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Abstract ─ Characteristic basis function method (CBFM) 

is one of the effective methods to analyze wide-angle 

electromagnetic scattering characteristics of objects. In 

the general CBFM, a mass of plane waves is required to 

construct the characteristic basis function (CBFs) for a 

large-scale target resulting in a large number of CBFs. 

Furthermore, the accuracy cannot be further enhanced 

via general method by increasing the number of incident 

plane waves to obtain adequate CBFs. In order to 

alleviate these problems, a hybrid approach is proposed 

for fast computation of monostatic radar cross section of 

objects. The proposed method applies the singular  

value decomposition to compress the excitation matrix 

and introduces a new method to construct the CBFs 

considering the mutual interaction among blocks. Under 

such circumstances, the number of matrix equation 

solutions and the number of CBFs are both significantly 

reduced. Thus, the time of constructing CBFs and the 

complexity of reduced matrix both are reduced. 

Numerical examples verify and demonstrate that the 

proposed method is credible both in terms of accuracy 

and efficiency. 

Index Terms ─ Characteristic basis function method, 

characteristic basis functions, radar cross section, singular 

value decomposition. 

I. INTRODUCTION
The method of moments (MoM) [1] is known as 

an effective method to solve electromagnetic scattering 

problems. However, it imposes a great burden on the 

CPU, both in terms of computational time and memory 

requirement when dealing with large scale scatter 

problems. Fortunately, a variety of acceleration algorithms 

have been proposed to relieve these problems, such 

as the fast multipole method (FMM) [2], the adaptive 

integral method (AIM) [3], the multilevel fast multipole 

method (MLFMM) [4], the adaptive cross approximation 

(ACA) algorithm [5], the domain decomposition method 

[6, 7] and the fast dipole method (FDM) [8]. These 

methods have advantages in matrix-vector products 

(MVPs) and can handle large number of unknowns. 

However, most of above mentioned approaches are not 

appropriate for obtaining accurate monostatic radar 

cross section (RCS) analysis. To over this problem, 

many efforts have been devoted to the fast solution of 

monostatic RCS [9-11]. However, these methods need to 

use iteration method to solve liner equations which can 

lead to convergence difficulties when dealing with an ill-

conditioned matrix. 

Recently, the characteristic basis function method 

(CBFM) [12, 13] has been proposed that the entire 

scatter is divided into several blocks and each block can 

be solved as an independent domain. The size of the 

impedance matrix of the CBFM is much smaller than 

that of the MoM because the number of characteristic 

basis functions (CBFs) is smaller than the RWGs. It can 

be performed using the direct method for the matrix 

calculation; it is therefore suitable for multiple right 

hand-sides problem, such as monostatic RCS analysis. 

However, the construction of the CBFs relies on adequate 

incident plane waves (PWs) excited. The number of 

CBFs is increased with increase in the size of analysis 

target, which will cause more time consumption in 

singular value decomposition (SVD). Besides, it will be 

difficult to solve and store the reduced matrix directly. 

Under this condition, few hybrid methods have been 

proposed. The multilevel characteristic basis function 

method (MLCBFM) has been introduced in [14] to 

reduce the number of unknowns by applying CBFM 

recursively. In [15], the MLFMM is combined with the 

CBFM to efficiently calculate the reduced matrix. In 
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[16], improved primary CBFs (IPCBFs) are proposed 

to decrease the number of the CBFs. In [17-19], the 

high level CBFs are calculated by fully considering the 

mutual coupling effects among the sub-blocks, but the 

total number of CBFs is increased. To some extent, these 

methods save time and reduce the storage requirement. 

However, the number of incident PWs in these methods 

is always overestimated and the redundant PWs will 

increase the calculation time both in terms of the CBFs 

construction and the reduced matrix calculation. In this 

paper, a hybrid CBFs construction method is presented. 

Firstly, the SVD procedure is utilized to remove the 

redundancy in the excitation PWs before calculating 

the CBFs. Secondly, the improved CBFs (ICBFs) are 

obtained by considering the couple effects among the 

blocks. Since the ICBFs contain the information of the 

primary CBFs (PCBFs) and the secondary level CBFs 

(SCBFs), the number of CBFs of each block will be 

reduced significantly that will further minimize the 

reduced matrix, hence the calculation time is also 

cut down. The efficiency of the proposed method is 

demonstrated using several examples in the paper. 

