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Abstract ─ The use of microstrip patch configuration in 
the 5th generation (5G) wireless network is expected to 
fulfill the demands of smartphone users by significantly 
increasing the capacity of the communication technology. 
The main aim of this paper is to disclose the development 
of a mathematical model on the effects of conductive 
material and substrate thicknesses on the centre frequency 
for the performance evaluation of a low profile, cost-
effective antenna in 5G devices applications. This 
mathematical model is proposed for an antenna system 
operated with air substrate resonating at a bandwidth 
range of 5 GHz - 38 GHz. The effects of different thickness 
of conductive material and substrate on the antenna's 
bandwidth, gain, and efficiency for 5G applications were 
studied. Antennas were fabricated and tested in this study 
to evaluate the robustness of the proposed mathematical 
model at 28 GHz, 24 GHz, and 10 GHz. Gains of 9.55 
dBi, 9.53 dBi and 10.1 dBi, impedance bandwidths of 
2.12 GHz, 2.14 GHz and 0.41 GHz, with input reflection 
coefficients of 42.75 dB, 25.33dB and 21.51 dB, and 
performance efficiencies of 98.91, 87.4 and 83.2% were 
obtained for the respective resonances. For validation of 
results, the experimental results and the simulation 
results from the proposed mathematical model were 
made into comparison, and excellent correlation between 
the measured and simulated results was obtained. 

Index Terms ─ 5G technology, conductive material 
thickness, mathematical model, microstrip patch inset- 
fed antenna. 

I. INTRODUCTION
The fifth-generation (5G) wireless technology is 

expected to overcome the drawbacks of the previous 
generations of networks by supporting higher frequency 
bands as well as providing more benefits. Considering 
the end user’s demand, it is necessary to design novel 
antenna systems for modern compact devices. To 
support the expected requirements for a higher data 
traffic, intensive researches were carried out on the fifth-
generation (5G) cellular system [1]. Since 5G cellular 
systems are anticipated to work at a frequency band of 
30 - 300 GHz close to millimeter-wave, it will become 
available in the future technologies [1-4]. The 26 GHz, 
28 GHz, 38 GHz, and 50 GHz bands are the four 
frequency bands currently being investigated for 5G 
applications by academia and industry worldwide [5]. 
The extreme free space path loss that occurs at these 
frequencies is one of the drawbacks in using mm-wave 
frequencies for mobile communication. To solve 
potential path loss issues, a highly directional arrayed 
antenna is needed. A 5G antenna must have two distinct 
characteristics – high gain and wide bandwidth. Both 
properties depend strongly on the thickness of radiating 
patch and substrate used in fabricating antennas. Recent 
trends lead to the development of an antenna that 
transmits and receives the broadband characteristics and 
high gains that can be operated at high frequencies. In 
this way, size reduction and bandwidth enhancement 
have become major design issues for sensible 
applications of microstrip antennas [4-6]. 
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Much research has been focused on modeling, 
designing and optimizing 5G antennas in the last eight 
years. However, most of the published work focused on 
a) investigating different configurations of (massive)
Multiple Input Multiple Output (MIMO) antennas [7-12]
as well as methods for reducing antenna element
isolation [13-14]; b) new 5G mm-wave antennas with
a wide range of polarizations like circular polarization
[15-17] dual polarization [18-19] and polarization
configurability [20]; c) study of multiple dual-band
antenna structures (covering the proposed 28 GHz and
38 GHz band for 5G application) like rectangular slot
patch [21], integrated substrate waveguide [22], printed
slot [23-25], slot waveguide [26] and PIFA [27] are
proposed.

