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Abstract ─ This paper provides the analysis of radio 
wave propagation prediction over flat and irregular forest 
environments. A three-dimensional vector parabolic wave 
equation (3DPE) method is used to calculate the field 
strength due to the forest on a lossy ground. Forest 
terrains are equivalent to a series of absorbing blocks 
arranged along the direction of propagation. Under the 
assumption of forwarding propagation, a 3DPE is derived 
and the Fourier split-step based PE (SSPE) method is 
adopted to march the potentials from one aperture plane 
to the next. A Tukey window function is used to attenuate 
the fields smoothly at the upper boundary without 
reflections. Finally, the simulation results are compared 
with the analytical methods presented in the literature. 
The simulation results have shown the validity of the 
proposed algorithm. 

Index Terms ─ Forest terrains, parabolic wave equation, 
radio wave propagation, split-step parabolic equation 
method, wave propagation prediction. 

I. INTRODUCTION
Wave propagation is an important phenomenon 

in many applications. The analysis of ground wave 
propagation depends on the characteristics of the lower 
layer of the atmosphere and the terrain over which 
the wave propagates. Electromagnetic waves (EM) are 
affected by the propagation environments due to change 
in temperature, pressure, and humidity. Non-flat terrains, 
buildings, trees, and mountains also disturb the waves 
and lead to the variation of field strength [1]. 

In the rural and suburban areas, the forest is an 
important factor affecting the radio wave propagation 
over a long distance. Due to the absorption and scattering 
properties of the trees, the attenuation and phase shift 
of signals mostly happen which affects the target 
identification and other wireless communications greatly 
[2]. Therefore, it has very important practical application 
value to study the forest effect on wave propagation. 
Several empirical and deterministic methods have been 

presented in the literature for propagation analysis [3-5]. 
Empirical models require less computational effort, but 
these models do not consider the details of the local 
terrain topography. On the other hand, deterministic 
models require a vast amount of data regarding terrain 
profile, more computational resources and are more 
accurate than the empirical models [6,7]. The approaches 
based on parabolic equation (PE) are another way to 
predict the wave behavior, it was first introduced by 
Leontovich and Fock in the 1940s [8]. Later, it has 
become a popular method in EM wave propagation 
modeling. The PE method gets the environmental 
parameters as input, it accepts different boundary 
conditions (BCs) and allows to use different types of 
antenna patterns [9, 10]. Due to these characteristics, the 
PE method nowadays is a preferred method for solving 
radio wave propagation problems [11-13]. There are 
many numerical methods available to solve parabolic 
type wave equations such as Finite Difference method, 
Finite Element method, and Method of Moment in the 
literature [14], but the SSPE method is more suitable 
to solve PE for long-range propagation. This method is 
highly efficient both in memory usage and in runtime 
[15-19]. 

In recent years, many scholars have done some 
research on radio wave propagation problems in forest 
environments using PE method [20-25]. Still, these 
models are 2D in nature either it is based on scalar 
formulations or it has been designed for a small area. 

The goal of this paper is to introduce the 3DPE 
method in a forest environment based on SSPE method, 
to predict the wave propagation due to the forest over 
a large area. It is shown that the 3DPE model can 
formulate both vertical and lateral wave propagation into 
account. The basic formulation of the 3DPE is discussed 
briefly, which is followed by the explanation of the SSPE 
method and the corresponding numerical implementation. 

This paper is organized into five sections as follows. 
In the next section, the basic formulation of the wide-
angle 3DPE is discussed. Section 3 presents the SSPE 
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solution to the proposed algorithm. In Section 4, 
numerical implementation steps are discussed such as 
initial field, domain discretization, boundary conditions, 
etc. Section 5 presents the simulation results and 
comparisons with the results presented in the literature.  

