜔𝐁 . (5) 
  

Bear in mind that we are explicitly assuming 𝜌(𝑥, 𝑦) 

might vary as a function of position and therefore cannot 

be removed from the curl operation as a constant 

coefficient. 

When taken together, (3) and (5) appear to provide 

a near-complete description for the divergence and curl 

of J. The only concern is that the curl acts on the quantity 

𝜌J rather than just J alone. Fortunately, this does not 

present a significant challenge in that 𝜌 can be treated  

as a sectionally-constant function over the domain of 

interest, thereby dropping out of the curl operation 

throughout each region. In practice, however, it will be 

far more convenient to simply leave (5) in its present 

form and work accordingly. 
 

III. WEAK-EDDY APPROXIMATION 
When modeling the excitation of eddy currents, the 

magnetic field B is expressed as a linear superposition 

between two distinct contributions, 
 

𝐁 = 𝐁𝑖 + 𝐁𝑒  . (6) 
 

The first contribution is called the impressed magnetic 

field 𝐁𝑖 and is interpreted as some arbitrary excitation 

field imposed onto the system by outside forces. The 

second contribution is called the induced magnetic field 

𝐁𝑒, or simply the eddy field, and is created by the 

presence of moving charges within our domain of 

interest. While the impressed field 𝐁𝑖 can be treated as a 

mathematical given, the eddy field 𝐁𝑒 is dependent on 

the current distribution J. This relationship is governed 

by the Biot-Savart law: 
 

𝐁𝑒(𝐫) =
𝜇0

4𝜋
∫

J(𝐫′) × (𝐫 − 𝐫′)

|𝐫 − 𝐫′|3
 𝑑𝑉′

𝑉

 , (7) 

 

where 𝐫 is an arbitrary observation point and 𝐫′ denotes 

the set of all points inside the volume V that carry 

Fig. 1. A thin metal sheet is excited normally by an 

impressed magnetic field profile 𝐵𝑖(𝑥, 𝑦) �̂�. 
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electrical current. The complication presented by (7) is 

that we cannot solve for J without first solving for 𝐁𝑒. 

However, we cannot solve for 𝐁𝑒 unless we also possess 

a solution for J. A complete mathematical solution 

therefore requires J and 𝐁𝑒 to be solved together 

simultaneously. 

 

Before tackling the simultaneous solution of J and 

𝐁𝑒, it will first be instructive to consider the special case 

where 𝐁𝑒 is not a significant factor in relation to 𝐁𝑖. This 

may occur, for example, when the resistivity 𝜌 is very 

large, thereby preventing charges from flowing intensely 

enough to generate any significant self-inductance. A 

similar situation also occurs when 𝜔 is very small, since 

the changing magnetic fields are too slow to generate 

significant charge flow. One other scenario occurs when 

the sheet thickness 𝐿𝑧 is very thin, since an infinitely thin 

sheet of current density technically carries no current. 

All of these scenarios are mathematically equivalent in 

that the induced field 𝐁𝑒 is far too weak to compete  

with the applied magnetic field 𝐁𝑖. In this weak-eddy 

approximation, the curl equation for J may be expressed 

as: 
 

∇ × (𝜌J) ≈ −j𝜔𝐁𝑖    (|𝐁𝑖| ≫ |𝐁𝑒|) . (8) 
 

The following sections will first focus exclusively 

on the weak-eddy approximation by deriving a 

simultaneous numerical solution to (3) and (8). Doing so 

will lay the mathematical foundation for discretization of 

various field components and the subsequent numerical 

solution that arises. We shall then build on that 

foundation in later sections by dropping the weak-eddy 

approximation and deriving a complete numerical 

solution for J. 

IV. DISCRETIZATION SCHEME 
We begin building our numerical algorithm by 

establishing a mesh of position coordinates for sampling 

the vector components J𝑥 and J𝑦. Figure 2 shows an 

example of how such a grid might look along a small 

section of the domain. The Xs denote samples along the 

J𝑥 function while dots denote samples in J𝑦. Each 

sample represents a rectangular block of uniform current 

density with length and width ℎ but depth L𝑧. The most 

important feature of the mesh, however, is the way in 

which J𝑥 and J𝑦 are staggered in space. The significance 

of this convention will become clear later on when we 

attempt to calculate the curl and divergence of J. 

In order to facilitate indexing, it is helpful to define 

a short-hand notation for each sample along the mesh. 