Based on available literatures in this domain, no 
research findings have reported on the effects of 
the thickness of conductive material and substrate on 
the production of 5G antennas for their extensive 
performance. Therefore, this paper demonstrates the 
formulation of a mathematical model based on the 
effects of conductive material thickness and substrate 
height on a single rectangular microstrip patch inset-fed 
antenna operates from 1 - 40 GHz resonance for 5G 
wireless communication applications. The influences 
of these parameters were quantified on the antennas' 
impedance bandwidth, efficiency and gain. The use of 
air substrate was integrated in the designs to greatly 
reduce the cost of antenna manufacturing. The approach 
used in this work involved three phases summarizing the 
following: data acquisition and analysis, parameter 
substitution and optimization, and model development 
and optimization. The detailed explained in section 
(iv). The antennas were designed and tested, and 
the performance results are summarized in Table 1. 
An excellent correlation between the measured and 
mathematical modelled (simulation) results was obtained. 

Table 1: Performance of the proposed mathematical 
model antennas 

Frequency 
(GHz) 

Gain 
(dB) 

Bandwidth 
(GHz) 

Return Loss 
(dB) Efficiency 

(%) 
Sim. Mea. Sim. Mea. Sim. Mea. 

28 9.58 9.45 2.12 2.00 42.75 38.53 83.2 
24 9.53 9.40 2.14 2.01 25.33 25.13 87.4 
10 10.1 9.87 0.41 0.39 21.51 21.73 98.9 

II. ANTENNA CONFIGURATION AND
DESIGN 

The material used for this proposed antenna's 
radiation patch is copper. Typically, the dimensions of 
an inset-fed microstrip patch antenna are determined 

using the equations regarded to the microstrip antenna as 
provided in references [28-29]. Air substrate which has 
a dielectric constant (ɛr) of 1 and a negligible loss tangent 
was used. To achieve the goals, optimization of the 
antenna dimensions is necessary. The optimized design 
parameters at 28 GHz are listed in Table 2. 

Table 2: Dimensions of the proposed antenna 
Parameter Value (mm) 

Length of patch (Lp) 4.54 
Width of patch (Wp) 5.34 
Length of ground plane (Lg) 9.08 
Width of ground plane (Wg) 10.68 
Thickness of substrate (hs) 0.50 
Conductive thickness (ht) 1.00 
Length of inset-fed (fi) 1.45 
Width of feedline (Wf) 2.45 
Gap between patch and inserted-fed (Gpf) 0.50 
Feedline length (Lf) 2.68 

The geometric configurations of the proposed 
antennas with the following necessary dimensions; 
width of the patch (Wp), length of the  feeder (Lf), inset 
depth (d), gap width (g), and feeder length from the left 
edge of a patch (L1) are illustrate in Fig. 1. 
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Fig. 1. Geometry of the proposed antennas with required 
dimensions at: (a) 28 GHz, (b) 24 GHz, and (c) 10 GHz. 

III. PARAMETRIC ANALYSIS ON THE
PERFORMANCE OF ANTENNA

Several design parameters affecting the bandwidth 
of the operating impedance were studied to comprehend 
the design guidelines of the proposed antenna. The 
radiating rectangular patch was designed using a 
standard formula applied in any conventional resonant 
frequency design. The key design parameters, which 
are useful in maximizing the bandwidth of an antenna, 
are the thickness of conductive material (hc) and the 
substrate height (hs). Parametric analysis was carried out 
at a thickness variation of 0.1 mm to 2 mm with varying 
antenna parameters. The simulated results are as shown 
in Table 3, and it is observed that with increasing 
conductor thickness (hc) and constant width of patch and 
length of inserted-fed, the bandwidth increases but the 
length of the patch slightly decreases from the thickness 
of 1.1 to 2.0, as well as the centre operating frequency 
which shifts away from the desired resonant frequency. 
The resonant frequency resonated at 28 GHz at thickness 
of 0.1 mm to 1 mm. The most appropriate conductor 
thickness for this proposed antenna is 1 mm. 