II. FORMULATION OF THE 3DPE
In cartesian coordinates (x, y, z), considering the 

propagation in a homogeneous medium with refractive 
index n and supposing a time convention i te ω− , where 

2 fω π=  is the radian frequency at the frequency f. 
Supposing that the fields are excited by a vertically 
polarized (z-oriented) sources at a given range 0x . The 
electric current density of the distributed source located 
at 0x =  is assumed to be 0 ( ) ( ) ( , )e

zJ I l x y f y zδ δ=


, 
where ( , )ef y z  is the 2D Gaussian function, 0I l  is the 
current moment and ( )δ ⋅  denote the unit delta function, 
respectively. Expressing the fields in terms of two z-
oriented potentials, it is easy to see from Maxwell’s 
equations that [26]: 
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where eψ  and mψ  are the scalar potentials arising from 
the electric and magnetic currents, respectively. The 
superscripts “e” and “m” identify the sources (electric 
or magnetic) that give rise to the potentials and fields. 
The wavenumber and intrinsic impedance in free space 
are denoted by 0k  and 0η , respectively. The total fields
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 are decomposed in terms 
of a TEz mode and a TMz mode with constituent fields 
[27]: 
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Using this representation of the fields, and in a 
source-free region e mψ ψ ψ= +  and thus from the 
Helmholtz equation, PE can be obtained as [9, 11]: 

2 2 2
0 0,k n ψ ∇ + =   (5) 

where 2∇  is the Laplacian operator and replacing ψ   

with 0ik xe ψ− , the wide-angle 3DPE can be obtained as 
[28, 29]: 

( )
2 2

2
0 0 2 22 .ik n i k

x y z
ψ ψ

 ∂ ∂ ∂
= − + + + ∂ ∂ ∂ 

 (6) 

III. FOURIER SPLIT-STEP ALGORITHM
In numerical analysis, the Fourier split-step method

is a type of pseudo-spectral method used to solve highly 
nonlinear time-dependent partial differential equations 
in engineering and physics applications [30]. We are 
briefly explaining this method as in [31]. Starting from 
(6) and introducing the two operator’s M and N as:

[ ]( , , ) ( , ) ,M x y z N y z
x
ψ ψ∂

= +
∂

 (7) 

( )
2 2

2
0 0 2 22 ,      .M ik n N i k

y z
 ∂ ∂

= − = + + ∂ ∂ 
 (8)

Supposing that x∆  is the range incremental step size, 
then the split-step solution at x x+ ∆  can be written as: 

( , , ) ( , )
( , , ) ( , , ),

x x x x

x x
M x y z dx N y z

x x y z e x y zψ ψ
+∆ +∆

+∫ ∫+ ∆ =  (9) 
the operator [ ( , , ) ( , )]M x y z N y z+  does not commute in 
this integral. With the assumption that the refractive 
index n is slowly varying at each small range step x∆  in 
yz-plane then it can be formally expressed as [32]: 

( , , ) ( , , ).M x N x M x N xx x y z e e e x y zψ ψ∆ + ∆ ∆ ∆+ ∆ =  (10) 
In the approximated exponentials, the term M xe ∆  is a 

multiplication operator which can be solved numerically 
easily, while the exponential operator N xe ∆  is a differential 
operator which can be solved with the help of Fourier 
transform. Let [ ]1

2 2 ( )F Fψ ψ−= , similarly, 

{ }1
2 2( , , ) ( , , ) ,N x N xe x y z F F e x y zψ ψ∆ − ∆ =    (11) 

where 2F  and -1
2F  denote the 2D Fourier transforms and 

it's inverse Fourier transforms respectively. Equation (10) 
can be written as: 

{ }1
2 2( , , ) ( , , ) ,M x N xe F Fx x e x yy z zψ ψ∆ − ∆+ ∆   =  (12)

using (8) and (12), one can get the SSPE solution for the 
wide-angle 3DPE as [29]: 

( ) { }0 2 1
2 2( , , ) ( , , ) ,xik x n ik xx x y z e F e F x y zψ ψ∆ − ∆−  + ∆ = ×    (13) 

where 2 2 2
0x y zk k k k= − −  is the wavenumber along the 

range axis for a plane wave traveling in the ( ),y zk k

direction. Here, yk  and zk  are the Fourier transform 
domain variables. It is the solution of an electromagnetic 
wave when the refractive index n is varying slowly at 
each small range step x∆  in a homogeneous medium. 
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IV. NUMERICAL IMPLEMENTATION 
In this section, we have discussed some important 

implementation steps for the numerical simulation of the 
proposed algorithm. 
 
A. Boundary conditions 

The PE model requires BCs to avoid the reflection 
at maxz z= ±  and maxy y= ±  along the y and z axes, 
respectively. An absorbing boundary condition is used in 
this paper as: 
 ( , ) ( ) ( ), 1: , 1: ,y zW j k w j w k j N k N= ⋅ = =  (14)  

where w is the Tukey window function, with ( , )y zN N N  
being the Fourier transform size. [33]. Therefore, the 
potential at (x, y, z) is finally computed as: 
 ( , , ) ( , , ) ( , ).i x j y k z i x j y k z W j kψ ψ∆ ∆ ∆ = ∆ ∆ ∆ ⋅  (15)  

Besides, the forest terrain surface is assumed to be a 
lossy and trees are equivalent to a series of absorbing 
blocks arranged along the direction of propagation. 
 
