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Abstract ─ An analysis of the accuracy of the results 

computed using a finite element code in the presence of 

axially moving cylinders is presented. It seems that no 

result of this type is available in the open literature. 

Any material in motion is perceived as a 

bianisotropic medium. This generates a scattered field 

having two components: one has the same polarization 

as the incident field and the other presents the orthogonal 

polarization. The results on the accuracy of the co-

polarized field are new but are similar to those obtained 

in the presence of motionless media. The outcome on  

the accuracy of the results related to the orthogonal 

polarization seems to be more interesting, especially for 

the information content this component of the field could 

provide on the axial velocity profile. In particular, using 

a finite element simulator based on double precision 

arithmetic, it is shown that the range of axial velocity 

values over which it is possible to obtain very accurate 

approximations can span nine or even more decades. 

This allows the use of the simulator, even when the  

more difficult components of the field are required to  

be accurate, for a set of applications ranging from 

astrophysics to medicine. 

 

Index Terms ─ Bianisotropic media, electromagnetic 

scattering, error analysis, finite element method, moving 

media, reconstruction of velocity profiles, time-harmonic 

electromagnetic fields. 
 

I. INTRODUCTION 
The interaction of electromagnetic waves with 

moving bodies plays a role in many applications [1],  

[2]. Among these, one can consider many important 

applications involving only axially moving cylinders.  

In particular, one can refer to axially moving plasma 

columns [3], [4], [5], ionized meteor trails [6], jet 

exhausts [7] or mass flow in pneumatic pipes [8]. 

In most cases of interest, which could involve 

multiple cylinders having irregular shapes, inhomogeneous 

constitutive parameters and non-constant velocity profiles, 

numerical methods are required to try to approximate the 

solutions of interest [9].  

Notwithstanding the difficulty related to the presence 

of materials in motion [1], [10], [11], determining the 

appearance of bianisotropic materials in any reference 

frame in which the media themselves are not at rest, the 

first results related to the well-posedness and the finite 

element approximability for these problems have been 

deduced [12].  

When simulators are exploited, the results related to 

the convergence of numerical approximations are not  

the only aspects of practical interest. However, error 

estimates [13] are important too (particularly, a-priori 

error estimations), as clearly pointed out in [14] (p. 114). 

These estimations are not available so far, to the best  

of authors’ knowledge, for two dimensional problems 

involving moving objects. In particular, results are not 

available for problems involving axially moving 

cylinders, like the ones of interest in this paper.  

Then, in order to understand what can be expected 

in practice, we have to perform numerical experiments. 

Unfortunately, in the presence of axially moving 

cylinders, no numerical analysis seems to be available. 

This is the reason why, in this paper, we present a lot  

of numerical results. They could suggest what can be 

expected in other cases and could be considered as 

benchmarks for any error estimate the research 

community will be able to deduce.  

All numerical results which will be presented refer 

to a simple problem involving a moving cylinder. For 

such a problem an independent truncated-series solution 

can be found [4] (see also [15]). In this way, we can 

evaluate the accuracy of our finite element approximations 

in terms of absolute and relative errors. The effects of all 

parameters involved in the definition of the simple 

problem of reference are studied. 

As it has already been pointed out, in the presence 

of a time-harmonic illumination, the axial motion of 

cylinders determines, in any reference frame in which 

the media are not at rest, a bianisotropic effect and this, 
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in turn, is responsible for the presence of a scattered field 

having both polarizations: the same as that of the incident 

field and the orthogonal one. For the co-polarized 

component of the field the outcome is absolutely stable. 

The errors for this component are, in particular, almost 

independent of the axial velocity and, then, assume 

almost the same values we get in the presence of 

motionless media. For the cross-polarized scattered wave 

the relative errors are very stable, as well, even though it 

is a-priori known that the previous results cannot be 

duplicated in this case, due to the fact that this component 

of the scattered field is known to go uniformly to zero as 

the axial speed of the scatterers becomes smaller and 

smaller [16]. Anyway, the errors on this component  

of the scattered field are indeed stable for a huge range 

of axial velocity values. By using double precision 

arithmetic this range can span nine or even more 

decades, so allowing the use of finite element simulators 

for velocities varying from a few centimeters per second 

to many thousands of kilometers per second. That means 

that the considered finite element method can be reliably 

used for a set of applications ranging from astrophysics 

to medicine.  

In the paper, we examine the behavior of the error 

in the co-polarized and cross-polarized components of 

the field. The results of numerical experiments indicate 

that the co-polarized component follows quadratic 

convergence, same as that in the motionless case. On  

the other hand, the results show that the cross-polarized 

component has linear convergence. However, at low 

values of axial speed we expect that the round-off  

error becomes more and more significant, degrading  

the accuracy of the cross-polarized component. This is 

because the co-polarized component remains of the same 

order of magnitude while the cross-polarized component 

goes to zero with decreasing velocity. When the ratio  

of the norm of the cross-polarized component to the  

co-polarized component becomes too large, the result 

becomes less reliable. Hence, this number can be used as 

a general indicator for checking if the results of the 

simulation are reliable or not.  

The results show, in addition to the previously 

mentioned applications, that the indicated simulator can 

be exploited as a reliable solver of forward scattering 

problems in imaging procedures aiming at the 

reconstruction of axial velocity profiles [16], [17] and 

this, by the way, was the initial motivation for our study. 

The paper is organized as follows. In Section II the 

mathematical formulation of the problems of interest is 

recalled together with some of the results available in  

the open literature. Some new considerations on the 

properties of the finite element matrices in the presence 

of moving media are provided in Section III. In order  

to carry out the error analysis of interest, the definition 

of a test case is necessary. This is done in Section IV,  

where, in addition, a complete set of relevant absolute 

and relative errors is defined. The main section of the 

manuscript, dealing with the error analysis, is Section V. 

Finally, before concluding the paper, some considerations 

on the convergence of two well-known iterative methods 

are provided. 
 

II. MATHEMATICAL FORMULATION OF 

THE PROBLEM 
The electromagnetic problems of interest in this 

paper are those in which axially moving cylinders (having 

parallel axes) are illuminated by a time-harmonic source 

or field. This class of problems has been studied in [12] 

and we refer to that paper for the definition of all details. 

Here we recall just the main points to let the readers 

understand the developments which will be presented in 

the next sections.  

All our problems will present a cylindrical geometry 

and we denote by 𝑧 the axis of such a geometry.  

The time-harmonic sources and the inhomogeneous 

admittance boundary conditions involved are assumed  

to be independent of 𝑧, too, so that our problems can  

be formulated in a two-dimensional domain Ω contained 

in the (𝑥, 𝑦) plane. Γ denotes the boundary of Ω. n and l 

are the unit vectors orthogonal (pointing outward) and 

tangential to Γ, respectively. We have n × l = ẑ. 

The media involved in our problems can move in  

the axial direction with respect to the chosen reference 

frame. In such a frame a velocity field 𝑣𝑧, assumed to  

be time-invariant, is naturally defined, even though we 

will often refer to it in terms of the usual [18] (p. 525) 

real-valued normalized field 𝛽 =
𝑣𝑧

𝑐0
, being 𝑐0 the speed 

of light in vacuum. Different linear, time-invariant and 

inhomogeneous materials can be modelled in our 

problems. Ω𝛽 will denote the subdomain of Ω containing 

all media in motion.  

Under the indicated conditions all fields in all media 

will be time-harmonic, as the considered sources, and a 

factor 𝑒𝑗𝜔𝑡, common to all fields of interest, is assumed 

and suppressed.  

Any material involved is isotropic in its rest frame 

and is there characterized by its relative permittivity 𝜀𝑟, 

its relative permeability 𝜇𝑟 and its electric conductivity 

σ. In the following, any reference to 𝜀𝑟, 𝜇𝑟 or 𝜎 of a 

moving medium should be interpreted as a reference to 

the corresponding quantity when the medium is at rest. 

All moving media will be considered in any case to have 

𝜎 = 0 (in order to avoid the difficulties related to the 

convective currents which could also become surface 

electric currents and to avoid difficulty related to the no-

slip condition which, ultimately, prevents the possibility 

of using pure two-dimensional models [12]). 

