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Abstract ─ In this paper, a parallel non-overlapping 

domain decomposition method (DDM) using electric 

field integral equation (EFIE) is proposed for fast and 

accurate analysis of electrically large PEC objects with 

changeable parts in the condition of limited resources. 

The approach has considered that there are null fields as 

well as electric current inside a metal object in the 

original problem, then a novel transmission condition 

similar to an absorbing boundary is adopted, hence the 

continuity of electric currents is enhanced and the 

convergence is further improved in the outer iterative 

procedure. Moreover, the coupling between different 

subdomains is calculated in the manner of near field 

to avoid the storage of the mutual impedance. Some 

numerical examples are given to demonstrate the 

efficiency and stability of the proposed method.  

Index Terms ─ Domain decomposition method, electrically 

large, integral equation, transmission condition. 

I. INTRODUCTION
In the research field of electromagnetic (EM) 

scattering, the situation that the local elements located in 

the overall target rotate or translate while most of the 

elements remain unchanged is often encountered, for 

example the gun barrel of a tank rotating or a certain 

aircraft changing flight posture during formation 

flying. Generally, in order to study the EM scattering 

characteristics of the changed model, we have to re-

compute the overall target, even though only a small 

element of the overall target has changed. Obviously, it 

is extremely time-consumed and wasteful of computing 

resources for the recalculation of the unchanged parts. It 

is desirable for computational electromagnetic to provide 

efficient algorithms for such demands of practical 

engineering. 

Nowadays, Method of Moment (MoM) based on 

integral equation (IE) is the most accurate numerical 

methods in the field of computational electromagnetics, 

which is a numerical method based on Maxwell equation 

and the boundary conditions of a given problem [1]. 

However, a huge complex dense matrix will be generated 

when solving electrically large EM problems, causing 

that the time taken to solve the matrix equation by using 

lower/upper (LU) decomposition solver accounts for 

more than 90% of the total calculation process. More 

important is that the memory requirement and the 

computing complexity of the LU solver are in proportion 

to O(N2) and O(N3 ), respectively, where N is the number 

of unknowns. Hence, its expensive demands for memory 

and computing time to solve the matrix equation limit the 

application of MoM [2]. In order to reduce the memory 

requirement and computation complexity, the traditional 

high frequency methods [3, 4] or fast algorithms such as 

the fast multiple methods [5, 6] are proposed. However, 

the high frequency methods are at the expense of accuracy, 

and fast algorithms may confront with slow convergence 

or even divergence issues in applications involving 

complex structures [2]. 

The domain decomposition method (DDM) based 

on electric field integral equation (EFIE) paves a new 

way to break through these bottlenecks and has become 

an effective method to solve electrically large problems 

[7-10]. In view of this, combining the EFIE with DDM 

(IE-DDM) makes it possible to solve some problems that 

we faced. Further, this method provides unprecedented 

flexibility and convenience for simulating the object 

with changeable parts, since it stores the unchanged 

portion matrix after LU factorization in random access 

memory (RAM) and just needs to re-compute the changed 

portion of the model during the design process. Finally, 

the accurate results of each case are obtained through 

iterative solution and hence the memory requirements 

and CPU time are reduced greatly. It is should be pointed 

out that the coupling between different subdomains is 

obtained using the near field produced by the current to 

avoid the storage of the mutual impedance [2].  

To further improve the ability and efficiency of 
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the DDM for simulating scattering performances of 

electrically large EM objects, one of frequently used 

and effective ways is to adopt parallel EM algorithm on 

distributed-memory computers [11-14]. In this case, this 

paper uses Message Passing Interface (MPI) parallel 

programming model to accelerate the solution of the EM 

problems with changeable parts. 

This paper is organized as follows. In Section II, the 

algorithm of the non-overlapping DDM is presented. 

Section III provides numerical examples to demonstrate 

the correctness and robustness of the proposed method. 

Finally, some conclusions are given in Section IV. 

II. FORMULATION

A. Domain decomposition strategy

An arbitrarily shaped three-dimensional PEC

problem can be modeled with surface integral equations. 