II. CHARACTERISTIC BASIS FUNCTION

METHOD 
The CBFM divides the target into M  blocks and 

each block is solved as an independent domain by using 

the CBFs [12, 13]. For each block, the CBFs can be 

obtained from Eq. (1): 

pwsCBFs = ( 1,2, , ),
Ne

ii i i i M Z J V (1) 

where e

iiZ denotes the self-impedance of the extended 

block i, with dimensions of eb eb

i iN N . The eb

iN

represents the number of unknown belonging to the 

extended block i and pwsN

iV  is the excitation matrix with 

dimensions of pws

eb
iN N , the pwsN  is the number of 

incident PWs. To eliminate the redundant information 

in CBFs

iJ caused by overestimation, the SVD is used to 

reduce the redundancy of the initial CBFs. Suppose, the 

same number B of CBFs is obtained on each block after 

SVD, where B is smaller than pwsN , the surface current 

of the target can be expressed as a liner combination of 

these CBFs as: 
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where k

ia  are the unknown expansion coefficients and 

k

iJ is the kth CBFs of block i. The total number of CBFs 

is BM and the reduced matrix equation R RZ α V can be  

constructed as follows: 
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(3) 

where the 1 2 T( , , , )B

i i i iα a a a  represent the unknown 

weights of the CBFs on the block i, 
R

ijZ represents the

interactions between blocks i and j, and R

iV is the

excitation vector. The 
R

ijZ , 
iα and R

iV are the sub-

matrices of R
Z , α and R

V , respectively. The 
R

ijZ and

R

iV can be generated by using Eqs. (4) and (5): 

  
H ,R

ij i ij jZ = J Z J  (4) 

H ,R

i i iV = J V  (5) 

where the H stands for conjugated transpose, ijZ

represents the original mutual impedance matrix between 

the extended block i  and block j, and 
iV  is the original 

excitation vector. After the reduced matrix R
Z is 

generated, the unknown coefficients of the CBFs iα can 

be obtained by solving Eq. (3). Substituting the iα into

Eq. (2), the total current distribution on the surface of the 

target can be obtained.  

III. HYBRID CBFs CONSTRUCTION

METHOD 
The CBFM partly realizes the time-saving and 

memory requirement reduction in the calculation. 

However, the problem of time-consuming in CBFs 

construction is still existed when the size of target is 

increased. More importantly, for large-scale monostatic 

problem, the accuracy cannot be further enhanced via 

general method, in which the accuracy is improved 

by increasing the number of incident PWs to obtain 

adequate CBFs. Thus, a hybrid approach to solve above 

mentioned problems is presented. 

Firstly, the redundancy information in the incident 

PWs is fully considered. The CBFs are solved using Eq. 

(1), where the incident excitation pwsN

iV  can be described 

as follows:  

  pws pws

pws pws

1

1 1( ( , ) ( , ) ( , )),
N Nt

i i i t t i N NV = V r p V r p V r p (6) 

where tr and tp represent the incident direction and

polarization, respectively. ( , )t

i t tV r p is a matrix indicating 

a plane wave from a direction with a polarization. 

However, because the shape of each block under analysis 

is different, the incident PWs are usually redundant. In 

order to reduce the redundant PWs, the SVD is applied 

to deal with the excitation matrix before calculating 

CBFs: 
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pws T ,
N

iV = UWV                           (7) 

where U and V are orthogonal matrices of dimensions 
be eb

i iN N  and pws pwsN N , respectively. W is an 

pws

eb
iN N  diagonal matrix and the elements of the 

diagonal matrix are the singular values of pwsN

iV . The 

superscript T denotes the transpose operation. Setting an 

appropriate threshold that typically set to be 0.001, a new 

set of incident excitations will be obtained retaining only 

those with relative singular values above the threshold. 

Hence, a new excitation matrix named 
New

iV  is obtained 

and the number of PWs is decreased. For the sake of 

simplicity, we assume that all of the blocks contain the 

same number K of PWs. The dimension of 
New

iV  is 

eb

iN K , and K is always smaller than pwsN . Replacing

pwsN

iV  in Eq. (1) with 
New

iV , a new equation can be 

constructed as follows: 
New ,e p

ii i iZ J = V .                           (8) 

By solving Eq. (8), K PCBFs (
p

iJ ) can be obtained 

on each block. The total number of matrix equation 

solutions is M K , which is smaller than pwsM N  in 

the CBFM as pwsK N . Compared with the general 

CBFM, the time required to construct the CBFs in new 

method is reduced. 

Secondly, the couple effects among blocks are fully 

consider. In [18], the SCBFs are calculated subsequently 

using the following equations:     

   
1( )

,1

M
se p

ii i ij j

j j i

 
=

Z J = Z J                      (9) 

                   
1( )

,2 1

M
s se

ii i ij j

j j i

 
=

Z J = Z J                    (10) 

where 1s

iJ  and 2s

iJ  represent the first-level SCBFs and 

the second-level SCBFs, respectively. By removing the 

influence of the extended part, the SCBFs 1s

iJ  and 2s

iJ

can be obtained by solving Eq. (9) and (10) separately. 