By using the subscript “t” to denote the field 

quantities transverse to the 𝑧 direction, the constitutive  
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relations for the media in motion are [12]: 

         𝐃𝑡 =
1 + 𝜇𝑟𝜀𝑟 − 𝜁1

𝑐0
2𝜇0𝜇𝑟

𝐄𝑡 + 
𝜁2

𝑐0𝜇0𝜇𝑟
   �̂� × 𝐁𝑡 ,         (1) 

                                     𝐷𝑧 = 𝜀0𝜀𝑟𝐸𝑧,                                   (2) 

                  𝐇𝑡 =
𝜁1
𝜇0𝜇𝑟

𝐁𝑡 +
𝜁2

𝑐0𝜇0𝜇𝑟
   �̂� × 𝐄𝑡 ,                  (3) 

                                    𝐻𝑧 =
1

𝜇0𝜇𝑟
𝐵𝑧 ,                                  (4) 

where 

                                 𝜁1 =
1 − 𝜇𝑟𝜀𝑟𝛽

2

1 − 𝛽2
,                              (5) 

                                𝜁2 =
𝛽(𝜇𝑟𝜀𝑟 − 1)

1 − 𝛽2
.                             (6) 

In order to be able to define the problems of interest 

and to talk of their finite element approximations, it  

is necessary to introduce some additional notations. 

(𝐿2(𝛺))
𝑛

 is the usual Hilbert space of square integrable 

vector fields on Ω with values in ℂ𝑛, 𝑛 = 2,3, and with 

scalar product given by (𝐮, 𝐯)0,Ω = ∫ 𝐯∗𝐮 𝑑𝑆
Ω

, where  

𝐯∗ denotes the conjugate transpose of the column vector 

𝐯. For a given three-dimensional complex-valued vector 

field 𝐀 = (Ax, Ay, Az) ∈ (𝐿
2(𝛺))3 we consider the 

operators curl2D and grad2D, defined according to: 

                           curl2D 𝐀𝑡 =
𝜕𝐴𝑦

𝜕𝑥
−
𝜕𝐴𝑥
𝜕𝑦

,                      (7) 

                          grad2D 𝐴𝑧 = (
𝜕𝐴𝑧
𝜕𝑥

,  
𝜕𝐴𝑧
𝜕𝑦

).                    (8) 

The transverse parts of the electric and magnetic fields 

will be in the Hilbert space: 

   𝑈2𝐷 = {
𝐀𝑡 ∈ (𝐿

2(Ω))
2
| curl2D𝐴𝑡 ∈ 𝐿

2(Ω) 

𝑎𝑛𝑑 𝐀𝑡 ⋅ 𝐥 ∈ 𝐿
2(Γ)

},      (9)  

whose inner product is given by: 

(𝐮𝑡 , 𝐯𝑡)𝑈2𝐷 = (𝐮𝑡 , 𝐯𝑡)0,Ω + (curl2D𝐮𝑡 , curl2D𝐯𝑡)0,Ω        

+ (𝐮𝑡 ⋅ 𝐥, 𝐯𝑡 ⋅ 𝐥)0,Γ.                           (10) 

The axial components of the same fields are in the 

Hilbert space: 

   𝐻1(Ω) = {𝐴𝑧 ∈ 𝐿
2(Ω)| grad2D𝐴𝑧 ∈ (𝐿

2(Ω))
2
},   (11)  

whose inner product is: 

(𝑢𝑧 , 𝑣𝑧)1,Ω = (𝑢𝑧 , 𝑣𝑧)0,Ω + (grad2D𝑢𝑧 , grad2D𝑣𝑧)0,Ω.  

                                                                                             (12) 
𝛾0u𝑧 will denote the boundary values of u𝑧 ∈ 𝐻

1(Ω) on 

Γ. 

Overall the electric and magnetic fields are in the 

Hilbert space: 

                                   𝑈 = 𝑈2𝐷 × 𝐻
1(Ω),                       (13)  

with inner product given by: 

                (𝐮, 𝐯)𝑈 = (𝐮𝑡 , 𝐯𝑡)𝑈2𝐷 + (u𝑧 , v𝑧)1,Ω.            (14) 

|| ||𝑈  will denote the corresponding norm. The norms of 

the different spaces so far introduced will be of particular 

interest in establishing the accuracy of the results of the 

finite element simulator considered. 

With the indicated notation, the electromagnetic 

boundary value problem we consider in this paper is: 

given 𝜔 > 0, the electric and magnetic current densities 

𝐉𝐞, 𝐉𝐦 ∈ (𝐿
2(𝛺))

3
, the boundary data 𝑓𝑅𝑧 , 𝑓𝑅𝑙 ∈ 𝐿

2(Γ), 

find (𝐄, 𝐁, 𝐇, 𝐃) ∈ 𝑈 × (𝐿2(𝛺))
3
× 𝑈 × (𝐿2(𝛺))

3
 which 

satisfies: 

         

{
 
 

 
 
curl2D𝐇𝑡 − 𝑗𝜔𝐷𝑧 = 𝐽𝑒𝑧                   𝑖𝑛   Ω,

grad2D𝐻𝑧 × �̂� −  𝑗𝜔𝐃𝑡 = 𝐉𝑒𝑡        𝑖𝑛   Ω,
curl2D𝐄𝑡 + 𝑗𝜔𝐵𝑧 =  −𝐽𝑚𝑧           𝑖𝑛   Ω,

grad2D𝐸𝑧 × �̂� + 𝑗𝜔𝐁𝑡 = −𝐉𝑚𝑡    𝑖𝑛   Ω,

𝐇𝑡 ⋅ 𝐥 + 𝑌(𝛾0𝐸𝑧) = −𝑓𝑅𝑧           𝑜𝑛   Γ,

𝛾0𝐻𝑧 − 𝑌(𝐄𝑡 ⋅ 𝐥) = 𝑓𝑅𝑙                 𝑜𝑛   Γ,

        (15) 

and the constitutive relations (1), (2), (3) and (4). 

After some work [12], one can deduce the equivalent 

variational formulation: given 𝜔 > 0, 𝐉𝐞, 𝐉𝐦 ∈ (𝐿
2(𝛺))

3
, 

𝑓𝑅𝑧 , 𝑓𝑅𝑙 ∈ 𝐿
2(𝛤), find 𝐄 ∈ 𝑈 such that: 

                     𝑎(𝐄,𝐰) = 𝑙(𝐰)       ∀𝐰 ∈ 𝑈,                    (16) 

where 𝑎 is the following sesquilinear form: 

      𝑎(𝐮,𝐰) =  (
ζ1
μr
grad2D𝑢𝑧 , grad2D𝑤𝑧)

0,Ω

+ 

         + (
1

𝜇𝑟
curl2D𝐮𝑡 , curl2D𝐰𝑡)

0,Ω

+      

          +𝑗 
𝜔

𝑐0
(
𝜁2
𝜇𝑟
𝐮𝑡 , grad2D𝑤𝑧 )

0,Ω

+          

          −𝑗
𝜔

𝑐0
(
𝜁2
𝜇𝑟
grad2D𝑢𝑧, 𝐰𝑡)

0,Ω

+             

         −
𝜔2

𝑐0
2
(𝜀𝑟𝑢𝑧, 𝑤𝑧)0,Ω          +                   

         −
𝜔2

𝑐0
2 (
1 + 𝜀𝑟𝜇𝑟 − 𝜁1

𝜇𝑟
𝐮𝑡 , 𝐰𝑡)

0,Ω

+     

         +𝑗𝜔𝜇0(𝑌(𝛾0𝑢𝑧), 𝛾0𝑤𝑧)0,Γ +               
                      +𝑗𝜔𝜇0(𝑌(𝐮𝑡 ⋅ 𝐥 ), 𝐰𝑡 ⋅ 𝐥 )0,Γ,                   (17)  

for all 𝐮,𝐰 ∈ 𝑈 and 𝑙 is the following antilinear form: 

             𝑙(𝐰) = −𝑗𝜔𝜇0(𝐽𝑒𝑧 , 𝑤𝑧)0,Ω + 

                           − (
𝜁1
𝜇𝑟
�̂� × 𝐉𝑚𝑡 , grad2D𝑤𝑧)

0,Ω

+                  

                          −𝑗𝜔𝜇0(𝑓𝑅𝑧 , 𝛾0𝑤𝑧)0,Γ +                                

                           − (
1

𝜇𝑟
𝐽𝑚𝑧 , curl2D𝐰𝑡)

0,Ω

+                           

                         −𝑗𝜔𝜇0(𝐉𝑒𝑡 , 𝐰𝑡)0,Ω +                                    

                        +𝑗
𝜔

𝑐0
(
𝜁2
𝜇𝑟
�̂� × 𝐉𝑚𝑡 , 𝐰𝑡)

0,Ω

+                       

                          −𝑗𝜔𝜇0(𝑓𝑅𝑙 , 𝐰𝑡 ⋅ 𝐥)0,Γ,                           (18)  

for all 𝐰 ∈ 𝑈. 

