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Abstract ─ In this study, the electromagnetic wave 

propagation behavior of two-dimensional photonic 

crystal plates with a defect is investigated. For this 

purpose, the partial differential equation for the 

electromagnetic wave propagation in various photonic 

crystal plates containing a defect or not is obtained by 

using Maxwell’s equations. The defect is also defined  

in the electromagnetic wave propagation equation 

appropriately. In order to solve the electromagnetic wave 

propagation equation, the finite differences method is 

used. The material property parameters of the photonic 

crystal plates are determined with respect to the defects. 

Accordingly, the effects of material property parameters 

on electromagnetic wave propagation frequencies,  

phase velocities, and group velocities are examined. The 

effects of the size and position of the defects on the 

electromagnetic wave propagation frequencies are  

also discussed. The highest electromagnetic wave 

propagation fundamental frequency value obtained from 

the analyses performed is 1.198 Hz. This fundamental 

frequency value is obtained for the electromagnetic  

wave propagation in the t-shaped photonic crystal  

plate. Electromagnetic field distribution maps for the 

fundamental frequencies of the photonic crystal plates 

whose electromagnetic wave propagation behaviors are 

examined are obtained with the ANSYS package 

program based on the finite differences time-domain 

(FDTD) method. 

 

Index Terms ─ Central finite differences method, 

electromagnetic wave propagation, Maxwell’s equations, 

photonic crystals. 
 

I. INTRODUCTION 
According to the developments in optics and 

optoelectronics, the use of different types of materials in 

metamaterials, photonic crystals, and waveguides has 

gradually increased [1-6]. These structures are designed 

by combining different types of materials along a 

specified axis in certain ways. Phononic structures that 

are open to acoustic effects, in other words, affected by 

acoustic wave propagation, are also functionally similar 

to photonic structures [7-11]. 

Whether it is a photonic or a phononic structure, 

both structures consist of layers, and each layer has 

different material property parameters. The material 

property parameters include the permittivity (ε) and 

permeability (μ) of the structure. While analyzing the 

behavior of electromagnetic wave propagation in 

photonic structures, each layer's electromagnetic wave 

propagation behavior in the periodic layer group forming 

the structures should be considered separately. Photonic 

structures with a defect in some layers have also been 

investigated [12-14].  

In the literature, there are studies that theoretically 

examine the electromagnetic wave propagation behavior 

occurring in each layer of one-dimensional and two-

dimensional photonic structures [15-19], as well as 

experimental studies in which these structures are 

manufactured using various production methods [20,21]. 

For instance, [22-24] are among the studies investigating 

the electromagnetic wave propagation behavior in two-

dimensional and three-dimensional plate structures. 

In order to examine the electromagnetic wave 

propagation behavior in optical structures, many studies 

are guiding the formation of the partial differential 

equation for electromagnetic wave propagation using 

Maxwell's equations [25-32]. The ideal numerical 

method for solving the obtained partial differential 

equation for electromagnetic wave propagation is 

determined. The finite differences method is preferred in 

solving complex problems for which an exact solution 

cannot be achieved [29-33]. In [34-37], the central  

finite differences method is used for analyzing the 

electromagnetic wave propagation behavior of optical 

structures with microcavities, ellipses, and circular 

holes. The main reason for using the central finite 

differences method in these studies is that some  

nodes of the two-dimensional (2-D) structures whose 

electromagnetic wave propagation behaviors are 

investigated have different material property parameters 

(ε, µ) from each other. 
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In this study, the behaviors of electromagnetic wave 

propagation occurring in the two-dimensional plates 

with or without a defect are investigated. The effects of 

the location and size of the defect in the plates on the 

electromagnetic wave propagation frequencies are  

also examined. For this purpose, the material property 

parameters (ε, µ) of the defects are determined as zero. 

Accordingly, the frequencies of electromagnetic wave 

propagation in the plate with the defect are obtained 

using the central finite differences method. In addition, 

phase velocities and group velocities of the 

electromagnetic wave propagation are examined. The 

electromagnetic field distribution maps for the 

fundamental frequencies of the photonic crystal plates 

are visualized by using the ANSYS Lumerical package 

program. The novelty of this study is that it describes the 

effects of the defect locations and defect sizes of the 2-D 

photonic crystal plates formed in different shapes on 

frequencies of the electromagnetic wave propagation in 

the photonic crystal plates.  

 

II. THEORETICAL ANALYSIS 

The partial differential equation for the 

electromagnetic wave (EMW) propagation occurring in 

the two-dimensional plate is obtained using Maxwell's 

equations. The finite difference method is preferred in 

the solution of the electromagnetic wave propagation 

equation to examine the behavior of electromagnetic 

wave propagation in two-dimensional plates which have 

a defect or which have not. A two-dimensional plate 

positioned in the Cartesian coordinate system can be 

seen in Fig. 1. 

 

 

Fig. 1. A view of a 2-D plate. 