The scattered electric filed Es generated by the equivalent 

electric current J residing on the PEC surface S shown in 

Fig. 1 can be established firstly [1]: 

( ( )) ( ( )),s L E J r J r   (1) 

where     is the wave impedance in free-space,

and L(J(r)) is linear operator, which given by: 

2

1
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where G(R) is the Green’s function, R  r r  is the 

distance between the source and the field point. ( )J r  is 

the equivalent surface electric current on the PEC surface 

S and can be expanded in a set of known functions with 

unknown coefficients an
S, which can be expressed as [1, 

2]: 

1

( ) ( ),
N

S

n n

n

a


 J r f r (3) 

where N is the number of RWG basis functions ( )n
f r  

on surface S [1]. 

Compared with overlapped DDM [7, 8], the integral 

equation based non-overlapping domain decomposition 

method (IE-NDDM) proposed in this paper only adds 

artificial touching-faces between adjacent subdomains to 

make each of them closed. In the following, a novel 

domain decomposition strategy will be introduced. For 

the sake of clarity, it is considered that a PEC object Ω is 

divided into three non-overlapping closed subdomains 

Ω1, Ω2 and Ω3, which is illuminated by incident plane 

wave  ,inc incE H as shown in Fig. 1. Sm is the exterior 

boundary except the artificial touching-face St,m of the 

subdomains Ωm. St,m denotes the artificial touching-face 

between the subdomain Ωm and Ωn except the curve Гmn. 

Гmn  is defined as the boundary curve of the artificial 

touching-face St,m. ˆ
mn  is the outward unit vector of the

subdomain Ωm. 
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Fig. 1. Decomposition of Ω into three non-overlapping 

subdomains Ω1, Ω2 and Ω3. 

Then, the equation (3) can be rewritten as: 
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where Nm is the number of RWG basis functions on 

surface Sm. Due to the introduction of artificial touching-

face, the current Jm residing on the subdomain m (m=1, 

2, 3) can be expressed as: 
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 (5) 

Generally, the first order transmission condition is widely 

used on the artificial touching-faces to ensure the 

continuity of electric currents, expressed as: 

,( ) ( ),   .m m t mS     J r J r r (6) 

In addition, it is well known that there are null 

electric fields as well as electric currents inside the PEC 

object as shown in Fig. 1 [1, 2]. With this taken into 

account, a novel explicit boundary condition is given: 
,1 ,1 ,2 ,2

1, 2, 2, 3, ,1 ,2,   , ,t t t tS S S S

m m m m t ta a a a m S S     (7) 

which combines equation (5) and (6) to efficiently solve 

the PEC problem. In fact, this novel explicit boundary 

condition can be regarded as an absorbing boundary, 

which not only enhances the continuity of electric currents 

across adjacent subdomains, but also ensures the IE-

NDDM being equivalent to the original problem (see 
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Section III.A). 

B. Fast solving scattering problems with changeable

parts

For explanation purposes, the Galerkin test is adopted 

to weight linear equation (1) and the following matrix 

equations is obtained [1, 2]: 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

,

     
     


     
          

Z Z Z I V

Z Z Z I V

Z Z Z I V

(8) 

where Zij (i=j) is the self-impedance matrix in subdomain 

Ωi, Zij (i≠j) is the mutual impedance matrix between 

subdomain Ωj and Ωi, Ii is the unknown current 

coefficient to be determined and Vi denotes the given 

source vector in subdomain Ωi. 

The unknown coefficients will be persistently 

updated by solving the local model equation until 

convergence. The number of iteration is initialized being 

zero (k=0), and the currents in all subdomains are 

zero (Ii(0)=0 (i=1,2,3)). The user-specified convergence 

parameter is δ. Setting k=1, 2 …, at k+1th step, the 

unknown current coefficients can be expressed as: 
( ) ( ) ( ) .k k k

i ii ij j ii ij j ii i

j i j i

   

 

    
1 1 1

1 1
I Z Z I Z Z I Z V  (9) 

The residual error δk at kth iteration is used to 

express the convergence behavior of the iterative method, 

which is defined as: 
( ) ( 1)

( )
,   ( 1,2,3, ).

k k

i i

k k

i

i


 

I I

I
 (10) 