The selection of a proper substrate thickness is 
another important task in the development of microstrip 
patch antennas. In choosing the most appropriate 
substrate thickness (hs), a developer needs to have 
knowledge on the effect of substrate thickness variation 
on the resonant frequency. In this case, hs is varied from 
0.4 mm to 1 mm with other varying antenna design 
parameters and the simulated results are as shown in 
Table 4. From the results, it is observed that when the 
air substrate thickness is increased while keeping the 
dimensions of the other parameters as in Table 2, there 
is a shift in the resonant frequency and the effective 
dielectric constant changes; which leads to a change in 
the effective dimensions of the patch. In this set of 
observation, as the height increases, a volume of fringing 
effect occurs, and this leads to the increase in the 
bandwidth. With greater height of substrate, higher 

amount of modes is excited, resulting in the degradation 
of the gain. The most appropriate height for this 
proposed antenna design at 28 GHz is 0.5 mm. However, 
surface waves are generated as the height of the substrate 
increases. These waves extract power in the direction of 
radiation from the total available power. Reduction in the 
parameters of the antenna design is therefore observed. 

IV. DEVELOPMENT OF MATHEMATICAL
MODEL 

In this work, the effect of the variation of the 
resonance frequency (Fr); patch Length (Lp); patch width 
(Wp); and dielectric permittivity (ɛr) on the antenna 
parameters (gain, directivity, impedance bandwidth and 
input reflection coefficient), were studied with respect to 
conductor thickness (hc) and substrate height (hs), using 
computer simulation technology (CST) studio 2016 
Software package However, the simulated data obtained 
where used to develop mathematical models which are 
father described in this manuscript MATLAB V19 
Software package was used as the modeling environment. 

In order to develop a mathematical model for 
the conductor thickness (hc) and substrate height (hs), 
simulated data were obtained from the CST studio suit 
2016 for different center frequencies based rectangular 
microstrip inset patch antenna which are shows in Table 
3 and Table 4 respectively. However, due to the limited 
amount of data, artificial neural networks (ANNs) 
toolbox in MATLAB was used to train a model and used 
to generate the desired amount of data to enable model 
creation. The steps involved in the proposed model 
development can be summarized as follows: 

i. Data Acquisition and Preparation;
ii. Parameter Substitution and Optimization;
iii. Model Development and Optimization [30].

i. Data Acquisition and Preparation
This stage can be described using the following

block diagram. 

Fig. 2. Data acquisition and preparation block diagram. 

Obtained hc, hs, Wp, Lp, Fr and ɛr from the design analysis 
and simulated results 

Design an ANN model and generate 10,000 Data samples 
with varying hc, hs, Wp, Lp, Fr and ɛr 

Store data in a file for later use 

Interpolate missing data based on antenna theory 
formulation using Newton Rapson’s method 
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ii. Parameter Substitution and Optimization
However, since the width and length (Wp and Lp) of

patch are dependent on other parameters of the model, 
based on antenna theory formulations, these parameters 
can be substituted for. To achieve that, the following 
stages were further executed. 

Fig. 3. Parameter substitution and optimization. 

iii. Model Development and Optimization
This represents the main stage of this work, and it

presents the strategy used in developing the set of 
mathematical function that could be used to evaluate a 
suitable value for hc and hs for a given antenna design 
specification. In this work, hs is chose to be defined using 
the following simplified mathematical expressions in 
equation (1): 
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where the 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾 can be found using an optimization 
technique. However, the particle swarm optimization 
(PSO) techniques was chosen. The objective function of 
the optimization was to minimize the difference between 
the estimation and true value of the hs. After the 
optimization, it was found that the model was inaccurate 
when 𝛼𝛼 and 𝛽𝛽 are fixed at constant values, however, 𝛾𝛾 
can be fixed at 0.5053. In order to make 𝛼𝛼 and 𝛽𝛽 vary 
with change in parameter specification, let 𝛼𝛼 and 𝛽𝛽 be as 
shown in equations (2) and (3), respectively:       
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The set of parameters X and Y are unknown variables 
that can be determined using PSO. The resulting 
mathematic model for substrate height was determined 
as presented in the following equations (4) and (5) 
respectively: 

A. Substrate height model (hs)
The substrate height of a rectangular patched

antenna can be calculated using equation (4), 
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where, 𝛼𝛼 and 𝛽𝛽 are represented in equation (5) and (6) 
respectively: 

( ) ( )
( ) ( )

























+
−+

−−












+
=

−

4398.4
5217.00817.0

3902.07464.0

12F
C0.8525

5611.03679.0

6572.03993.0

041.1

r

O

rr

rr

r

EE

FF

ε
α ,  (5) 

( ) ( )
( ) ( )

























+
−−

+−












+
=

−−

−

6557.0
2403.14411.0

1339.33713.0

12F
C4846.2

1344.83029.0

223.04138.0

-0.1202

r

O

rr

rr

r

EE

FF

ε
β .  (6) 

Based on this model, the mathematical model for 
computing the conductive material thickness can be 
generated. Finally, the mathematical model of the 
conductor thickness was found to be in equation (7). 