B. Domain discretization 

The domains are truncated at maxz±  and maxy±  
(maximum distance along the y– and z directions). The 
step size along x, y, and z directions defined as x∆ ,  

y∆  and z∆  respectively. Maximum altitude maxz  is 
determined from the source/observation requirements  
to minimize the aliasing effects. Once maxz  or maxy  is 
decided then maxyk  and maxzk  are calculated from the 
Nyquist criterion as max maxzz k× Nπ=  and max maxyy k× =

Nπ  at the same time. As max 0 maxsinyk k θ=  and 
similarly, max 0 maxsinzk k θ= , where maxθ  is the maximum 
allowable propagation angle [11]. As max /z z N∆ =  and 

max /y y N∆ = , and if 2 2l y z∆ = ∆ + ∆  then we have, 

0 max/ sinl kπ θ∆ ≤  to predict the maximum propagation 
angle. The choice of the incremental range x∆  is 
provided by the user and it can be as large as λ  since 

( , , )x y zψ  varies slowly along x in the yz-plane [26]. 
 
C. Initialization of the algorithm 

The numerical solution of SSPE algorithm usually 
starts with the given initial potential. It relates to the field 
radiated by the transmitting antenna. The transformed 
potential provides the initial potential for the beginning 
of the algorithm. In this work, we generate it by a 
vertically polarized current source with a Gaussian 
aperture distribution whose electric current is 0I  and 
length l, which is given as [26]: 
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where  tH  represents the height of the transmitting 
antenna and zσ  is the source standard deviation used to 
set 3 dB elevation beamwidth of transmitting antenna. 
Because the magnetic current is assumed to be zero  
here, therefore the initial condition for mψ  is simply 

(0 , , ) 0m y zψ + = . The transformed potential (0 , , )y zk kψ +  
can be easily determined using Fourier transform of the 
current source with respect to z, and ψ  is the 2D-Fourier 
transform of the aperture field [26]: 
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The initial potential can be defined as a column 

vector with zN  elements along the z-axis, again as zJ


  
is independent of y one can repeat the column of 
 ( )0 ,0 , zkψ + +

yN  times along the y-axis. In this way, a 

2D initial potential  ( )0 , ,y zk kψ +  can be obtained with 

y zN N×  dimension. In order to apply the impedance 
surface BCs on a forest terrain the image theory is 
applied, implying that the fields and their corresponding 
potentials are represented in terms of odd and even parts. 
This infers that the Gaussian source representation is 
equally split into its even and odd components, ( )eψ  and

( ) ,oψ  respectively: 
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Neglecting the surface waves in the far zone, under 
this approximation the initial field is the 2D Fourier 
transform of the aperture field ψ  that satisfies the 
impedance boundary over the ground as [26]: 
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where ( )zkΓ  is the reflection coefficient of the plane 
waves over an impedance terrain surface with impedance 
Z for TMz and TEz modes, which is given as:  
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the normalized complex impedance of the terrain surface 

is given as 
0

1 f
rf

i
Z

σ
ε

ωε
= + , where fσ  is the 

conductivity and rfε  is the relative permittivity of the 
forest terrain, respectively [26, 34]. Actually, Eq. (19) is 
not a 2D Fourier transform, but a complicated double 
integration. While it can be evaluated easily with the help 
of fast Fourier transform (FFT) instead of evaluating 
double integrals. For example, the potentials are 

represented in terms of odd and even parts 
2

e oψ ψ
ψ

+
= . 