When max (δk) ≤ δ at the kth step, the iterative process 

stops. It is should be pointed out that the mutual 

impedance in equation (9) is actually unnecessary to be 

stored and the product ∆Vi
(k+1) of Zij and Ij

(k+1) (j<i) or 

∆Vi
(k) of Zij and Ij

(k) (j>i) can be obtained using the near 

field produced by the current, 
( ) ( ) ( )( ) ( )ds,  ( ),

i

k k k

i ij j n i
S

i j  V = Z I Ef r J (11) 

where Si is the exterior boundary of subdomain Ωi, and 

Ei
(k) denotes the nearfield of subdomain Ωi produced 

by the rest subdomains at kth step. Hence the memory 

requirement and CPU time are reduced greatly [16]. 

In order to describe the process of solving scattering 

problems with changeable parts using IE-NDDM 

proposed in this paper, we take the decomposed PEC 

object with three subdomains shown in Fig. 2 as an 

example. In this case, compared with Fig. 1, only the 

posture of subdomain Ω1 has changed and is named 

changeable parts. Thus, the self-impedance matrix Z11 in 

subdomain Ω1 has changed also [2]. Especially, we have 

stored the self-impedance matrix of subdomain Ω2 and 

Ω3 after LU factorization in RAM, namely, unchanged 

portion matrix, when simulating the case shown in Fig. 

1. At this time, the computation and factorization of the

self-impedance matrix Zii (i=2, 3) can be avoided to save

computing time. Finally, the accurate results can be 

obtained through iterative solution expressed by equation 

(9). 
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Fig. 2. Notations for domain decomposition with 

changeable parts. 

C. Parallelization implementation on IE-NDDM

In this paper, the parallel IE-NDDM code is

implemented through MPI. The flowchart of parallel IE-

NDDM solving EM problems with changeable parts is 

shown in Fig. 3. In order to facilitate the implementation 

of the algorithm, the changeable parts are divided into 

one or more subdomains numbered 1, 2…m, during the 

modeling process. 

First step, all parallel processes are used to set up and 

solve the matrix equation of a single self-domain in turn, 

until the calculation of all self-domains is finished. The 

parallel implementation in self-domain mainly involves 

parallel matrix filling followed by a parallel solution of 

the dense matrix equation. It is necessary to divide self-

domain matrix into matrix blocks and distribute those 

blocks to different processes for the purpose of load 

balance. Specifically, a block-cyclic matrix distribution is 

adopted among processes [2]. In addition, the parallel LU 

decomposition is utilized as the parallel matrix equation 

solver for the sake of accuracy [15]. Figure 3 shows this 

process under the labels computing self-domain matrix. 

Second step, the coupling between subdomains is 

calculated by looping over geometric elements between 

subdomains, and in consequent, the parallelization of 

this process could be implemented directly through 

distributing those geometric elements into different 

processes uniformly. Figure 3 shows this process under 

the labels with iterative process. 

Third step, once the outer iterative procedure is 

convergent, the accurate results are obtained through 

superposition of far-field generated by all subdomains. 

Figure 3 shows this process under the labels calculating 

far-field. 

If there are one or more changeable subdomains, the 

changed subdomains need to re-compute according to step 

1, this process is shown in Fig. 3 under the labels re-

computing changed subdomains, and then, the accurate 

results of new case are obtained after executing step 2 

and step 3. 
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Fig. 3. Parallel framework of IE-NDDM for solving EM 

problems with m changeable subdomains. 

III. NUMERICAL RESULTS
Three EM examples are presented to demonstrate 

the efficiency and accuracy of the proposed method. The 

residual error for outer iterative convergence is set to 

1.0e–3. The two-dimensional (2D) bistatic radar cross 

section (RCS) of these classical cases is obtained to 

present the correctness and robustness of the proposed 

method. Two computational platforms are used in this 

paper [16]: 

Platform I: A workstation with two six-core 64 bit 

Intel Xeon E5-2620 2.0 GHz CPUs, 64GB RAM and 

6TB disk. 

Platform II: High-Performance Computing (HPC) 

cluster from Xidian University (XD-HPC), which is 

equipped with 140 compute nodes connected by 56Gbps 

InfiniBand network, and each node has two 12-core Intel 

Xeon 2690-v2 2.2GHz CPUs and 64 GB memory. 