We represent the nth and mth grid samples along x and y 

using: 
 

 𝑥𝑛 = 𝑛ℎ     (𝑛 = 1, 2, 3, … ) , 
𝑦𝑚 = 𝑚ℎ    (𝑚 = 1, 2, 3, … ) . 

(9) 
(10) 

 

Since the grid samples are staggered from each other in 

space, it helps to note that half-step increments also 

satisfy: 
 

𝑥𝑛+1/2 = (𝑛 + 1/2)ℎ , (11) 

𝑦𝑚+1/2 = (𝑚 + 1/2)ℎ. (12) 
 

We now reference the staggered mesh of current density 

through a simple indexed notation given by: 
 

J𝑥
 𝑛,𝑚 = J𝑥(𝑥𝑛 , 𝑦𝑚+1/2) , (13) 

J𝑦
 𝑛,𝑚 = J𝑦(𝑥𝑛+1/2, 𝑦𝑚) . (14) 

 

V. DIVERGENCE STENCIL 
With the sample grid formally defined, we are now 

ready to approximate (3) in terms of a finite-difference 

stencil. We begin by dividing the domain into a set of 

primitive volumes, or cells, each of which is defined by 

a uniform resistivity 𝜌𝑛𝑚. An example of such a grid is 

depicted in Figs. 3 and 4 wherein each cell represents a 

unique volume denoted as Ω𝑛𝑚. The key is to place all 

J𝑥 samples on the left and right faces of the cell whereas 

all J𝑦 samples are placed along the top and bottom. It  

is also important to note how the far-left and far-right 

boundaries of the metal plate are occupied only by 

samples in J𝑦, with the top and bottom boundaries 

occupied by samples in J𝑥. This allows us to implicitly 

force all normal components of the current density to be 

zero at the boundaries of the domain, thereby satisfying 

the last requirement of Helmholtz's theorem. 

Equivalently, one could also think of this as imposing  

a Dirichlet boundary condition along the edges of the 

domain for all normal components to the current density. 

We now explicitly write out the divergence of J in 

terms of individual vector components. Recalling the 

thin-sheet approximation to our model, we let 𝜕/𝜕𝑧 = 0 

so that, 

Fig. 2. Staggered mesh positions for sampling vector 

components of the conduction current density. The Xs 

denote samples along J𝑥 while dots represent samples 

along J𝑦. 
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∇ ∙ J =
𝜕J𝑥

𝜕𝑥
+

𝜕J𝑦

𝜕𝑦
= 0 . (15) 

Applying the central-difference approximation 

about the (𝑥𝑛+1/2, 𝑦𝑛+1/2) coordinate then produces: 
 

J𝑥
 𝑛,𝑚 − J𝑥

 𝑛−1,𝑚

ℎ
+
J𝑦
 𝑛,𝑚 − J𝑦

 𝑛,𝑚−1

ℎ
= 0 , (16) 

 

or equivalently, 
 

J𝑥
 𝑛,𝑚 − J𝑥

 𝑛−1,𝑚 + J𝑦
 𝑛,𝑚 − J𝑦

 𝑛,𝑚−1 = 0 . (17) 
 

It is interesting to note that we could also obtain  

an equivalent expression through the use of finite-

integration techniques (FIT) [19]. In fact, this is often the 

preferred method when dealing with variable-coefficient 

expressions of differential equations [17]. The process 

begins by calculating the volume integral of (3) over the 

sub-volume Ω𝑛𝑚 to find: 

∭∇ ∙ J 𝑑𝑉

Ω𝑛𝑚

= 0 . (18) 

 

By applying the divergence theorem, we can rewrite this 

expression as the surface integral: 

∬ J ∙ 𝑑𝐒

∂Ω𝑛𝑚

= 0 , (19) 

 

where ∂Ω𝑛𝑚 indicates the surface enclosing Ω𝑛𝑚 and 𝑑𝐒 

indicates the outward-pointing differential unit normal to 

that surface. Since the current density only points along 

the x- and y-directions, the contributions to the surface 

integral along ±�̂� are zero. Furthermore, since each 

sample in J𝑥 and J𝑦 is assumed to be constant over its 

respective region, the complete integral evaluates to the 

simple expression: 
 

J𝑥
 𝑛,𝑚 − J𝑥

 𝑛−1,𝑚 + J𝑦
 𝑛,𝑚 − J𝑦

 𝑛,𝑚−1 = 0 . (20) 

which is identical to (17). This shows how FDM and  

FIT can actually be viewed as two complementary 

perspectives on the same mathematical problem. 