Assuming that 'zik zA e−=  and 'zik zB e=  then the integral 
part corresponds to z in (19) can be written as: 
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In order to apply the FFT, changing the limit of integration 
from 0 to ∞  to −∞  to ∞  [35]. If we add ( , , )e x y zψ ′ ′  
and ( , , )o x y zψ ′ ′  together for z > 0 and z < 0 we will get 
back the total field ψ . In this way, we can obtain Eq. 
(22) by prolix deduction as given below:
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substituting (22) into (19) and thus, the initial potential 


(0 , , )y zk kψ +  can be obtained for the beginning of the 
algorithm as: 
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After initializing the potentials (0 , , )y zψ +  at 0x +=  the 
field values at (0 )x x+ + ∆  are computed by applying 

the propagator xik xe ∆  to the Fourier transformed field 
(0 , , )y zk kψ + . Hence, obtaining the field values at the 

successive location x x+ ∆  by an inverse Fourier 
transform as can be seen in Eq. (24) the double 
integration corresponds to an inverse Fourier transform 
where yk  and zk  are the transformation domain 
variables: 
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(24) 

and thus, it can be solved via Split-Step Fourier 
algorithm which consists of a succession of Fourier and 
inverse Fourier transforms obtained by FFT and inverse 
FFT, respectively. Equations (19) and (24) are used 
for both eψ  and mψ  with the appropriate value of ( )zkΓ
chosen from (20). 

V. SIMULATION RESULTS
In this section, the simulation results are presented 

to check the validity of the proposed algorithm. In order 
to validate the proposed algorithm, the simulation results 
are compared with the results presented by Janaswamy 
as Fig. 11 in [26]. Related studies can also be found in 
[35]. Figure 1 shows the propagation factor (PF) versus 
the receiver height ( )rH  when a PEC knife edge is placed 
over the flat terrain between the transmitter and receiver 
as shown in Fig. 1 inset. 

Fig. 1. Propagation factor versus vertical displacement 
behind a finite absorbing screen (a single knife-edge) as 
Fig. 11 in [26]. 

The knife-edge’s height ( )K.EH  and width ( )K.EW  
are 50 m (meters) and 49.8 m, respectively. The distance 
between the transmitter and receiver is 500 m, the 
distance between the transmitter and the PEC knife edge 
is 1 125 md = , and the distance between the knife edge 
and the receiver is 375 m, respectively. The field is 
computed at maxx x= . Other parameters are shown in 
Fig. 1 inset. Compared with the reference model, the 
proposed model had an excellent agreement with the 
results presented in [26] which shows the validity of the 
proposed algorithm. 
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All the simulations were realized using a 3.4 GHz 
Core i7-7600 CPU workstation, 32 GB RAM. 
Computational time and memory used by the proposed 
model at different range step sizes are shown in Table 1. 

Table 1: Computational time and RAM consumption 
(Dell 3.4 GHz Core i7-7600 CPU workstation, 32 GB 
RAM) 

No. Δx 
(m) 

Ny = Nz RAM 
(MB) 

Time 
(s) 

1 25 1024 626.4 28.47 
2 50 1024 627.1 14.35 

The second test is related to the field strength 
prediction over the rows of trees with uniform heights 
and spacing arranged along the direction of propagation 
on flat terrain. Field strength prediction due to the forest 
with non-uniform heights and equal spacing arranged 
along the direction of propagation on flat terrain is also 
presented in Fig. 4, and the last example is related to the 
field strength prediction due to the forest placed over 
three triangular-shaped mountains. 

The simulation results presented in Fig. 3, Fig. 4, 
and Fig. 5 are compared with the analytical method 
namely, 3D Ray tracing method. 3D Ray tracing method 
is successfully applied in propagation modeling through 
open and closed environments, that may serve as a 
reference and perform validation, verification, and 
calibration (VV&C) [36, 37]. 

Figure 2 shows the geometry of the forest terrain 
placed in the yz-plane along the direction of propagation 
between the transmitter and receiver, where wF  is the 
forest’s width and hF  is the forest’s height, respectively. 

Figure 3 (top) shows the geometry of the flat-shaped 
forest. The rows of trees with uniform heights (16 m) and 
separation distance (50 m) on the simulation range of 5 
kilometers (km) are considered over the flat earth. The 
transmitting and receiving antennas are placed at the 
height of 16 m with 15º propagation angle in the paraxial 
direction. The operating frequency is considered at 900 
MHz. Other operational parameters in all examples are 
assumed as y z λ∆ = ∆ = , 1024y zN N= = , fσ  = 0.1 
mS/m, and 1.1rfε = , respectively. The effect on the field 
strength in the presences of rows of trees on flat terrain 
at 200 mwF =  is evaluated as shown in Fig. 3 (middle) 
and (bottom). We can see that in the start of simulation 
the field values of the 3DPE method and 3D Ray tracing 
method are very close to the free space value, while the 
field values due to the 3DPE model rapidly decrease for 
short distance very close to the transmitter, it is may be 
due to the paraxial approximation in PE, it is clearly 
observed in Fig. 3 (bottom). 