The reader can notice that, whenever 𝛽 = 0 

everywhere in Ω (which implies 𝜁2 = 0 in Ω), the 

problem splits into two disjoint problems, one for the 

axial component 𝐸𝑧, the other for the transverse part  
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𝐄t. These two disjoint problems are the traditional, two-

dimensional variational problems, formulated in terms of 

𝐸𝑧 or 𝐄t, in the presence of motionless isotropic media. 

In [12] we showed that under some non-restrictive 

hypotheses any electromagnetic problem of the class 

considered is well posed. In particular, for any problem 

of interest we can find a unique solution (𝐄, 𝐁, 𝐇, 𝐃) 

belonging to 𝑈 × (𝐿2(𝛺))
3
× 𝑈 × (𝐿2(𝛺))

3
 and 

depending continuously on 𝐉𝐞, 𝐉𝐦 ∈ (𝐿
2(𝛺))

3
 and on 

𝑓𝑅𝑧 , 𝑓𝑅𝑙 ∈ 𝐿
2(𝛤). It is worth mentioning that, due to  

the bianisotropic behaviour of the media in motion,  

all unknown fields will have, in general, all three 

components, even if the scatterers are illuminated by 

simple fields. 

 

III. FINITE ELEMENT APPROXIMATION 

Under some additional assumptions, in [12] we also 

found that a finite element method, based on the above 

variational formulation and exploiting a first-order 

Lagrangian approximation for the axial component and 

a first-order edge element approximation for the transverse 

part, determines (𝐄ℎ , 𝐁ℎ , 𝐇ℎ , 𝐃ℎ) ∈ 𝑈ℎ × (𝐿
2(𝛺))

3
×

(𝐿2(𝛺))
3
× (𝐿2(𝛺))

3
 which converges, as ℎ goes to zero, 

to (𝐄, 𝐁, 𝐇, 𝐃) in 𝑈 × (𝐿2(𝛺))
3
× (𝐿2(𝛺))

3
× (𝐿2(𝛺))

3
. 

In the previous statement 𝑈ℎ is the finite dimensional 

subspace of 𝑈 generated by the indicated elements (first-

order Lagrangian and first-order edge elements) for a 

specific triangulation of Ω and ℎ denotes, as usual, the 

maximum diameter of all elements of the triangulation 

[14] (p. 131). 

In [12] no specific considerations related to the 

implementation of finite element codes were provided. 

These considerations could be useful for our next 

developments and, for this reason, we present here the 

main points. Suppose that for any mesh adopted, fixing 

a given 𝑈ℎ, we order the degrees of freedom by placing 

those related to 𝐸ℎ𝑧, [e𝑧] ∈ ℂ
𝑛𝑛, in the first part of the 

vector [e] ∈  ℂ𝑛𝑛+𝑛𝑒 of the unknowns while those 

related to 𝐄ℎ𝑡, [e𝑡] ∈ ℂ
𝑛𝑒, are in its second and last part. 

In the previous formulas, 𝑛𝑛 (respectively, 𝑛𝑒) refers to 

the number of nodes (respectively, edges) of the mesh 

considered. With this convention, by firstly considering 

the 𝑛𝑛 test functions like 𝐰ℎ = (0,0, whz) and, then, the 

𝑛𝑒 test functions like 𝐰𝒉 = 𝐰𝒉𝒕, one can easily deduce 

that the general form of the final matrix equation 

obtained from (16), (17) and (18), with 𝐄, 𝐮, 𝐰 and 𝑈 

replaced, respectively, by 𝐄ℎ, 𝐮ℎ, 𝐰ℎ and 𝑈ℎ, is: 

                                       [𝐴][𝑒] = [𝑙],                               (19) 

where the entries of [𝑙] ∈  ℂ𝑛𝑛+𝑛𝑒 are given by 𝑙(𝐰ℎ), 
for all test functions considered. The order for its entries 

is given by the order considered for the test functions 

and, in analogy to the decomposition of [𝑒] in terms of 

[𝑒𝑧] and [𝑒𝑡], we get [𝑙𝑧] ∈  ℂ
𝑛𝑛, in the first part of [𝑙] 

and [𝑙𝑡] ∈  ℂ
𝑛𝑒 in the second and last one. [𝐴] is given 

by: 

                            [𝐴] = [
[𝐴𝑧𝑧] [𝐴𝑧𝑡]

[𝐴𝑡𝑧] [𝐴𝑡𝑡]
].                         (20) 

In this formula, [𝐴𝑧𝑧], [𝐴𝑧𝑡], [𝐴𝑡𝑧] and [𝐴𝑡𝑡] are complex 

matrices whose entries are deduced directly from (17): 

      [𝐴𝑧𝑧]𝑖𝑗 = (
𝜁1
𝜇𝑟
𝑔𝑟𝑎𝑑2𝐷𝑤ℎ𝑧𝑗 , grad2D𝑤ℎ𝑧𝑖)

0,Ω

+    

−
𝜔2

𝑐0
2 (𝜀𝑟𝑤ℎ𝑧𝑗 , 𝑤ℎ𝑧𝑖)0,Ω           +       

+ 𝑗𝜔𝜇0(𝑌(𝛾0𝑤ℎ𝑧𝑗), 𝛾0𝑤ℎ𝑧𝑖)0,Γ,     

                       𝑖, 𝑗 ∈ 1, … , 𝑛𝑛,                                            (21) 

      [𝐴𝑧𝑡]𝑖𝑗 = 𝑗
𝜔

𝑐0
(
𝜁2
𝜇𝑟
𝐰ℎ𝑡𝑗 , grad2D𝑤ℎ𝑧𝑖)

0,Ω

, 

                       𝑖 ∈ 1, … , 𝑛𝑛, 𝑗 ∈ 1, … , 𝑛𝑒,               (22) 

      [𝐴𝑡𝑧]𝑖𝑗 = −𝑗
𝜔

𝑐0
(
𝜁2
𝜇𝑟
grad2D𝑤ℎ𝑧𝑗 , 𝐰ℎ𝑡𝑖)

0,Ω

, 

                      𝑖 ∈ 1, … , 𝑛𝑒, 𝑗 ∈ 1, … , 𝑛𝑛,                (23) 

      [𝐴𝑡𝑡]𝑖𝑗 = (
1

𝜇𝑟
curl2D𝐰ℎ𝑡𝑗 , curl2D𝐰ℎ𝑡𝑖  )

0,Ω

+  

           −
𝜔2

𝑐0
2 (
1 + 𝜀𝑟𝜇𝑟 − 𝜁1

𝜇𝑟
𝐰ℎ𝑡𝑗 , 𝐰ℎ𝑡𝑖)

0,Ω

+      

          + 𝑗𝜔𝜇0(𝑌(𝐰ℎ𝑡𝑗 ⋅ 𝐥), 𝐰ℎ𝑡𝑖 ⋅ 𝐥 )0,Γ                

                     𝑖, 𝑗 ∈ 1, … , 𝑛𝑒.                                              (24) 
In this case, too, whenever  𝛽 = 0 everywhere in Ω, 

the two matrices [𝐴𝑧𝑡] and [𝐴𝑡𝑧] become trivial and the 

discrete problem splits into two disjoint parts: one for 

[𝑒𝑧], the other for [𝑒𝑡]. These are the classical two-

dimensional problems for TM and TE polarized fields, 

respectively, in the presence of motionless media. 