For the special case of a divergence cell at the  

far edge of the metal plate, we can implicitly impose 

boundary conditions by forcing the normal component 

of the current density to zero. This condition is a direct 

consequence of (5), which requires that no current be 

allowed to flow into or out of the edges of the metal plate. 

For example, at the far-left edge of the metal plate, the 

J𝑥
 𝑛−1,𝑚 term contributes nothing and leaves only,  

 

J𝑥
 𝑛,𝑚 + J𝑦

 𝑛,𝑚 − J𝑦
 𝑛,𝑚−1 = 0 . (21) 

 

Similar expressions also apply to the top, bottom, and 

right boundaries of the metal plate as well as the four 

corner cases. 

 

VI. CURL STENCIL 
Looking at the template in Fig. 3, we notice that 

there are 6 × 5 divergence cells for a total of 30 

divergence equations. However, there are 25 samples in 

J𝑥 and 24 samples in J𝑦 that need to be calculated. We 

therefore have only 30 equations with 49 unknowns─an 

underdetermined system. Speaking more generally, an 

arbitrary rectangular grid of 𝑁𝑥 × 𝑁𝑦 cells will produce 

𝑁𝑑 = 𝑁𝑥𝑁𝑦 divergence equations. However, the total 

number of J𝑥 samples is 𝑛j𝑥 = (𝑁𝑥 − 1)𝑁𝑦, and the total 

number of J𝑦 samples is 𝑛j𝑦 = 𝑁𝑥(𝑁𝑦 − 1). The total 

number of unknown samples 𝑁𝑢 is thus: 
 

𝑁𝑢 = 2𝑁𝑥𝑁𝑦 − 𝑁𝑥 − 𝑁𝑦 . (22) 
 

This leaves us with a deficit of 𝑁𝑥𝑁𝑦 − 𝑁𝑥 − 𝑁𝑦 

equations before we can arrive at a unique solution. 

The reason for our equation deficit is that, as noted 

earlier, merely specifying the divergence for some vector 

field does not uniquely define it. It is only when we 

Fig. 3. Divergence mesh with cells of constant resistivity 

𝜌𝑛𝑚. Fig. 4. Individual divergence cell with outward unit 

normal vectors indicated around the edges. 
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specify both the divergence and curl simultaneously (as 

well as the normal component along the boundary) that 

we produce a uniquely-defined vector field. To that end, 

we shall next introduce the curl cells depicted in Fig. 5. 

Unlike the divergence cells, however, the curl cells are 

shifted in space so that J𝑦 samples now lie on the left and 

right edges while J𝑥 samples lie at the top and bottom. 

We may also assume that the total magnetic field 𝐵𝑛𝑚 

throughout each cell is a constant value. To differentiate 

between curl cells and divergence cells, the regions of 

curl are denoted with a prime notation using Ω𝑛𝑚
′ . 

Unlike the divergence case, a direct finite-difference 

approximation to (5) is somewhat counter-intuitive due 

to the product 𝜌J. This is a classic instance where finite-

integration can serve as a more powerful generalization 

of FDM. Simply begin by calculating the flux integral of 

(8) across the area within Ω𝑛𝑚
′  to find: 

∬ ∇ ×

Ω𝑛𝑚
′

(𝜌J) ∙ 𝑑𝐒 = −j𝜔 ∬ 𝐁𝑖 ∙ 𝑑𝐒

Ω𝑛𝑚
′

, (23) 

 

where 𝑑𝐒 = 𝑑𝑥𝑑𝑦 �̂� is the differential unit normal across 

Ω𝑛𝑚
′ . By applying Stokes' theorem to the left-hand  

side, we can convert the surface integral into a contour 

integral with the form: 

∮ (𝜌J) ∙ 𝑑𝓵 =

𝜕Ω𝑛𝑚
′

− j𝜔 ∬ 𝐁𝑖 ∙ 𝑑𝐒

Ω𝑛𝑚
′

 . (24) 

 

The contour vectors for 𝑑𝓵 are likewise indicated in 

Fig. 5 and point along the clockwise direction. 