Fig. 2. Rows of trees placed in the yz-plane along the 
direction of propagation. 

Fig. 3. A side view of the rows of trees with uniform 
heights and spacing on flat ground in two dimensions 
(top) [the third dimension, which is the lateral dimension 
y, is orthogonal to the plane of the paper]. Field strength 
prediction due to the 3D Ray tracing method and the 
3DPE method (middle). Field strength prediction due to 
3DPE model at 200 mwF = (bottom). 

The PE method is known to give unreliable 
solutions very close to the source. The region over which 
these errors occur is very small indeed (of the order of 
meters) but because the algorithm is range dependent 
these errors will propagate. However, preliminary 
experiments have indicated that the errors do not 
significantly affect predictions at ranges of interest [38]. 
The results of [39] indicate that the field degrades for a 
plane wave incident upon uniform height screens with 
equal separations as in this paper. We can see that the 
3DPE results have good agreement with the 3D Ray 
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tracing method and the result presented in [39], but the 
result of the 3D Ray tracing is slightly higher, which 
implies it overestimates the field amplitude due to the 
diffracted waves. 

Fig. 4. A side view of the rows of trees with non-uniform 
heights and equal spacing on flat ground in two 
dimensions (top) [the third dimension, which is the 
lateral dimension y, is orthogonal to the plane of the 
paper]. Field strength prediction due to the 3D Ray 
tracing method and the 3DPE method (middle). 
Field strength prediction due to the 3DPE model at 

200 mwF = (bottom). 

Figure 4 (top) shows the geometry of the flat-shaped 
forest. The rows of trees with non-uniform heights from 
30 m (maximum) to 10 m (minimum) are considered 
with a separation distance of 50 m on the simulation 
range of 5 kilometers (km). The transmitting and 
receiving antennas are placed at the height of 30 m and 
10 m respectively, with 15º propagation angle in the 
paraxial direction. Up to 0.5 kilometers from the 
transmitter the field values behave like free space and 
gradually decreasing due to the creeping wave effect, 
after 0.5 kilometers the field value increases due to the 
contribution of lateral waves. We can see that the 3DPE 
results have good agreement with the 3D Ray tracing 
method, but the results of the 3DPE are slightly higher, 
due to finite wF . Therefore, if we increase the wF , then 
we expect to see the results of the 3DPE model to agree 
with 3D Ray tracing results because in 3D Ray tracing 
method wF  is assumed infinitely long. This is equivalent 
to the 2DPE model which did not consider the lateral 
waves. The total field variation is the sum of the direct 
waves and reflected waves. 

Figure 5 shows the geometry of the third test, it is 
the side view of the forest in a mountainous area with 

multiple rows of trees with variable heights, equal spacing 
and variable width distributed on three mountains 
surfaces. The modeling of the mountain type terrains can 
be found in [40]. 

Fig. 5. A side view of the forest placed on the 
mountainous terrain in two dimensions (top) [the third 
dimension, which is the lateral dimension y, is 
orthogonal to the plane of the paper]. Field strength 
prediction due to the 3D Ray tracing method and the 
3DPE method (middle). Field strength prediction due to 
the 3DPE model at 200 mwF = (bottom). 

In Fig. 5, up to 0.5 kilometers from the base station 
field behaves like free space, then at the first peak of 
mountain field behaves like a single knife-edge. The 
field strength minima occur at one kilometer in the 3DPE 
model. However, the results of 3D Ray tracing show that 
the ray tracing approach must be improved to handle the 
transition region effects and the multiple diffraction 
effects at very small angles. 

VI. CONCLUSION
This work has demonstrated the 3DPE model that 

evaluates the field strength over flat and irregular forest 
environments. It is shown that the 3DPE model can 
formulate both vertically and laterally wave propagation 
effect in a large forest environment. Under the 
assumption of forwarding propagation, a wide-angle 
three-dimensional parabolic wave equation (3DPE) is 
formulated from the Helmholtz equation. The split-step 
parabolic equation (SSPE) method is adopted to march 
the potentials from one aperture plane to the next along 
the direction of propagation. The obtained results have a 
good agreement with the reference models presented in 
the literature. The proposed model can be generally used 
in both national, commercial and military applications 
for the analysis of radio wave propagation. 
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