It is important to note that the second and third 

addends in the right-hand side of (21) are independent  

of 𝛽. The same is true for the first and third addends in 

the right-hand side of (24). Taking account of (6) one 

easily deduces that, for small values of the maximum of 

|𝛽|, 𝜁2 ≈ 𝛽(𝜇𝑟𝜀𝑟 − 1) and all entries of [𝐴𝑧𝑡] and [𝐴𝑡𝑧] 
have magnitudes which are smaller or equal to numbers 

proportional to the maximum of |𝛽|, under the same 

conditions. Finally, the addends of the right-hand sides 

of (21) and (24) which depend on 𝛽, again for small values 

of the maximum of |𝛽|, involve 𝜁1 ≈ 1 + (1 − 𝜇𝑟𝜀𝑟)𝛽
2 

and 1 + 𝜀𝑟𝜇𝑟 − 𝜁1 ≈ 𝜀𝑟𝜇𝑟 − (1 − 𝜇𝑟𝜀𝑟)𝛽
2. Thus, the 

considered quantities are only slightly affected by the 

motion, if the maximum of |𝛽| is small. 

In order to solve the algebraic linear system (19) 

several algorithms can be adopted. Among these, we 

consider iterative solvers, which are very popular for  

the solution of linear systems arising in finite element 

simulations [19] (pp. 382, 383, 396-405), [20] (p. 334). 

The stopping criteria we adopt in all cases, which defines 

when the iterative solution has reached convergence, is 

“criterion 2” of [21] (p. 60). For the reader convenience 
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we recall that this criterion requires at the beginning  

the calculation of the Euclidean norm ||[𝑙]|| of [𝑙]. At 

iteration 𝑖 the approximate solution [𝑒]𝑖 determines an 

error ||[𝐴][𝑒]𝑖 − [𝑙]||. The iterative process is stopped 

when the condition ||[𝐴][𝑒]𝑖 − [𝑙]|| < 𝛿||[𝑙]|| is satisfied, 

where 𝛿 is the so-called residual. Usually, 𝛿 is a small 

value in the range [10−12, 10−9] when double precision 

arithmetic is used [21] (pp. 58-60). 

If we assume TM polarized plane wave as the 

incident wave, then as the maximum value of |𝛽| goes  

to zero, the Euclidean norm of components of [𝑒𝑡] goes 

to zero whereas that of components of [𝑒𝑧] goes to  

the non-zero value of the corresponding motionless 

problem. Hence the loss of number of significant digits 

due to round-off errors becomes large for the transverse 

components. Since for low values of |𝛽|, ||[𝑒𝑡]|| becomes 

proportional to |𝛽| and ||[𝑒𝑧]|| remains almost constant, 

the ratio 
||[𝑒𝑡]||

||[𝑒𝑧]||
 becomes proportional to |𝛽| as well. We 

know that 
||Δ[e]||

||[𝑒]||
≤ 𝐾𝐴Δ𝑟𝑜𝑢𝑛𝑑𝑜𝑓𝑓 . Here Δ[𝑒] is the error 

in the solution due to round-off, 𝐾𝐴 the condition number 

of matrix [𝐴]. Δ𝑟𝑜𝑢𝑛𝑑𝑜𝑓𝑓 = (
||Δ[𝐴]||

||[𝐴]||
+

||Δ[𝑙]||

||[𝑙]||
+ 𝛿), where 

Δ[𝐴] and Δ[𝑙] denote change in [𝐴] and [𝑙] due to round-

off. Now assuming that the round-off errors are uniformly 

distributed across the elements of [𝑒], it is easy to deduce 

that 
||Δ[𝑒𝑡]||

||[𝑒𝑡]||
≤

𝑛𝑛+𝑛𝑒

𝑛𝑒

||[𝑒]||

||[𝑒𝑡]||
𝐾𝐴Δ𝑟𝑜𝑢𝑛𝑑𝑜𝑓𝑓 . At low values  

of |𝛽| we can consider ||[𝑒]|| ≈ ||[𝑒𝑧]|| and that 

Δ𝑟𝑜𝑢𝑛𝑑𝑜𝑓𝑓 ≈ 𝛿. Thus we can write: 

                     
||Δ[𝑒𝑡]||

||[𝑒𝑡]||
≤
𝑛𝑛 + 𝑛𝑒

𝑛𝑒

||[𝑒𝑧]||

||[𝑒𝑡]||
𝐾𝐴𝛿.             (25) 

Thus, it can be seen that the residual error on the 

transverse component can be magnified by a factor of 
𝑛𝑛+𝑛𝑒

𝑛𝑒

||[𝑒𝑧]||

||[𝑒𝑡]||
𝐾𝐴 for small |𝛽| values. If the maximum 

allowable error is 𝛿𝑚𝑎𝑥, then it needs to be ensured that 
𝑛𝑛+𝑛𝑒

𝑛𝑒

||[𝑒𝑧]||

||[𝑒𝑡]||
≤

𝛿𝑚𝑎𝑥

𝐾𝐴𝛿
. 

 

IV. DEFINITION OF A TEST CASE AND OF 

THE RELEVANT ERRORS 
In order to deduce some results on the accuracy of 

finite element solutions in the presence of axially moving 

cylinders we need to consider simple problems which 

allow the calculation of the fields of interest with other 

reliable tools. For this reason, we consider single 

canonical cylinders moving in the axial direction. 

Analogous studies have been performed under the  

same type of simplifying assumptions related to the 

inhomogeneity of the media involved, the particular 

shapes of the scatterers or the illuminating field (see,  

for example, [20] (p. 188) or [22]). For this reason, we 

consider the case of a circular cylinder hosted in vacuum 

and illuminated by a uniform plane wave. In particular, 

the cylinder axis is assumed to be the 𝑧 axis and the 

cylinder cross-section will have a radius 𝑅 ≤ 0.2  m.  

The medium inside the cylinder is assumed to be 

homogeneous and, in its rest frame, isotropic and not 

dispersive. It will be characterized by 𝜇𝑟 = 1. We 

assume that such a medium is in uniform motion along 

the 𝑧 axis. Finally, we will consider a TM-polarized 

incident plane wave impinging orthogonally on the 

cylinder and defined by 𝐸𝑧
𝑖𝑛𝑐 = 𝐸0𝑒

𝑗2𝜋𝑓√𝜇0𝜀0𝑦, 𝑓 being 

the frequency always equal to 1 GHz except for one  

case when 𝑓 = 500 MHz will be considered. The choice 

of the simple canonical problem just described was 

motivated not only by the possibility of finding semi-

analytical solutions by using other tools, but also by the 

possible application of this study to the reconstruction  

of 𝛽 profiles, as it will be explained later on. In the 

following we will consider several different values for 

the normalized axial speed 𝛽 of the cylinder, for its 

relative permittivity 𝜀𝑟 (in its rest frame) and for its 

radius 𝑅.  

For problems of this class an efficient semi-analytical 

procedure, able to compute very good approximations  

of their solutions was proposed by Yeh [4] (see also 

Remark 5 of [15]). 

The scattering problems just defined are numerically 

studied by using a finite element simulator based on  

the considerations reported in the previous section. The 

domain of numerical investigation we have adopted is, 

in any case, a polygon approximating a circle in the 

(𝑥, 𝑦) plane, whose center is at the origin and whose 

radius is equal to 0.4 m. Such a numerical domain is 

discretized by using several meshes. In particular, all 

these meshes are obtained by using 𝑛 concentric circles 

and, starting from the center, the innermost circle is 

divided into 6 segments, the next one in 12 and so on. 

The domain is thus divided almost uniformly into 6𝑛2 

triangles, with 1 + 3𝑛 + 3𝑛2 nodes, 3𝑛 + 9𝑛2 edges and 

6𝑛 boundary edges. An example of one mesh of this type 

can be found in Fig. 1 of [22] (the reader has to consider 

just the upper base of the three-dimensional cylinder 

shown in that figure). In the following 𝑛 will be equal  

to 20, 40, 80, 120, 160 or 200. Correspondingly, we  

will get a mesh characterized, respectively, by ℎ equal  

to 0.0285874, 0.0143858, 0.00721629, 0.00481608, 

0.00361402 or 0.00289216 m, with, respectively, 1261, 

4921, 19441, 43561, 77281, 120601 nodes, 2400, 9600, 

38400, 86400, 153600, 240000 elements, 3660, 14520, 

57840, 129960, 230880, 360600 edges, and 120, 240, 

480, 720, 960, 1200 boundary edges. All the indicated 

values of 𝑛 can be used to discretize scatterers whose 

radius 𝑅 is a multiple of 2 cm (respectively, 1 cm if we 

avoid using 𝑛 = 20). 