Before we can compute the curl integrals, we must 

first clarify the sampling along resistivity. Since each 

sample of current density flows across the boundary 

between two resistivity cells, there is no clear choice for 

𝜌𝑛𝑚 to use with (24). We can solve this problem by 

simply averaging the two resistivities together along 

each sample. In terms of our grid stencil, this would 

could be written as: 
 

𝜌𝑥
𝑛,𝑚 = 0.5(𝜌𝑛,𝑚 + 𝜌𝑛+1,𝑚) , (25) 

𝜌𝑦
𝑛,𝑚 = 0.5(𝜌𝑛,𝑚 + 𝜌𝑛,𝑚+1) . (26) 

 

Notice how this naturally lends itself to the introduction 

of anisotropic materials wherein each sample along J𝑥 

and J𝑦 has its own resistivity expressed by 𝜌𝑥 and 𝜌𝑦. 

We are now ready to apply (24) to the finite-

difference stencil. Assuming that each curl cell is excited 

by a constant magnetic field intensity 𝐵𝑛𝑚, the curl 

expression evaluates to: 
 

𝜌𝑦
𝑛+1,𝑚

J𝑦
 𝑛+1,𝑚 − 𝜌𝑦

𝑛,𝑚
J𝑦
 𝑛,𝑚 

+𝜌𝑥
𝑛,𝑚

J𝑥
 𝑛,𝑚 − 𝜌𝑥

𝑛,𝑚+1
J𝑥
 𝑛,𝑚+1 = − j𝜔ℎ𝐵𝑛𝑚 . 

 

(27) 
 

Evaluating the above expression over all curl cells will 

then add 𝑁𝑐 = (𝑁𝑥 − 1)(𝑁𝑦 − 1) further equations to 

our system. When combined with the divergence 

equations, the total number 𝑁𝑒 of equations becomes: 
 

𝑁𝑒 = 2𝑁𝑥𝑁𝑦 − 𝑁𝑥 − 𝑁𝑦 + 1 . (28) 
 

It is surprising to note that 𝑁𝑒 = 𝑁𝑢 + 1. This  

seems to indicate one extra equation more than we need, 

which might lead one to conclude our system is over-

determined. Fortunately, the reality is that we actually 

have one more divergence equation than necessary. To 

see why, it helps to consider the two equations 𝑎 = 𝑏 and 

𝑏 = 𝑐. Given such information, we can naturally deduce 

that 𝑎 = 𝑐. From the perspective of a linear system, 

however, any explicit statement of 𝑎 = 𝑐 is technically 

redundant information. By analogy, the set of all 

divergence equations likewise possesses the same 

mathematical redundancy. If 𝑁𝑑 − 1 expressions of 

divergence are specified, conservation of charge 

implicitly tells us the flow of current throughout the last 

grid cell. This means 𝑁𝑥𝑁𝑦  total divergence equations 

are possible, but only 𝑁𝑥𝑁𝑦 − 1 of them contain unique 

information. We may therefore discard one divergence 

equation (any one we like, in fact), and the total number 

of equations becomes: 
 

𝑁𝑒 = 2𝑁𝑥𝑁𝑦 − 𝑁𝑥 − 𝑁𝑦 

 = 𝑁𝑐 + 𝑁𝑑 − 1. 

 

(29) 
 

We now have 𝑁𝑒 = 𝑁𝑢, and the system is guaranteed a 

unique solution. 
 

VII. BLOCK MATRIX SOLUTION 
To finalize the solution to our eddy current problem, 

it is necessary to assemble all instances of (17) and (27)  

Fig. 5. Individual curl cell with tangential unit vectors 

indicated. Corresponding resistivity blocks are also 

indicated. 
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into a complete linear system. We begin by collecting all 

samples of J𝑥 and J𝑦 into the two vectors 𝐮𝑥 and 𝐮𝑦. 

Recalling that 𝑛j𝑥 = (𝑁𝑥 − 1)𝑁𝑦 and 𝑛j𝑦 = 𝑁𝑥(𝑁𝑦 − 1), 

we can write these vectors as: 
 

𝐮𝑥 = [ J𝑥
 1, J𝑥

 2, … ,  J𝑥

 𝑛j𝑥
 ]

𝑇
, (30)

𝐮𝑦 = [ J𝑦
 1, J𝑦

 2, … ,  J𝑦

 𝑛j𝑦
 ]

𝑇
. (31)

 

 

Note that indexing in this context requires a consistent 

mapping function between every J𝑥
 𝑛,𝑚 sample on the 

rectangular grid to a unique J𝑥
 𝑖 sample along a linear 

array. Following the same convention, the forcing vector 

b is likewise expressed as: 
 

𝐛 = − j𝜔ℎ[𝐵1, 𝐵2, … , 𝐵𝑁𝑐
 ]

𝑇
, (32) 

 

where each 𝐵𝑖  maps to some unique 𝐵𝑛𝑚 and denotes the 

constant magnetic field intensity exciting the ith curl 

cell.  