A. Validation

The first simulation consists of the analysis of a

PEC cylinder. The length of the cylinder is 10 m and the 

diameter is 2m. A z-axis polarized plane wave operating 

at 600MHz impinges along the x-axis direction is 

considered. In this simulation, the model is decomposed 

into ten subdomains as shown in Fig. 4, where each 

color represents one subdomain. The bistatic RCS results 

obtained using in-home MoM code (RWG), FEKO 

commercial software and IE-NDDM are given, 

respectively, which are used to validate the accuracy of 

the method proposed. The simulations are performed 

using the Platform I aforementioned (24 processes). 

Subd.1

Subd.2

Subd.3

Subd.4

Subd.5

Subd.6

Subd.7

Subd.8

Subd.9

Subd.10

y

zx

Fig. 4. Model of a cylinder divided into ten subdomains. 

Figure 5 shows smooth current distributions, without 

noticeable discontinuities across subdomain boundaries. 

Figure 6 shows the RCS comparison for the proposed 

IE-NDDM, the in-house MoM code and FEKO. It is 

observed in Fig. 6 that the RCS curves agree well with 

each other, and the proposed IE-NDDM in this paper is 

verified and validated. It is observed in Fig. 7 that fast 

convergence rate has been achieved, which reaches 

0.006 at the seventh step in outer-iterative procedure. 

The computational resources for solving each 

subdomain and overall solution are recorded in Table 1. 

We can observe that the parallel IE-NDDM algorithm 

leads to almost 68% memory reduction, and the CPU 

time is greatly reduced. 

y

zx

Fig. 5. Surface electric current distribution on the cylinder. 
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Fig. 6. Bistatic RCS curve of the cylinder: (a) xoz plane 

and (b) yoz plane. 
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Fig. 7. Convergence curve of IE-NDDM. 

Table 1: Computational resources of the cylinder 

Method Unknowns 
Storage 

(GB) 

CPU 

Time (h) 

DDM 

Subd.1    20112 

Subd.2    20052 

Subd.3   20055 

Subd.4    20130 

Subd.5    20109 

Sudb.6    20106 

Subd.7    20124 

Subd.8    20118 

Subd.9    20097 

Subd.10  20097 

60.20 8.886 

MoM 

(RWG) 
111636 187.71 

12.731 

MoM 

(FEKO) 
14.515 

B. Scattering from a tank with gun barrel rotating

In this part, the scattering characteristics of a

tank with gun barrel rotating are solved to show the 

advantages of this method in solving local changeable 

parts problems. The incident plane wave propagates 

towards head (–x axis), and the polarization direction is 

+z axis. The frequency of the plane wave is 1 GHz.

Dimension of the tank is 9.5m×3.2m×2.3m, and it is

divided into four subdomains, as shown in Fig. 8 with

each color representing one subdomain.

Subd.2

Subd.3
Subd.4

Subd.1

x y

z

Fig. 8. Model of the tank divided into four subdomains. 

The gun barrel rotates along the z axis, and the 

included angle θe with x-axis is 0°, 10°, 15°, respectively, 

as shown in Fig. 9. The simulation is performed on 

Platform II using 30 compute nodes with each employing 
24 processes (720 processes). 

(b)

(c)

(a)
x y

z

10e


15e


Fig. 9. Model of the tank with gun barrel at different 

elevation angles: (a) θe =0°, (b) θe =10°, and (c) θe =15°, 

respectively. 
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Fig. 10. 2D bistatic RCS curves of the tank with 

changeable parts: (a) and (b) are xoy plane, (c) and (d) 

are xoz plane. 

The bistatic RCS results obtained by IE-NDDM are 

shown in Fig. 10. One can see that the maximum value 

of RCS remains unchanged basically, when the included 

angle θe with x axis is 0°, 10° and 15°, respectively. Further, 

RCS values shown in Fig. 10 (a) with 0°≤φ≤150° and 
210°≤φ≤360°, and shown in Fig. 10 (b) with 210°≤θ≤360° 
has changed greatly when the included angle θe is 15°. 