It is very important to point out that, in order to  

keep the analysis as simple as possible, we avoided 

considering meshes made up of curved triangles. This 

means, in particular, that, since the scatterer cross-
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section is not a polygon, in all our simulations we suffer 

from a kind of non-conformity [14] (p. 209). As a matter 

of fact, the scatterer has not the shape of the numerical 

scatterer and, moreover, the domain of numerical 

investigation and the numerical scatterer itself change 

their shapes for different values of n. By the same token, 

we adopted the semi-analytical procedure defined by 

Yeh [4] (the series are truncated after the first 60 terms 

for these calculations) to compute the piecewise constant 

data 𝑓𝑅𝑧ℎ and 𝑓𝑅𝑙ℎ enforcing the inhomogeneous terms in 

the admittance boundary conditions considered on Γ for 

the discretized problem (the admittance 𝑌 is set to 𝑌0 =

√
𝜀0

𝜇0
 in any case). In this way, we get another violation of 

conformity, according to [14] (p. 183). The reader should 

note that these violations of conformity were not 

considered in [12] and formally the convergence results 

we deduced there could not be applied. In the following, 

however, according to a well-established approach, we 

neglect this technical problem and assume that our 

convergence results do apply to the cases considered. 

The numerical results we will show provide a heuristic 

proof of this statement. 

An evaluation of the numerical errors of the finite 

element solutions could now be performed. However,  

we introduce an additional simplification which allows 

us to find good estimates of the errors by exploiting  

finite element calculations. In particular, we will call 

𝐸𝑧,ℎ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐   and 𝐻𝑧,ℎ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐  the first-order Lagrangian 

element expansions which are deduced by evaluating 

their degrees of freedom with the semi-analytical 

procedure proposed by Yeh [4]. Analogously, 

𝐄𝑡,ℎ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 will refer to the first-order edge element 

expansion which is deduced by evaluating its degrees of 

freedom with Yeh’s procedure. In the above three 

calculations the series involved in Yeh’s procedure are 

truncated after the first 40 terms. The reader should 

observe that 𝐻𝑧,ℎ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐  is not related to 𝐄𝑡,ℎ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐  

by the usual Maxwell’s curl equation (while 𝐻ℎ𝑧  is,  

by definition, equal to −
1

𝑗𝜔𝜇0𝜇𝑟
curl2D𝐄ℎ𝑡; see equation 

(3.3) and the considerations below Theorem 5.3 at the 

end of Section 5 of [12]). As a matter of fact, it is very 

well known that the curl of a first-order edge element 

field is piecewise constant while 𝐻𝑧,ℎ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐  is, as it  

has already been pointed out, a first-order Lagrangian 

element field. The decision to consider 𝐻𝑧,ℎ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐  and 

𝐄𝑡,ℎ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 not related by the usual Maxwell’s curl 

equation was made for the possible application of our 

results to inverse problem techniques aiming at the 

reconstruction of 𝛽 profile, as it will be further clarified 

later on. 

The previous definitions allow us to introduce a set 

of (estimates of) absolute errors on 𝐸𝑧, 𝐄𝑡 and 𝐻𝑧 by 

using different relevant norms or semi-norms. Thus we 

have: 
                𝑒𝑧,𝑎,𝑙2 = || 𝐸𝑧,ℎ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 − 𝐸ℎ𝑧 ||0,Ω ,             (26) 

               𝑒𝑧,𝑎,ℎ1 = || 𝐸𝑧,ℎ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 − 𝐸ℎ𝑧  ||1,Ω ,             (27) 

 𝑒𝑧,𝑎,𝑠𝑒𝑚𝑖 = || grad2D𝐸𝑧,ℎ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 − grad2D𝐸ℎ𝑧 ||0,Ω ,    (28) 

                 𝑒𝑡,𝑎,𝑙2 = || 𝐄𝑡,ℎ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 − 𝐄ℎ𝑡  ||0,Ω,             (29) 

              𝑒𝑡,𝑎,Γ = ||(𝐄𝑡,ℎ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 − 𝐄ℎ𝑡) ⋅ 𝐥 ||0,Γ,          (30) 

                 𝑒𝑎,ℎ𝑧 = || 𝐻𝑧,ℎ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 − 𝐻ℎ𝑧 ||0,Ω.             (31) 

In the presence of a constant relative permeability 𝑒𝑎,ℎ𝑧 

can be considered as an estimate of 
1

𝜔𝜇0𝜇𝑟
𝑒𝑡,𝑎,𝑠𝑒𝑚𝑖 , where, 

 𝑒𝑡,𝑎,𝑠𝑒𝑚𝑖 = ||curl2D𝐄𝑡,ℎ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 − curl2D𝐄ℎ𝑡 ||0,Ω, (32) 

so that we can also consider: 

              𝑒𝑡,𝑎,𝑢2𝐷 = √𝑒𝑡,𝑎,𝑙2
2 + 𝑒𝑡,𝑎,Γ

2 + 𝑒𝑡,𝑎,𝑠𝑒𝑚𝑖
2 ,           (33) 

as an estimate of the 𝑈2𝐷 norm error. 

Relative errors are important, too, especially for the 

problems of interest, due to the huge variation of some 

of the quantities involved. For this reason, we consider 

the following relative errors: 𝑒𝑧,𝑟,𝑙2, 𝑒𝑧,𝑟,ℎ1, 𝑒𝑧,𝑟,𝑠𝑒𝑚𝑖 , 

𝑒𝑡,𝑟,𝑙2, 𝑒𝑡,𝑟,Γ and 𝑒𝑟,ℎ𝑧, which are defined by dividing  

the corresponding absolute error by the norm of the 

“analytic” part involved in the definition of the absolute 

error itself. Once more, under the indicated condition, 

𝑒𝑟,ℎ𝑧 can be considered as an estimate of 𝑒𝑡,𝑟,𝑠𝑒𝑚𝑖 . 
For the TM-polarized incident field considered, it is 

important to emphasize that, for a motionless cylinder, 

the solution presents 𝐄𝑡 = 0. Moreover, for small values 

of |𝛽| it is known that ||𝐄𝑡||𝑈2𝐷 is small [16]. Thus, all 

relative errors related to the transverse part of the electric 

field (that is, 𝑒𝑡,𝑟,𝑙2, 𝑒𝑡,𝑟,Γ, 𝑒𝑟,ℎ𝑧, 𝑒𝑡,𝑟,𝑠𝑒𝑚𝑖) are expected to 

become larger and larger as |𝛽|  goes to zero. At the same 

time, it could be important to analyze the behaviours of 

these errors, especially under the indicated conditions, 

because, on the one hand, good electromagnetic 

imagining techniques, able to recover the profile of the 

axial speed, exploits only, for the indicated incident 

polarization, data related to 𝐻𝑧 =
𝑗

𝜔𝜇0
curl2D𝐄𝑡 [16]. On 

the other hand, the finite element method we are studying 

can be exploited to provide approximate values of 𝐻𝑧 at 

the measurement points for any trial solution for the 𝛽 

profile considered by the inverse procedure itself [16]. 

For this reason, in the next section, a part of our 

numerical analysis will be devoted to considerations 

related to the reliability of finite element solutions in 

terms of 𝐻𝑧 and, in particular, of 𝑒𝑎,ℎ𝑧 and 𝑒𝑟,ℎ𝑧. This part 

of the analysis was, actually, the initial motivation for 

this study. 

Remark 1: In many applications the reconstruction 

of the profiles of 𝜀𝑟 and 𝛽 are of interest [8]. For the 

indicated polarization of the incident field, the axial  
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component of the electric field is the most important 

quantity for the reconstruction of 𝜀𝑟 while the axial 

component of the magnetic field is crucial for the 

reconstruction of 𝛽 [16]. In particular, under some non-

restrictive hypotheses, the reconstruction of 𝜀𝑟 can be 

carried out neglecting any movement and by using data 

related to 𝐸𝑧 only. The estimated 𝜀𝑟 is then adopted as an 

input data for the reconstruction of the axial speed 

profile. For the indicated reasons, a finite element code 

based on a formulation expressed in terms of 𝐄 was 

considered. In our previous considerations we focused  

in particular on the generation of reliable data for the 

second step of the reconstruction process, devoted to  

the estimate of the 𝛽 profile, simply because the 

reconstruction algorithms adopted for determining 𝜀𝑟 

have been studied for decades [23] while those adopted 

to recover 𝛽 are not so standard in the framework of 

microwave imaging techniques. 