We are now ready to formulate the 𝑁𝑑 − 1 

divergence equations expressed by (17) as a single 

matrix equation with the form: 
 

𝐃𝑥𝐮𝑥 + 𝐃𝑦𝐮𝑦 = 𝟎 , (33) 
 

where 𝐃𝑥 and 𝐃𝑦 are called the divergence matrices with 

𝟎 representing a vector of all zeros. The 𝐃𝑥 matrix has 

𝑁𝑑 − 1 rows and 𝑛j𝑥 columns, while 𝐃𝑦 has 𝑁𝑑 − 1 rows 

and 𝑛j𝑦 columns. Both matrices are also highly sparse, 

with only two nonzero elements at most per row. 

Moving on to the curl cells, we can assemble all 

instances of (27) into a system of 𝑁𝑐 linear equations. 

The outcome can also be written as a matrix-vector 

equation with the form: 
 

𝐂𝑥𝐮𝑥 + 𝐂𝑦𝐮𝑦 = 𝟎 , (34) 
 

where 𝐂𝑥 and 𝐂𝑦 are called the curl matrices. Both 

matrices have exactly 𝑁𝑐, but 𝑛j𝑥 and 𝑛j𝑦 columns, 

respectively. If we then combine (33) and (34) together, 

the result is a block-matrix equation with the form: 
 

[
𝐂𝑥 𝐂𝑦

𝐃𝑥 𝐃𝑦
]  [

𝐮𝑥

𝐮𝑦
] = [

𝐛
𝟎
] . (35) 

 

A complete solution is thus found by inverting (35) and 

extracting all J𝑥 and J𝑦 samples accordingly. 

Although the literature does not yet contain any 

exact solutions for the eddy current density along a metal 

rectangle, there does exist an exact solution for the 

weakly-induced eddy current along a metal disk. Given 

a disk with radius a and conductivity σ, a uniform 

magnetic field 𝐵0 exciting the disk at a frequency of f 

will induce the eddy current J satisfying: 
 

J(𝑟) = −�̂� 2j𝜋𝑓𝜎𝐵0𝑟/2 , (36) 
 

where r is the radial distance from the center of the disk 

and �̂� is the unit angular vector. Note that this expression 

is true for any thickness 𝐿𝑧 since there is no self-

inductance to account for. 

Figure 6 shows a sample calculation of the weakly-

induced eddy current density along a metal disk with  

2-cm radius. The frequency of excitation was set to  

𝑓 = 100 Hz with a uniform magnetic field intensity of 

𝐵0 = 100 mT. To mimic the geometry of a disk on a 

rectangular simulation area, the region inside the disk 

was set to a conductivity of 𝜎 = 1.0 MS/m while the 

regions beyond the disk were set to a very small value of 

only 𝜎 = 1.0 S/m. Note that we cannot directly set 𝜎 = 0 

in this region without introducing a singularity into  

the matrix equation. Looking at (27), a point of zero 

conductivity would introduce infinite resistivity and  

thus render the matrix non-invertible. Likewise, the 

resistivity cannot be set to zero, either, or else similar 

singularities would ensue. 

 

Fig. 6. Induced eddy current density at time 𝜔𝑡 = 𝜋/2 

along a metal disk with 2 cm radius and electrical 

conductivity 𝜎 = 1.0 MS/m. The frequency of excitation 

is 𝑓 = 100 Hz with a uniform magnetic field intensity   

of 𝐵0 = 100 mT. 

Fig. 7. Percent error between the induced eddy current 

in Fig. 6 and the analytic expression (36). 
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For comparison, Fig. 7 plots the percent error as a 

function of radial distance along the 𝑦 = 0 axis. Since 

the matrix expression in (35) is highly sparse, the 

simulation in Fig. 6 could be meshed with an extremely 

fine resolution of 301 × 301 cells. The result is very 

high accuracy in the calculation, with error only reaching 

1% near the edge of the disk. This is primarily a result of 

stair-stepping error that arises from using square cells  

to approximate a curved boundary, and it is generally 

unavoidable when utilizing finite-difference schemes 

that rely on rectangular meshing. 