B. Conductive material thickness model (hc)
The height of conductive mat Height of conductive

material thickness of a rectangular patch antenna can be 
calculated using equation (7): 
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where, Co is the speed of light in air (mm/s); Fr is the 
desired center frequency (GHz) and hS is the substrate 
height (mm) and it can be evaluated using the 
mathematical formulation. Table 5 shows the optimized 
dimensional parameters of the proposed mathematical 
modelled antennas. 

V. RESULTS AND DISCUSSION
A. Input reflection coefficients

In reference to the optimized antennas dimensions
as well as the developed mathematical model, prototypes 
of the proposed antennas were fabricated and tested 
to validate their operational performances through the 
mathematical model. The antennas were made excited 
using a long pin SMA connector by connecting its 
coaxial probe to the rectangular patch. Figure 4 displays 
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a photograph of the fabricated antenna prototype. The S-
parameters of the antennas were tested using the Agilent 
Vector Analyser (N5245A). On the other hand, Fig. 5 
presents the input reflection coefficient characteristics of 
the simulated and measured results. The simulated input 
reflection coefficients are lower than -10 dB (VSWR< 
2), measurably around 42.75 dB, 25.33 dB and 21.51 dB 
at frequencies of 28 GHz, 24 GHz and 10 GHz with 
bandwidths of 2.12 GHz, 2.14 GHz and 0.41 GHz, 
respectively. The measured return losses of 38.53 dB, 

25.13 dB and 21.73 dB with bandwidths of 2.00 GHz, 
2.01 GHz and 0.39 GHz respectively are found enough 
for proper impedance matches. However, it is pointed 
out that the bandwidth differences for 0.12 GHz, 0.13 
GHz and 0.02 GHz constitute about 5.83%, 6.27% and 
5.00% respectively between the simulated and measured 
bandwidth. These differences arise from the 
manufacturing sensitivity and the effect of the coaxial 
feed connector. An excellent correlation was observed 
between the measured and simulated results.  

 
 

 
 

Table 5: Optimized dimensional parameters of the proposed 
mathematical modelled antennas. 
Proposed antenna 
parameters 

 28 GHz  
(mm) 

24 GHz  
(mm) 

10 GHz  
(mm) 

Length of patch (Lp) 4.54 5.43 14.12 

Width of patch (Wp) 5.34 6.23 14.95 
Length of ground plane (Lg) 9.08 10.86 28.24 
Width of ground plane (Wg) 10.68 12.46 29.90 
Thickness of substrate (hs) 0.50 0.58 0.59 
Conductor thickness (copper) 
(ht) 

1.00 1.00 1.01 

Length of inset-fed (d) 1.45 1.13 1.13 
Width of feedline (Wf) 2.45 2.74 4.84 
Gap between patch and inset-
fed (Gpf) 

0.50 0.6 0.61 

Feedline length (Lf) 2.68 2.36 2.51 
 

 
Fig. 4. Photograph of the fabricated antennas prototype 
 

 

 

Table 3: Variation of antenna parameters with thickness of conductive material (simulated) 
h  