Remark 2: 𝑒𝑟,ℎ𝑧 could also be referred to a proper 

subdomain Ω𝑚 of Ω. We could use 𝑒𝑟,ℎ𝑧,Ω𝑚 as an 

alternative symbol in this case. The subdomain can also 

be of zero measure (e.g., made up of curves or points) 

because the involved quantities (𝐻𝑧,ℎ,𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐  and 𝐻ℎ𝑧) 

are continuous in Ω. However, in this case we have to 

change the norm in the definition of the error (the 𝐿2(Ω) 
norm is not meaningful anymore). 

The results provided in [12] can be applied to the 

problems here considered if some conditions involving 

𝜀𝑟 and 𝛽 are satisfied (see, in particular, Section 7 of 

[12]). In particular, in order to show some examples, we 

can say that in the presence of a cylinder having 𝜀𝑟 = 2 

the problem is well-posed and the convergence of finite 

element approximations is guaranteed (neglecting the 

conformity violations already pointed out) whenever 

|𝛽| ≤ 0.264308. For other cylinder media, for example 

when 𝜀𝑟 = 1.1 or 𝜀𝑟 = 8, the upper bounds for |𝛽| are 

0.777053 or 0.0826784, respectively. The reader should 

notice that the corresponding upper bounds for the  

axial speed values are really impressive (equal to ≃ 

232954629 m/s when 𝜀𝑟 = 1.1, ≃ 79237545 m/s when 

𝜀𝑟 = 2.0 and ≃ 24786361 m/s when 𝜀𝑟 = 8.0) and that 

they are not much smaller than the values of the 

normalized speed of light in the media considered  

(given by 
1

√1.1
≈ 0.953463, 

1

√2
≈ 0.707107 and 

1

√8
≈

0.353355, respectively). 
 

V. NUMERICAL RESULTS 
As was already pointed out, for the defined test case 

we consider several values of 𝜀𝑟, 𝛽, 𝑅 and 𝑛. The effects 

of these parameters on the errors related to 𝐸𝑧, 𝐄𝑡 and 𝐻𝑧 

are studied. In particular, the results related to 𝐸𝑧 are 

shown in the first subsection while in the second one we 

provide considerations on the errors on 𝐄𝑡  and 𝐻𝑧. From 

these two sub-sections we establish accuracy of the 

numerical simulations and the convergence behaviour of 

the components. In the third subsection, we consider the 

problematic cases where accuracy of the results related 

to 𝐄𝑡 and 𝐻𝑧 start dropping. This is due to the finite 

precision of the calculations which start to accumulate 

round-off errors when the bi-anisotropic effect is too 

weak to give a significant cross-polarized component. 
 

A. Numerical results related to 𝐄𝒛 
The first results on 𝐸𝑧 we show are all related to 

cases involving cylinders characterized by 𝜀𝑟 = 2 and 

𝑅 = 0.2 m. In particular, in Fig. 1 we report the absolute 

errors related to the axial component of the electric field, 

𝑒𝑧,𝑎,ℎ1, 𝑒𝑧,𝑎,𝑙2 and 𝑒𝑧,𝑎,𝑠𝑒𝑚𝑖 , versus ℎ for two values of 𝛽: 

𝛽 = 0 and 𝛽 = 0.25. As the reader can easily check, it 

is not possible to distinguish the results of the 𝛽 = 0  

case from those obtained when 𝛽 = 0.25. Many other 

simulations have been performed, for 𝛽 = 5  10−𝑚, 𝑚 =
1,… ,15. These additional results are not reported in Fig. 

1 because the plots would be the same as those already 

shown. In the figure two plots proportional to ℎ and ℎ2 

are provided, too, in order to be able to determine the rate 

of convergence of the results as functions of ℎ.  

As it was pointed out in Section III the results for 

the 𝛽 = 0 case can be obtained by using a traditional 

two-dimensional finite element algorithm based on first-

order Lagrangian elements (dealing with isotropic media 

at rest). There is nothing new in the results shown for  

this case, as it is very well-known [19]; we can simply 

observe that the absolute errors related to 𝐸𝑧 behave like 

ℎ2 and that 𝑒𝑧,𝑎,𝑠𝑒𝑚𝑖  is much larger than 𝑒𝑧,𝑎,𝑙2  so 

determining almost completely 𝑒𝑧,𝑎,ℎ1. 
 

 
 

Fig. 1. Behaviour of 𝑒𝑧,𝑎,ℎ1, 𝑒𝑧,𝑎,𝑙2 and 𝑒𝑧,𝑎,𝑠𝑒𝑚𝑖  versus  

ℎ, when the cylinder is at rest or moves with 𝛽 = 0.25. 

The cylinder is assumed to have 𝑅 = 0.2 m and to be 

made up of a material having 𝜀𝑟 = 2 at rest. Two plots 

proportional to ℎ and ℎ2are provided, too. 
 

The results corresponding to 𝛽 = 0.25 (determining 

a huge axial speed of 74948114.5 m/s) show that the 

finite element capability of approximating the axial 
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component of the true solution is the same as in the case 

all media are at rest. In particular, the convergence rate 

remains quadratic and, taking account of all simulations 

performed, we can say that this property is completely 

independent of 𝛽. For the same reason, no figure related 

to the relative errors on 𝐸𝑧 is provided.  

It could be interesting to observe that 𝛽 = 0.25 is 

close to the upper bound for 𝛽 reported in Section IV  

and has a significant effect on 𝐸𝑧. These effects are not 

shown in a figure for space reasons. We simply observe 

that, for example, 𝑅𝑒(𝐸ℎ𝑧) = −0.0549  V/m at the origin 

in the 𝛽 = 0 case while 𝑅𝑒(𝐸ℎ𝑧 ) = −0.132 V/m at the 

same point when 𝛽 = 0.25. Both values are obtained by 

using a mesh with 𝑛 = 320. 

 

 
 

Fig. 2. Behaviour of 𝑒𝑧,𝑟,ℎ1 versus ℎ for different values 

of 𝛽 and 𝜀𝑟. In particular, for any value of 𝜀𝑟 one of  

the largest possible normalized axial speed values is 

considered in addition, for both cases, to 𝛽 = 0. The 

scatterer radius is 𝑅 = 0.2 m. 

 

The previous considerations on the independence of 

the accuracy of the 𝐸𝑧 results from the value of 𝛽 seem 

to be correct even when the other parameters are changed. 

For example, if we consider 𝜀𝑟 = 1.1 or 𝜀𝑟 = 8 we get 

the relative errors shown in Fig. 2. The reader can easily 

observe that the error behaviour in both cases does not 

depend on 𝛽 and that the convergence rate remains 

𝑂(ℎ2). However, for any given mesh, the relative errors 

on 𝐸𝑧 are larger for 𝜀𝑟 = 8  than for 𝜀𝑟 = 1.1, due to the 

reduction of the wavelength in the scatterer by a factor 

approximately equal to 2√2. This effect is very well 

known and does not require any additional comment 

[19], [20] (p. 344). 

Changes on 𝑅 are considered, too, but the conclusion 

for the errors on 𝐸𝑧 remains unaltered. When 𝜀𝑟 = 2 and 

𝑅 = 0.02 m we get, by using a mesh with 𝑛 = 320, 

𝑒𝑧,𝑟,ℎ1 = 0.269  10−3 if 𝛽 = 0 and 𝑒𝑧,𝑟,ℎ1 = 0.270  10−3 

if 𝛽 = 0.25. The corresponding quantities obtained 

when 𝜀𝑟 = 2 and 𝑅 = 0.2 m (with the same mesh) are 

𝑒𝑧,𝑟,ℎ1 = 0.557  10−3 if 𝛽 = 0 and 𝑒𝑧,𝑟,ℎ1 = 0.563 10
−3 

if 𝛽 = 0.25. 

Overall we can say that the finite element 

approximation of 𝐸𝑧, in the presence of axially moving 

cylinders illuminated by TM-polarized incident plane 

waves, is as satisfactory as in the presence of motionless 

scatterers, independently of all values of the parameters 

considered. 