The computational resources for solving each subdomain 
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are recorded in Table 2. It can be observed that the 

method proposed in this paper shows great advantage in 

solving scattering problems with changeable parts. 
 

Table 2: Computational resources of the tank with gun 

barrel rotating 

Unknowns 
Storage 

(GB) 
Posture 

CPU 

Time (h) 

Subd.1 108375 

Subd.2 120397 

Subd.3 150750 

Subd.4 120295 

945.29 

Unchanged 

parts 
2.47 

θe=0° 2.26 

θe=10° 2.26 

θe=15° 2.26 

Overall solution 

499818 
3722.58 -- -- 

 
C. Scattering from an aircraft formation 

In this example, the scattering characteristics of  

an aircraft formation with changing flying posture, an 

electrically large problem, has been solved by parallel 

IE-NDDM algorithm to further highlight the advantage 

of the proposed method. The model consists of five 

aircrafts (one bomber and four fighters), and among 

which the aircraft numbered I changes its flying posture. 

As shown in Fig. 11, the aircraft formation is divided into 

eleven subdomains with each color representing one 

subdomain, and the distances between aircrafts are given. 
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x

y

z
5m

5m

5m

5m

44m
72m

 
 

Fig. 11. Model of an aircraft formation. 

 

Particularly, in this simulation, both connected 

subdomains (e.g., Sub.1 and Sub.2) and unconnected 

subdomains (e.g., Sub.3 and Sub.4) are included. Due  

to the fact that the current is discontinuous inherently 

between unconnected subdomains, hence, there is no need 

for any transmission conditions between unconnected 

subdomains, and only the coupling needs to be calculated 

in the manner of near field. 

The included angle θe between the flying direction 

of the aircraft numbered I and x axis is 0°, 15°, 30°, 

respectively, as shown in Fig. 12. The incident plane 

wave is toward the nose (-x axis), and is polarized along 

+z axis, and the operation frequency is 300 MHz. 
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Fig. 12. Model of an aircraft I changing flying posture. 
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Fig. 13. 2D bistatic RCS curves of the aircraft formation 

with changeable parts: (a) xoy plane with θe =0° 
(posture1), (b) xoz plane with θe =0° (posture1), (c) xoy 

plane with θe =15° (posture2), (d) xoz plane with θe =15° 

(posture2), (e) xoy plane with θe =30° (posture3), and (f) 

xoz plane with θe =30° (posture3), respectively. 

 

The simulation is performed on Platform II using 50 

compute nodes with each employing 24 processes (1200 

processes). The 2D bistatic RCS curves of the aircraft 

formation obtained by IE-NDDM are shown in Fig. 13. 

The computational resources for solving each subdomain 
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are accorded in Table 3. As shown in Fig. 13, with the 

elevation angle θe increasing, the contribution of the 

aircraft I to the bistatic RCS of the entire aircraft 

formation decreases. And the parallel IE-NDDM saves 

over 86.8% memory compared with MoM (overall 

solution). 

Table 3: Computational resources of the aircraft formation 

Unknowns 
Storage 

(TB) 
Posture 

CPU 

Time (h) 

Subd.1   100464 

Subd.2   125853 

Subd.3   100134 

Subd.4  52152 

Subd.5    95379 

Subd.6    52116 

Subd.7    95382 

Subd.8    52122 

Subd.9    95370 

Subd.10   52128 

Subd.11   95310 

1.21 

Unchanged 

parts 
2.33 

Posture1 2.9 

Posture2 2.9 

Posture3 2.9 

Overall solution 

793182 
9.16 -- -- 

IV. CONCLUSION
An integral equation based on non-overlapping 

domain decomposition method (IE-NDDM) for the 

scattering analysis of PEC targets with changeable parts 

is proposed. A novel explicit transmission condition is 

applied to enforce the current continuity across adjacent 

subdomains, which allows the IE-NDDM keep the same 

level of accuracy than pure techniques such as MoM. 

Particularly, the coupling between different subdomains 

is calculated in the manner of near field, which 

significantly reduces the memory and CPU time. These 

techniques extend the capability of MoM to solve 

electrically large problems. 
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