(mm) 
d 

(mm) 
Wp 

(mm) 
Lp 

(mm) 
Fr 

(mm) 
D 

(dB) 
G 

(dB) 
R 

(dB) 
BW 

(GHz) 
0.1 1.45 5.34 4.38 28.00 10.150 10.10 24.47 1.0930 
0.2 1.45 5.34 4.78 28.00 10.130 10.10 25.69 1.1269 
0.3 1.45 5.34 4.73 28.00 10.090 10.10 27.57 1.2092 
0.4 1.45 5.34 4.70 28.00 10.040 10.00 26.70 1.2586 
0.5 1.45 5.34 4.67 28.00 9.970 9.97 27.86 1.3566 
0.6 1.45 5.34 4.63 28.00 9.880 9.88 35.94 1.4225 
0.7 1.45 5.34 4.61 28.00 9.790 9.79 33.88 1.5158 
0.8 1.45 5.34 4.57 28.00 9.694 9.69 33.54 1.6091 
0.9 1.45 5.34 4.55 28.00 9.589 9.59 32.65 1.7025 
1.0 1.45 5.34 4.54 28.002 9.474 9.47 31.49 1.7245 
1.1 1.45 5.34 4.54 27.907 9.373 9.37 30.17 1.8852 
1.2 1.45 5.34 4.51 27.809 9.211 9.22 26.78 1.9895 
1.3 1.45 5.34 4.50 27.850 9.086 9.06 25.06 2.0609 
1.4 1.45 5.34 4.46 27.880 8.940 8.94 20.63 2.0983 
1.5 1.45 5.34 4.44 27.800 8.766 8.77 18.69 2.0928 
1.6 1.45 5.34 4.42 27.744 8.620 8.62 17.47 2.1642 
1.7 1.45 5.34 4.41 27.728 8.473 8.47 16.66 2.2411 
1.8 1.45 5.34 4.40 27.728 8.306 8.31 16.03 2.2840 
1.9 1.45 5.34 4.39 27.760 8.164 8.16 15.50 2.3830 
2.0 1.45 5.34 4.36 27.760 7.992 7.99 14.36 2.3940 

 
Table 4: Variation of antenna design parameters with substrate thickness (simulated) 

hs 
(mm) 

Lp 

(mm) 
Wp 

(mm) 
d 

(mm) 
Fr 

(GHz) 
D 

(dBi) 
G 

(dB) 
R 

(dB) 
BW 

(GHz) 
0.4 4.54 5.34 1.45 28.576 9.585 9.58 19.323 1.5471 
0.5 4.54 5.34 1.45 28.024 9.451 9.45 42.648 2.1180 
0.6 4.54 5.34 1.45 27.696 9.310 9.31 28.001 2.3009 
0.7 4.54 5.34 1.45 26.696 9.188 9.19 25.616 2.3512 
0.8 4.54 5.34 1.45 26.467 9.064 9.06 28.118 2.3725 
0.9 4.54 5.34 1.45 26.008 8.932 8.93 40.162 2.4405 
1.0 4.54 5.34 1.45 25.656 8.785 8.79 32.600 2.5075 
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Fig. 5. Comparison of the measured and simulated 
results “input reflection coefficient” of a fabricated air 
substrate patch at: (a) 28 GHz, (b) 24 GHz, and (c) 10 
GHz resonances. 

B. Radiation pattern
Radiation patterns were measured using a swept

frequency measurement conducted in an anechoic 
chamber. The measured radiating patterns of the proposed 
antennas were plotted at 28 GHz, 24 GHz and 10 GHz 
resonances and are presented in Fig. 6. The measured 
input impedance was 50.401–j1.02, which is approximate 
to 50Ω. Since both the real and imaginary parts of the 
measured input impedance were close to the Smith chart 
centre, it therefore indicates a maximum power transfer 
has occurred. Figures 6 (a), (b) and (c) show the 
normalized measured and simulated radiation patterns of 
the proposed linearly omnidirectional polarized antennas 
at 28 GHz, 24 GHz and 10 GHz resonances respectively 
in the E- and H-planes obtained using a swept frequency 

measurement in an anechoic chamber. The simulated 
patterns are reasonably in agreement with the measured 
patterns, and this shows that the antenna is rather of the 
directional type. Nonetheless, the contrast between the 
measured and simulated radiation patterns indicates 
some variations between these patterns. The measured E-
plane radiation pattern indicates a reasonable degree of 
variation. This is probably due to the coaxial feed probe's 
effect on the height variability. It is important to note that 
the pattern of a radiation is mainly generated due the 
current of excitation from a coaxial probe to the radiating 
element and the current in the probe. Regarding the 
H-plane, both the simulated and measured patterns of
radiation show a constant good agreement, but with
a minor difference and a good directivity in both
frequencies. The actual measured radiation patterns and
gains of the proposed antennas are in close agreement
with the simulated results.