 

B. Numerical results related to 𝐄𝐭 and 𝑯𝒛 

In this sub-section we examine the errors related  

to the cross-polarized component 𝐄𝑡 and the related 

magnetic field component 𝐻𝑧. These quantities are zero 

in the motionless case, and arises because of the bi-

anisotropic effect due to motion. The convergence of 

these components are examined and the accuracy of the 

simulation is established for a large range of parameters 

like 𝛽, 𝜀𝑟 and 𝑅 of the scatterer. 

 

 
 

Fig. 3. Behaviour of 𝑒𝑡,𝑎,𝑢2𝑑, 𝑒𝑡,𝑎,𝑙2, 𝑒𝑡,𝑎,𝛤 and 𝑒𝑡,𝑎,𝑠𝑒𝑚𝑖  
versus ℎ, when the cylinder moves with 𝛽 = 0.25. Plots 

proportional to 𝑒𝑡,𝑎,𝑠𝑒𝑚𝑖 is also reported for 𝛽 = 5 10−𝑚, 

𝑚 = 6, 9. 𝐶 = 5 107. The cylinder is assumed to have 

𝑅 = 0.2 m and to be made up of a material having  

𝜀𝑟 = 2  at rest. Two plots proportional to ℎ and ℎ2 are 

provided, too. 

 

In Fig. 3 some results related to the absolute errors 

on 𝐄𝑡 are shown. The case 𝛽 = 0 is not meaningful for 

the present analysis because, for the test case considered, 

the solution has 𝐄𝑡 = 0 in Ω and the finite element 

method is able to compute 𝐄ℎ𝑡 = 0 in Ω for any mesh 

considered. For this reason, the results refer to cases in 

which 𝛽 ≠ 0. A complete set of results is shown for 𝛽 =
0.25. One can observe that 𝑒𝑡,𝑎,𝑠𝑒𝑚𝑖  is much larger than 

𝑒𝑡,𝑎,𝑙2  and 𝑒𝑡,𝑎,Γ so that 𝑒𝑡,𝑎,𝑢2𝑑 ≈ 𝑒𝑡,𝑎,𝑠𝑒𝑚𝑖 . Moreover, it 

can be observed that the convergence rate is 𝑂(ℎ) for all 

errors considered. The values of 𝑒𝑡,𝑎,𝑠𝑒𝑚𝑖 for 𝑚 = 6 and 

𝑚 = 9 are also shown in the figure. Over this large range 

of 𝛽, the convergence behaviour is not affected. 
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Now we verify what happens when the cylinder  

is made up of other materials. As in the previous 

subsection, we will consider 𝜀𝑟 = 1.1 and 𝜀𝑟 = 8 along 

with 𝜀𝑟 = 2. Figure 4 shows the relative error in 𝐻𝑧 for 

these cases. The results are analogous to Fig. 2 except  

for the slower rate of convergence. Again, an increase in 

𝜀𝑟 results in an increase in discretization error, due to the 

reduction in wavelength. The errors remain largely 

independent of 𝛽 over a wide range, with 𝛽 which could 

be as low as 5  10−9. 

 

 
 

Fig. 4. Behaviour of 𝑒𝑟,ℎ𝑧 versus ℎ for different values  

of 𝛽 and 𝜀𝑟. In particular, 𝜀𝑟 = 1.1, 𝜀𝑟 = 2  and 𝜀𝑟 = 8 

are considered. In each case a value close to the upper 

bound of 𝛽 is taken along with 𝛽 = 5 10−9. Two plots 

proportional to ℎ and ℎ2are provided, too. 

 

Finally, we study the effect of changing the radius 

of the scatterer. Along with the 𝑅 = 0.2 m considered for 

the previous instances, 𝑅 = 0.1 m and 𝑅 = 0.05 m were 

examined. It is not appropriate to consider too small 

values of 𝑅. This is because of the non-conformity due 

to polygonal approximation of the circular boundary of 

the scatterer, as was explained in section IV. Instead  

the frequency is reduced so that the ratio of 𝑅 to the 

wavelength reduces, which is expected to give an 

equivalent effect on discretization error. Hence, we study 

𝑓 = 500 MHz in addition to 𝑓 = 1 GHz considered  

in the preceding cases. The discretization error is not 

affected much by the reduction in radius of the scatter. 

With 𝑛 = 120 and 𝑓 = 1 GHz, for 𝛽 ≤ 5 10−10 the 

relative errors remain below 4% for all variations of  

𝑅 considered. As for the effect of reducing 𝑓, the 

discretization error drops below 2% which is expected 

from the increase in wavelength. 

The results in this subsection and the last one show 

as expected [12], that the finite element approximation  

is converging to the true solution (notwithstanding the 

two violations of conformity pointed out in Section  

IV). However, the results related to 𝐄𝑡 and 𝐻𝑧 do start 

becoming worse due to round-off errors when the 

magnitude of these quantities become small. We consider 

such cases in the next section. 
 

C. Problematic results related to 𝐄𝐭 and 𝑯𝒛 

In this subsection, we consider the cases when  

the round-off error becomes significant. As indicated  

by Equation (25), when the cross-polarized component 

becomes too low, the round-off error becomes more and 

more significant. Although we get good accuracy for the 

co-polarized component, the cross-polarized component 

could be unreliable. This could be the case with very low 

values of 𝛽, 𝜀𝑟 or 𝑅. Hence, in these critical cases, one 

needs to be careful with the simulations. 

In Fig. 5 the relative errors pertaining to 𝐻𝑧 are 

shown with respect to ℎ for small 𝛽 values with 𝑚 =
10,… ,15. For sufficiently small values of ℎ, although 

the errors remain less than 10% up to 𝑚 = 12, they start 

increasing for finer discretizations. The results become 

completely unreliable for smaller values of 𝛽. A finer 

discretization need not produce a decrease in the error  

in these critical cases, since the increase of round-off 

error is dominating over the reduction in discretization 

error. These results suggest that one should be careful in 

dealing with these delicate cases. One may have to make 

use of higher precision calculations to accurately solve 

these problems. 

In Fig. 6 we examine the effect of different 

permittivity values along with small 𝛽. Again 𝜀𝑟 = 1.1 

and 𝜀𝑟 = 8.0 are taken and we consider 𝑚 = 10, 11, 12. 

The trend remains similar to that for 𝜀𝑟 = 2.0 in Fig. 5. 

For 𝜀𝑟 = 8.0, the errors start off large, due to higher 

discretization error, and goes on becoming worse due  

to round-off. For 𝜀𝑟 = 1.1, the discretization error is 

smaller than that for 𝜀𝑟 = 2.0. But once the round-off 

error becomes significant it can increase very quickly. 
 

 
 

Fig. 5. Behaviour of 𝑒𝑟,ℎ𝑧 versus ℎ, when the cylinder 

moves with 𝛽 = 5 10−𝑚, 𝑚 = 10,… , 15. The cylinder 

is assumed to have 𝑅 = 0.2 m and to be made up of a 

material having 𝜀𝑟 = 2 at rest. 
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In Fig. 7 the relative error on 𝐻𝑧 is plotted against  

𝛽 values. Three different values are considered for the 

radius of scatterer, 𝑅 = 0.2, 𝑅 = 0.1 and 𝑅 = 0.05 meters. 

The calculations are done for two frequency values  

𝑓 = 1 GHz and 𝑓 = 500 MHz. The bi-anisotropic effect 

reduces as the scatterer becomes smaller, which might 

result in a higher round-off error. This could explain  

why the error starts increasing at 𝑚 = 11 in the case of 

𝑓 = 1 GHz whereas for all other cases the error is stable 

till 𝑚 = 12. 
 

 
 

Fig. 6. Behaviour of 𝑒𝑟,ℎ𝑧 versus ℎ for different values  

of 𝛽 and 𝜀𝑟. We consider 𝜀𝑟 = 1.1 and 𝜀𝑟 = 8.0 with 

𝛽 = 5 10−𝑚 and 𝑚 = 10, 11, 12. 

 

 
 

Fig. 7. Behaviour of 𝑒𝑟,ℎ𝑧 versus 𝛽 for different values  

of the scatterer radius 𝑅 and of the frequency 𝑓. The 

values of 𝛽 which are particularly critical for 𝑒𝑟,ℎ𝑧 are 

considered. The cylinder is assumed to be made up of a 

material having 𝜀𝑟 = 2 at rest. The numerical solutions 

are computed by using a mesh with 𝑛 = 120. 