Following the above described procedure, 3K CBFs can 

be obtained on each block (including K 
p

iJ , K 1s

iJ  and 

K 2s

iJ ). In order to further reduce the number of obtained 

CBFs, the ICBFs is proposed by combing the PCBFs and 

the SCBFs. For block i, the transformation is defined as 

follows: 
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(11)

 

where '

iV  and ''

iV
 
represent the multiple scattering by 

the PCBFs ( p

iJ ) and the SCBFs ( 1s

iJ ) from other blocks, 

respectively. By solving Eq. (11), K ICBFs of block i  

can be obtained, the number of CBFs is further reduced. 

Furthermore, the I

iJ  contains the information that 

represents the 1s

iJ  and 2s

iJ , so I

iJ  can indicates the real 

current distribution in block i.  
 

IV. NUMERICAL RESULTS  
In this section, the hybrid method (CBFM-SVD) is 

applied to three test samples to demonstrate the accuracy 

and efficiency. All the targets are analyzed by multiple 

PWs with two modes of polarization, and All examples 

are carried out on a personal computer with an Inter (R) 

Core (TM) i5-6500 CPU with 3.2 GHz (only one core  

is used) and 16 GB RAM. The relative error Err is 

introduced and defined as follows: 

           x MOM MoM2 2
100%,Err   I I I        (12) 

where 
MoMI  is the current coefficient vector computed 

by the FEKO, and 
xI  is the current coefficient vector 

computed by the CBFM or the CBFM-SVD. 
2


 

represents the vector-2 norm.    

First, the monostatic RCS of a perfect electric 

conduct (PEC) almond with the length of 252.374 mm at 

a frequency of 7 GHz is computed. There are 11564 

triangular patches remained in the surface of almond 

after mesh subdivision and the number of unknowns is 

27579. The entire almond is divided into 8 blocks. In  

the two methods, the number of incident PWs is set as

20N N
   , where N

 and N  represent the number 

of incident PWs in the directions of   and ,  

respectively. The total numbers of CBFs and the relative 

error of two methods under different SVD thresholds are 

shown in Table 1. It can be seen that the relative error of 

the CBFM-SVD converges faster with reducing the SVD 

threshold, which proves that the CBFM-SVD has higher 

accuracy than CBFM because the presence of SCBFs. 

Taking into account the computational accuracy and 

computational efficiency of the two methods, the SVD 

threshold of the CBFM-SVD is selected as 0.005, and  

the SVD threshold of CBFM is selected as 0.001. The 

number of CBFs retained on each block and the size of 

reduced matrix are shown in Table 2. It can be seen that 

the number of CBFs and the dimensions of the reduced 

matrix are both decreased when the CBFM-SVD is used. 

In order to further illustrate the efficiency and accuracy 

of the proposed method, the comparison of relative error 

is shown in Fig. 1. It can be seen that the relative error of 

the CBFM-SVD converges faster with increase in the 

number of CBFs. The current coefficients of one arbitrary 

RWG basis with multiple incident angles, computed  

by the conventional CBFM and the CBFM-SVD are 

compared in Fig. 2, which are in good agreement. The 

ACES JOURNAL, Vol. 34, No. 6, June 2019846



monostatic RCS in  polarization and  polarization 

calculated by using the CBFM and the CBFM-SVD are 

presented in Fig. 3 and Fig. 4, respectively. It can be seen 

from the figures that the results are coincided well with 

each other. 
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Fig. 1. The current error versus the CBFs number. 
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Fig. 2. Current coefficients for PEC almond.  
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Fig. 3. The monostatic RCS of NASA in  polarization. 

 

0 30 60 90 120 150 180
-60

-55

-50

-45

-40

-35

-30

-25

-20

M
o
n
o
s
ta

ti
c
 R

C
S

 


 (

d
B

s
m

)

Degree Elevation (

, 





)

 MoM

 CBFM

 CBFM-SVD

 
 

Fig. 4. The monostatic RCS of NASA in  polarization. 