 

VIII. BLOCK AVERAGING 
Once a solution for all J𝑥 and J𝑦 has been obtained, 

it is often convenient to impose a final post-processing 

step onto the result. The goal is to adjust the initial 

placement of samples from a staggered grid onto a 

consistent grid of positions. Inspired by a similar 

procedure to that found in [17], one easy way to 

accomplish this is by simply averaging samples together 

around the centers of the divergence cells around each 

Ω𝑛𝑚. The result is a new set of J𝑥
 ′ and J𝑦

 ′  samples that 

occupy the same position and thus can be plotted 

meaningfully onto a graphical display. Mathematically, 

we write this operation as simply, 
 

J𝑥
 ′(𝑥𝑛+1/2, 𝑦𝑚+1/2) = 0.5(J𝑥

 𝑛−1,𝑚 + J𝑥
 𝑛,𝑚) , (37) 

J𝑦
 ′(𝑥𝑛+1/2, 𝑦𝑚+1/2) = 0.5(J𝑦

 𝑛,𝑚−1 + J𝑦
 𝑛,𝑚) . (38) 

 

Note how this places the averaged samples along a new 

grid at the centers of the divergence blocks. Samples 

along the edge of the domain (e.g., J𝑥
 0,𝑚) are simply 

assumed to be zero. 
 

IX. SELF-INDUCTANCE 
Let us now consider the implications of self-

inductance by dropping the weak-eddy approximation. 

We express the eddy field 𝐁𝑒 in terms of a magnetic 

vector potential vector 𝐀𝑒  where 𝐁𝑒 = ∇ × 𝐀𝑒 . The curl 

equation (5) then satisfies: 
 

∇ × (𝜌J) + j𝜔∇ × 𝐀𝑒 = −j𝜔𝐁𝑖  . (39) 
 

As we did with (23), we integrate around some arbitrary 

surface Ω𝑛𝑚
′  to find: 

∬ ∇ × (𝜌J)

Ω𝑛𝑚
′

∙ 𝑑𝐒 + j𝜔 ∬ ∇ × 𝐀𝑒

Ω𝑛𝑚
′

∙ 𝑑𝐒

= −j𝜔 ∬ 𝐁𝑖

Ω𝑛𝑚
′

∙ 𝑑𝐒. (40)

 

 

Applying Stokes' theorem to the left-hand side then leads 

to: 

∮ (𝜌J+ j𝜔𝐀𝑒) ∙ 𝑑𝓵

∂Ω𝑛𝑚
′

= −j𝜔 ∬ 𝐁𝑖

Ω𝑛𝑚
′

∙ 𝑑𝐒 . (41) 

Noting the similarity between (24) and (41), we have 

only to account for the vector potential field expressed 

by 𝐀𝑒 . This is accomplished by sampling the x- and  

y-components of 𝐀𝑒  along the same staggered grid as J𝑥 

and J𝑦. Assuming constant values throughout each cell, 

we quickly find: 
 

+𝜌𝑦
𝑛+1,𝑚J𝑦

 𝑛+1,𝑚 

+𝜌𝑥
𝑛,𝑚J𝑥

 𝑛,𝑚  

+j𝜔𝐴𝑦
𝑛+1,𝑚 

+j𝜔𝐴𝑥
𝑛,𝑚  

−𝜌𝑦
𝑛,𝑚J𝑦

 𝑛,𝑚 

−𝜌𝑥
𝑛,𝑚J𝑥

 𝑛,𝑚+1 
−j𝜔𝐴𝑦

𝑛,𝑚 

−j𝜔𝐴𝑥
𝑛,𝑚+1 = −j𝜔ℎ𝐵𝑛𝑚 . 