(a) 

(b) 

 (c) 

Fig. 6. Measured radiation patterns (E & H planes) of the 
proposed antennas at: (a) 28 GHz; (b) 24 GHz, and (c) 
10 GHz. 

       (a) 

      (b) 

       (c) 
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C. Comparison of the proposed mathematical model 
Table 6 provides a contrast between the published 

works performance profile comparisons with proposed 
antennas in terms of resonant frequency overall size and 
measured values, gain, radiation efficiency, return loss 
as well as bandwidth. This comparison shows that the 
proposed mathematical model antennas operating at  
28 GHz, 24 GHz and 10 GHz has a wider bandwidth  
and a high gain compared to other antennas published 
previously.  

The proposed mathematical model has the following 
advantages:  

i. Ability to predict resonance frequency faster and 
more accurately compared to many advanced 
simulation tools that are available commercially 

ii. Simplifies and save the simulation time to analyses 
parameters and process parametric result data 
compared to many advanced simulation tools that 
are available commercially 

iii. It reduced the cost of optimum performance 
requirements for electromagnetic simulation (such 
as high clock speed and core count CPU, an efficient 
GPU workstation, and fast RAM. 
 

 
Table 6: Publish works performance profile comparison with proposed antennas 

Frequency 
(GHz) 

Size 
(mm2) 

Gain 
(dB) 

Bandwidth 
(GHz) 

Efficiency 
(%) 

Return loss 
(dB) 

Ref. Antenna 

28 04.42 × 3.47 8.58 0.63 N/A 44.46 [31] 
28 04.40 × 4.20 4.47 1.55 94.00 N/A [32] 
28 20.00 ×16.50 9.33 0.45 N/A 23.50 [33] 
28 05.34 × 4.54 9.45 2.00 83.20 38.53 Proposed Antenna 
24 07.27 × 7.27 3.24 1.87 90.00 32.50 [34] 
24 13.80 × 11.40 3.00 0.40 N/A 32.00 [35] 
24 28.00×20.00 8.20 2.00 93.00 23.00 [36] 
24 5.20× 7.00 9.40 2.01 87.40 25.13 Proposed Antenna 
10 N/A N/A 1.18 66.30 41.50 [37] 
10 50× 25 8.76 1.14 82.32 27.77 [38] 
10 20×18 3.14 0.80 N/A 34.50 [39] 
10 13.6× 07 9.87 0.39 98.90 21.73 Proposed Antenna 

 
VI. CONCLUSION 

Evaluation of the effects of conductive material  
and substrate thickness, as well as the development of  
a mathematical model of a single element rectangular 
microstrip patch inset-fed antenna for 5G wireless 
communication application are presented in this paper. 
Microstrip patch antennas operated using air substrate at 
28, 24 & 10 GHz resonance were designed, simulated, 
optimized and analysed accordingly. The conductive 
patch materials and substrate techniques used to produce 
mm-wave integrated antennas have a significant impact 
on the antennas' impedance and radiation characteristics. 
Therefore, the effects of conductive patch material and 
substrate technology on the performance of an antenna 
must be thoroughly defined and properly understood 
prior to the designing of a 5G antenna. The validity of 
the proposed model equations is verified by comparison 
with the measured results. The measured results obtained 
from the fabricated antennas prototypes are in good 
agreement with the simulated (model equations) results. 
The implementation of this proposed mathematical 
modelling approach will minimize the time required to 
obtain the best resonant frequency design compared to 

the parametric studies using a simulation software. The 
proposed antennas support a very low profile, which is 
an excellent in the integrated low-cost millimeter-wave 
applications. 
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