 

Then the scattering problem of a PEC cube with 

length of 1.2 m is presented. The frequency is 500 MHz 

and the cube is divided into 10 blocks. The surface of 

cube is discretized in 9660 triangular patches and the 

total number of unknowns is 24711. In the CBFM, the 

number of incident PWs is set as 20N N
   , so 800 

CBFs are generated for each block and only 176 CBFs 

(average value) are remained via SVD. The remained 

CBFs are applied to construct the reduced matrix with 

the dimensions of 1763×1763. While in the CBFM-

SVD, each block is excited by using 20 PWs in the 

directions of   and  . Only 127 PWs (average value) 

are remained resulting in 127 ICBFs for each block by 

using the SVD. The dimensions of reduced matrix are 

1271×1271. Comparing with the CBFM, the size of 

matrix is further decreased. The calculation results are 

shown in Fig. 5 and Fig. 6, respectively. It can be seen 

that the results are coincided well with each other. 
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Fig. 5. The monostatic RCS of a PEC cub in  

 polarization. 
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Fig. 6. The monostatic RCS of a PEC cub in

 polarization.

Finally, the monostatic RCS of sixteen discrete 

cylinders are computed. Each cylinder has same size 

with height of 0.5 m and radius of 0.25 m. The frequency 

of incident PWs is 500 MHz and the target is divided into 

16 blocks. After mesh subdivision, the surface of the 

objective is discretized in 20416 triangular patches and 

the total number of unknowns is 30624. In the CBFM, 

the number of incident PWs is set as 20N N
   . By 

taking advantage of SVD, the number of CBFs is reduced 

to 147 and the size of the reduced matrix is 2352×2352. 

In the CBFM-SVD, the number of incident PWs is defined 

as 20N N
   , via SVD only 111 PWs are remained 

resulting in 111 ICBFs for each block. In terms of the 

matrix size, the size of reduced matrix in the CBFM-

SVD is smaller than that in the CBFM, with the 

dimensions of 1776×1776. The monostatic RCS in 

polarization and  polarization calculated by using the 

CBFM and the CBFM-SVD are presented in Fig. 7 and 

Fig. 8, respectively. The result obtained by the CBFM-

SVD agrees very well with that obtained by the CBFM. 
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Fig. 7. The monostatic RCS of sixteen discrete cylinders 

in  polarization. 
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Fig. 8. The monostatic RCS of sixteen discrete cylinders 

in  polarization. 

The calculation time of the two methods are 

summarized in Table 3. It can be seen that the CBFM-

SVD outperforms the conventional CBFM, both in 

CBFs construction and in RCS computational time, 

the CPU time of the CBFs construction and the RCS 

computational time are remarkably reduced and the 

gains are about 38% and 22%, respectively. 

VI. CONCLUSION

In this paper, a hybrid method (CBFM-SVD) is 

presented to efficiently compute the monostatic RCS of 

objects. In the proposed method, the number of required 

PWs has been remarkably reduced by further compression 

using the SVD that results in fewer matrix equation 

solutions. Furthermore, a novel scheme for CBFs 

construction is proposed by taking full consideration of 

the couple effects among the sub-blocks to enhance the 

computation accuracy. The results have validated and 

demonstrated that the proposed CBFM-SVD is capable 

of more efficiently calculating the monostatic RCS 

compared with the conventional CBFM without 

compromising the accuracy.  
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Table 1: The total CBFs number and the relative error of two methods under different SVD threshold

SVD Threshold 
CBFM CBFM-SVD 

Err (%) CBFs number Err (%) ICBFs number 

0.08 36.035 442 28.413 427 

0.05 22.728 548 19.864 506 

0.03 12.918 613 9.474 574 

0.01 8.595 798 4.206 769 

0.005 5.887 905 2.961 872 

0.003 3.353 1073 2.323 1035 

0.001 2.986 1219 2.037 1156 

Table 2: The CBFs number retained on each block of two methods 

Method 
Block 

1 

Block 

2 

Block 

3 

Block 

4 

Block 

5 

Block 

6 

Block 

7 

Block 

8 

Size of Reduced 

Matrix 

CBFM 124 168 185 190 180 164 130 78 1219×1219 

CBFM-SVD 88 125 132 140 130 109 94 54 872×872 

Table 3: The consequences of two methods comparing in different samples 

Problems Method 
CBFs 

Construction(s) 

Reduced Matrix 

Calculation(s) 

Solving Matrix 

and RCS(s) 

Total 

Time(s) 

Problem 1 
CBFM 2573.09 1910.68 24.92 4533.61 

CBFM-SVD 1519.02 1593.64 21.60 3155.86 

Problem 2 
CBFM 3205.64 2241.91 29.84 5507.23 

CBFM-SVD 1956.62 1797.64 22.84 3798.30 

Problem 3 
CBFM 3966.63 4299 41.57 8348.85 

CBFM-SVD 2607.51 3524.17 34.20 6200.08 
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