 

(42) 
 

The immediate consequence of accounting for the 

eddy fields in 𝐴𝑥 and 𝐴𝑦 is that we have now doubled the 

number of unknowns in our linear system. We therefore 

need another 𝑁𝑢 equations in order to maintain a unique 

solution. This is accomplished by expressing the Biot-

Savart law in terms of magnetic vector potential using 

[20]: 
 

𝐀𝑒(𝐫) =
𝜇0

4𝜋
∫

J(𝐫′)

|𝐫 − 𝐫′|
𝑑𝑉′ . (43) 

 

Splitting the fields into x- and y-components, we may 

explicitly write this as: 
 

A𝑥(𝐫) =
𝜇0

4𝜋
∫

J𝑥(𝐫
′)

|𝐫 − 𝐫′|
𝑑𝑉′, (44) 

 

A𝑦(𝐫) =
𝜇0

4𝜋
∫

J𝑦(𝐫′)

|𝐫 − 𝐫′|
𝑑𝑉′ . (45) 

 

The importance of (44) and (45) is that we can now 

derive the necessary information for a unique solution. 

Using the finite-difference stencil as a guide, we express 

each integral as a finite sum along each grid cell in the 

domain. Recalling that each sample in J𝑥 and J𝑦 is 

represented as a uniform block of length/width h and a 

thickness L𝑧, we write out each vector potential sample 

as: 
 

𝐴𝑥
𝑛,𝑚 =

𝜇0ℎ
2𝐿𝑧

4𝜋
∑

J𝑥
 ℓ,𝑘

√(𝑥ℓ − 𝑥𝑛)2 + (𝑦ℓ − 𝑦𝑘)2
ℓ,𝑘

, (46) 

 

𝐴𝑦
𝑛,𝑚 =

𝜇0ℎ
2𝐿𝑧

4𝜋
∑

J𝑦
 ℓ,𝑘

√(𝑥ℓ − 𝑥𝑛)2 + (𝑦ℓ − 𝑦𝑘)2
ℓ,𝑘

. (47) 

 

A special exception occurs when ℓ = 𝑛 and 𝑘 = 𝑚. In 

this case, we need to evaluate the full integral, 
 

∫ ∫ ∫
𝑑𝑥𝑑𝑦𝑑𝑧

√𝑥2 + 𝑦2 + 𝑧2

+ℎ/2

−ℎ/2

+ℎ/2

−ℎ/2

+𝐿𝑧/2

−𝐿𝑧/2

 . (48) 

 

It is unfortunate that the above expression has no closed-

form solution. It can, however, be evaluated numerically 

with arbitrary degrees of precision. For this work, we 

found that the basic midpoint rule provides reasonable 

accuracy in a short amount of time. 

With the addition of (44) and (45), we are now ready 

to express the complete solution with self-inductance. 
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Begin by defining the unknown vectors a𝑥 and a𝑦 in a 

similar vein to u𝑥 and u𝑦 such that, 
 

𝐚𝑥 = [𝐴𝑥
1  , 𝐴𝑥

2  , … , 𝐴𝑥

𝑛j𝑥
]
𝑇
, (49)

𝐚𝑦 = [𝐴𝑦
1  , 𝐴𝑦

2  , … , 𝐴𝑦

𝑛j𝑦
]
𝑇
. (50)

 

 

This now allows us to simultaneously solve for every 

A𝑥 and A𝑦 sample alongside the J𝑥 and J𝑦. Writing out 

the complete system of equations, we find a block-matrix 

equation with the form of: 
 

[
 
 
 
𝐂𝑥 𝐂𝑦

𝐃𝑥 𝐃𝑦

𝐍𝑥 𝐍𝑦

𝟎 𝟎

𝐌𝑥 𝟎
𝟎 𝐌𝑦

𝐈 𝟎
𝟎 𝐈 ]

 
 
 

[

𝐮𝒙

𝐮𝒚

𝐚𝒙

𝐚𝒚

] = [

𝐛
𝟎
𝟎
𝟎

] , (51) 

 

where 𝐈 denotes an identity matrix and 𝟎 indicates a 

matrix (or vector) of all zeros. The matrices 𝐍𝑥 and  

𝐍𝑦 can be referred to as the vector-potential matrices,  

or perhaps the self-inductance matrices, because they  

arise from the added self-inductance terms in (42). Like 

the curl matrices 𝐂𝑥  and 𝐂𝑦, these matrices are highly 

sparse and therefore add little in terms of computational 

complexity. The last two matrices, 𝐌𝑥 and 𝐌𝑦 , are called 

the Biot-Savart matrices and express the information 

contained by (46) and (47). Unfortunately, these 

matrices are completely full and therefore add significant 

computational cost to the final inversion. The result, 

however, is a complete expression of eddy current 

density J along the metal sheet with full account taken 

for self-inductance. 