 

In Fig. 8 we plot the values of 
𝑛𝑛+𝑛𝑒

𝑛𝑒

||[𝑒𝑧]||

||[𝑒𝑡]||
 versus 𝛽. 

As long as the computation of [𝑒𝑡] is reasonably accurate, 

the value of 
𝑛𝑛+𝑛𝑒

𝑛𝑒

||[𝑒𝑧]||

||[𝑒𝑡]||
 is as expected proportional to 

𝛽−1. For the problem considered here the constant of 

proportionality is close to 2 in case of 𝜀𝑟 = 8 and 𝜀𝑟 = 2 

and close to 20 for 𝜀𝑟 = 1.1. Thus the margin for error 

steadily decreases in accordance with Equation (25) as 𝛽 

decreases below 5 10−9 which corroborates the observed 

results. 

The results in this subsection suggests that one must 

be careful with simulations involving weak bianisotropic 

effects. One needs to keep in mind the possible 

corruption of the results due to round-off errors. It may 

be required to use higher precision calculations to get 

reliable results in such instances. If one has a good 

estimate of the condition number, then it is possible to 

gauge the reliability of the result in terms of round-off 

error as indicated by Equation (25). However, the results 

that are obtained for the test case considered here 

reassure that one can obtain reliable solutions for a very 

wide span of parameters. 

 

 
 

Fig. 8. Values of 
𝑛𝑛+𝑛𝑒

𝑛𝑒

||[𝑒𝑧]||

||[𝑒𝑡]||
 versus 𝛽 for different 

values of 𝜀𝑟 and 𝑛. We consider 𝑛 = 120 with 𝜀𝑟 = 1.1, 

𝜀𝑟 = 2 and 𝜀𝑟 = 8. In addition, the value corresponding 

to 𝑛 = 200 with 𝜀𝑟 = 2 is also shown. A plot of 𝛽−1 

provided too. 

 

VI. ISSUES RELATED TO NUMERICAL 

SOLUTION PROCEDURE 
As it was already pointed out, iterative methods are 

very often exploited to compute the solution of the 

algebraic linear systems determined by electromagnetic 

finite element codes [19] (pp. 382, 383, 396-405). In 

particular, the BiCG (biconjugate gradient method) [19] 

(pp. 396-405) is known to be particularly efficient for 

time-harmonic electromagnetic problems [24] (p. 308) 

involving only traditional media. However, we observed 

that in our case, this method fails to converge for values 

of 𝛽 which are not very small. This is because the 

structure of the matrix [𝐴] is altered, since its submatrices 

[𝐴𝑧𝑡] and [𝐴𝑡𝑧] become more significant for higher 𝛽 

values. We may use some alternative iterative methods 
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in such cases [21], [25]. In particular, CGNE (Conjugate 

gradient on normal equation) is a simple alternative. 

However, the condition number is squared in this case 

resulting in slower convergence and worse round-off 

errors. Use of preconditioner can help improve the 

condition number of the system both when BiCG and 

CGNE are used. Simple Jacobi preconditioner was  

used for this purpose in the present work and the 

corresponding methods are denoted as BiCGJP and 

CGNEJP. 

All the results shown in Section V were calculated 

by using BiCG, BiCGJP, CGNE or CGNEJP. We give a 

brief discussion of their performance here. If the algebraic 

linear system to be solved is [𝐴][𝑒] = [𝑙], as reported  

in Section III, we initially calculate the euclidean norm 

||[𝑙]|| of [𝑙] and do not stop the iterative solver until  

the approximate solution [𝑒]𝑖 at iteration 𝑖 satisfies 

||[𝐴][𝑒]𝑖 − [𝑙]|| < 𝛿||[𝑙]||, with 𝛿 always equal to 10−𝑝, 

𝑝 ∈ {10,… ,16}. One should avoid using larger values  

of 𝑝 when double-precision arithmetic is used [21] (p. 

58). In order to avoid presenting unreliable results we 

computed them at least twice, for two consecutive values 

of 𝑝. When the outcomes were different we considered 

the next larger value of 𝑝 and did not stop this process 

until, for two consecutive values of 𝑝, we got the same 

result (with a tolerance equal to 0.1%). 

Independently of the reliability of the outcome, we 

find that the BiCGJP is able to compute the solutions for 

all values of 𝛽 and 𝑝 considered and all 𝑛 ≤ 80. For finer 

meshes the convergence of biconjugate iterative solvers 

is not guaranteed anymore. Consider, for example, some 

data for the test cases with 𝜀𝑟 = 2, 𝑅 = 0.2 m and 𝑓 = 1 

GHz. When 𝑛 = 120, BiCGJP does not converge for 

𝛽 ≥ 5 10−5 (for this specific example the smallest 

residual value seems to be ≃ 0.26 which is by far too 

large to stop the iterations). BiCG fails to converge, with 

the same 𝑛, for 𝛽 ≥ 5 10−3 (the smallest residual value 

is ≃ 0.026). For a mesh obtained by using 𝑛 = 160 

BiCG (respectively, BiCGJP) does not converge for 𝛽 ≥
5 10−7 (respectively, 𝛽 ≥ 5 10−5). When 𝛽 = 5 10−7 

the smallest residual value is ≃ 3.2 10−7 (respectively, 

≃ 0.28 for 𝛽 = 5 10−5). For the same mesh, by using 

𝑝 = 13, BiCGJP converges in 20214 steps (with the 

indicated mesh we have 308161 unknowns) for 𝛽 =
5 10−7and in 242643 steps for 𝛽 = 5 10−6. Finally, 

when 𝑛 = 200 we have 481201 unknowns and BiCGJP 

and BiCG fail to converge for 𝛽 ≥ 5 10−7, reaching a 

minimum residual value, for 𝛽 = 5 10−7, of 0.45 10−5 

and, respectively, 0.5. For this mesh, BiCGJP converges 

in 22956, 20001, 17834 and 13415 steps for 𝛽 = 5 10−𝑚, 

with m  respectively equal to 8, 9, 10, 11 for 𝑝 = 15. It 

is also interesting to point out that it converges in 3556 

steps for 𝛽 = 0 (and 𝑝 = 15 as before). 

From the previous considerations, one can also 

understand that most of our results were calculated  

by using CGNE or CGNEJP. The convergence of this 

type of algebraic solver, however, is by far too slow, 

independently of the use of the preconditioner. Even 

though this is not a surprise [24] (p. 308), [21] (p. 18), it 

is instructive to report some data. For example, CGNE, 

for 𝑝 = 15 and 𝑛 = 200, requires 536957 steps to 

converge for 𝛽 = 5 10−6 and 710410 steps for 𝛽 = 0.25 

(𝜀𝑟 = 2, 𝑅 = 0.2 m, 𝑓 = 1 GHz). The results are not 

much better when the point Jacobi preconditioner is 

used. For example, with the usual values of 𝜀𝑟, 𝑅 and  

𝑓, for 𝑛 = 120 and 𝛽 = 0.25 CGNEJP converges in 

220942 steps (173521 unknowns) while CGNE does the 

same requiring 233866 steps (𝑝 = 13 in both cases). In 

terms of CPU time the difference is even lower (equal, 

more or less, to 4% on the same computer). 

Thus, for small values of 𝛽 BiCG and BiCGJP are 

suitable for giving fast convergence and lower round-off 

errors compared to CGNE and CGNEJP. The methods 

break down for larger values of 𝛽 and we can use CGNE 

or CGNEJP which converge but at a much slower rate. 

 

VII. CONCLUSIONS 

The accuracy of finite element results in the 

presence of axially moving cylinders is analyzed for the 

first time, to the best of authors’ knowledge. 

The study refers to relative and absolute errors 

related to two components of the electromagnetic field. 

The part of the results presented concerning one of the 

two components is new but the outcome is analogous  

to the one which is obtained when all media involved  

are motionless. The second part is related to the field 

component which is specifically excited by the presence 

of moving objects. This field component is the most 

difficult to be approximated. For its information content 

related to the motion of the objects, it could also be the 

most important component to be evaluated, at least for 

some applications. 

This study has shown that finite element simulators 

based on double precision arithmetic could guarantee 

extraordinary reliability of all their outcomes. These 

performances suggest that the indicated simulators can 

be exploited and could become the reference method  

for astrophysics, engineering and medical applications 

involving media in motion. 
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