An immediate concern with the matrix equation 

described by (51) is the presence of four scalar fields that 

need to be solved for simultaneously. Fortunately, we are 

not really interested in the actual solutions for 𝐚𝑥 and 𝐚𝑦 

and can thus remove them through simple substitution. 

The resulting matrix equation is a far more compact 

expression given by: 
 

[
(𝐂𝑥 − 𝐍𝑥𝐌𝑥) (𝐂𝑦 − 𝐍𝑦𝐌𝑦)

𝐃𝑥 𝐃𝑦
]  [

𝐮𝑥

𝐮𝑦
] = [

𝐛
𝟎
] . (52) 

 

A key advantage to (52) is that the system matrix is 

entirely geometry-dependent. It therefore need only be 

inverted once, and the resulting eddy currents can be 

calculated rapidly under any arbitrary forcing function 

contained within b. This can be especially useful when 

tracking the trajectory of a metal particle as it passes over 

an eddy current separator. Each small increment in time 

requires a fresh calculation of force and torque due to 

changes in Bi over position. Fortunately, the system 

matrix remains identical with each step and thus does not 

require repeated inversions.  
 

X. VALIDATION 
To validate the numerical algorithm presented  

here, we ran a side-by-side comparison between FDM 

and the Computer Simulation Technology (CST) EM 

Studio software suite [21]. The model was comprised  

of a rectangular metal sheet defined by the physical 

dimensions 𝐿𝑥 = 2.0 cm, 𝐿𝑦 = 1.0 cm, and 𝐿𝑧 = 0.1 cm 

with a conductivity of 𝜎 = 5.0 MS/m. The magnetic field 

exciting the sheet was set to a uniform field profile with 

amplitude 𝐵0 = 100 mT at a frequency of 𝑓 = 10 kHz. 

Figure 8 shows the results of the two simulations 

when sampled at a grid spacing of ℎ = 0.5 mm. Since 

the induced currents are strongly out of phase with the 

applied field, the results had to be shifted in phase by 90° 
before rendering the real part of J. For a more precise 

inspection, Fig. 9 shows both the real and imaginary 

components of J𝑦 at 𝑡 = 0 along a horizontal cut through 

the center of the rectangular sheets. 

Fig. 8. Induced eddy currents in a thin metal sheet at 

phase angle 𝜙 = 90°. The top solution was calculated 

using FDM and the bottom solution was calculated using 

commercial software (CST). 

Fig. 9. Real and imaginary components of J𝑦 at 𝑡 = 0 

along a horizontal cut down the center of the rectangular 

metal sheet. 
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Results from the comparison show very strong 

agreement, thereby validating the finite-difference 

approach to eddy current calculations. Any errors in  

the FDM calculation are primarily the result of using 

rectangular blocks of constant current density to 

approximate the true values within. Other errors  

also accumulate from imperfections in the numerical 

integration used to solve (44) and (45), as well as the 

thin-sheet approximation. The key metric of interest, 

however, is computational time. Since CST is based on 

the 𝐀 − 𝜑 formalism, a thin metal sheet had to be placed 

within a three-dimensional void of empty space. As a 

result, the total number of elements was quite large 

(31,031 tetrahedrons), and a typical simulation required 

approximately 60 seconds to complete on a standard 

laptop computer. In contrast, the FDM model need only 

sample the metal sheet in isolation and thus required only 

800 divergence cells. Consequently, the total time to 

build the system matrix and solve for the current density 

was barely 0.5 seconds using standard Matlab sub-

routines. 
 

XI. DISCUSSION 
Although this work has focused exclusively on the 

problem of thin metal sheets, there is no reason why it 

cannot be expanded out to a complete, three-dimensional 

formalism. Such an algorithm would have a distinct 

advantage over potential-based formalisms in that the 

simulation boundary can terminate at the edge of a body 

of interest. The key trade-off, however, is a forfeiture  

of the sparse system matrix that must be inverted.  

Since every sample in the FDM algorithm is dependent 

on every other sample, the resulting system matrix  

is necessarily going to be full. This means the 

computational complexity is necessarily 𝑂(𝑁3) when 

using Gauss-Jordan elimination to invert an 𝑁 × 𝑁 

system matrix. In the future, however, it may be possible 

to circumvent this limitation through iterative-based 

inversion methods rather than direct inversion of the full 

matrix. 
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