In a source free, linear, isotropic and homogenous 

region, The first-order Maxwell’s curl equations are as 

follows [38]: 

 ∇ ∙ �⃗� =
𝜌

𝜀
, (1a) 

 ∇ ∙ �⃗⃗� = 0, (1b) 

 ∇ × �⃗� = −𝑖𝜔𝜇�⃗⃗� , (1c) 

 ∇ × �⃗⃗� = −𝑖𝜔𝜀�⃗� , (1d) 

where 𝑖: √−1, ρ is the charge density, µ is the 

permeability, 𝜀 is the permittivity, E is the electrical 

field, and H is the magnetic field. 

Using Eqs. (1c) and (1d), Eq. (2) is obtained as in 

the following form: 

 ∇ × (∇ × �⃗⃗� ) = ∇(∇ ∙ �⃗⃗� ) − ∇2�⃗⃗� = ∇ × (−𝜇
𝜕�⃗⃗� 

𝜕𝑡
), (2) 

where H(x,y,t) represents the electromagnetic wave 

propagation field of the 2-D plate. Partial differential 

equation with respect to time and position related to 

electromagnetic wave propagation obtained by solution 

of Eq. (2) is as follows:  

 
𝜕2𝐻(𝑥,𝑦,𝑡)

𝜕𝑥2 +
𝜕2𝐻(𝑥,𝑦,𝑡)

𝜕𝑦2 − 𝜇𝜀
𝜕2𝐻(𝑥,𝑦,𝑡)

𝜕𝑡2 = 0. (3) 

Dx represents the material property parameters of (μx 

εx) on the x-axis, and Dy represents the material property 

parameters of (μy εy) on the y-axis. Accordingly, Eq. (3) 

is rearranged as follows: 

 𝐷𝑥
𝜕2𝐻(𝑥,𝑦,𝑡)

𝜕𝑥2 + 𝐷𝑦
𝜕2𝐻(𝑥,𝑦,𝑡)

𝜕𝑦2 −
𝜕2𝐻(𝑥,𝑦,𝑡)

𝜕𝑡2 = 0. (4) 

Solving Eq. (4) for Dx=Dy=1 and 𝐻(𝑥, 𝑦, 𝑡) =

ℎ𝑒−𝑖(−𝛽𝑚𝑥−𝛽𝑛𝑦+𝜔𝑡) for the linear isotropic case, Eq. (5) 

is obtained as follows: 

 𝛽𝑚
2 + 𝛽𝑛

2 − 𝜔𝑚𝑛
2 = 0, (5a) 

 𝛽𝑚:
𝑚𝜋

𝑎
, 𝛽𝑛:

𝑛𝜋

𝑏
  𝑎𝑛𝑑  𝑚: 0,1,2… , 𝑛: 0,1,2…, (5b) 

 𝜔𝑚𝑛 = √(
𝑚𝜋

𝑎
)

2

+ (
𝑛𝜋

𝑏
)

2

, (5c) 

where h, βm, βn, ωmn, represents travelling wave, wave 

number for the x-axis, wave number for the y-axis  

and electromagnetic wave propagation frequency, 

respectively. In this study, the permittivity (ε) and 

permeability (μ) values of the plate are assumed as 1 for 

the defect-free parts of the plate. In keeping with this 

assumption, there are some studies on silicon-based 

photonic metamaterials in the literature [40,41]. The b/a 

ratio of the 2-D plate is considered in units, where a 

represents the plate's width and b represents the plate's 

length, and its value is considered as 1/1. The exact 

solution of Eq. (4) given in Eqs. (5a-5c) is obtained when 

the material property parameters Dx and Dy are equal to 

1. In the fundamental mode, where the value of the (m, 

n) mode pair is equal to (1,1), the value of ω11 from  

the exact solution of Eq. (4) is obtained as 4.442 Hz. 

Especially in the analysis of the electromagnetic wave 

propagation behavior occurring in the plate with a defect, 

the central finite differences method should be used to 

solve Eq. (4). Accordingly, to apply the finite differences 

method, the 2-D plate is expressed with nodes, as shown 

in Fig. 2. Besides, the representation of any node is 

represented by (k,l), while Δ represents the neighborhoods 

with respect to the specified (k,l) node. 
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Fig. 2. Central finite differences notation of the plate. 

According to the derivative values obtained using 

the Taylor series expansion and given in Table 1, the 

central finite differences method is applied to Eq. (4). 

Table 1: The central finite differences notation [39] 

Derivative 
The Central Finite Differences  

Notation O(h2) 

ℎ(𝑥, 𝑦) ≈ 𝑞𝑘,𝑙 

𝜕2ℎ(𝑥, 𝑦)

𝜕𝑥2
 ≈  

𝑞𝑘−1,𝑙 − 2𝑞𝑘,𝑙 + 𝑞𝑘+1,𝑙

𝛥𝑥2
 

𝜕2ℎ(𝑥, 𝑦)

𝜕𝑦2
 ≈

𝑞𝑘,𝑙−1 − 2𝑞𝑘,𝑙 + 𝑞𝑘,𝑙+1

𝛥𝑦2
 

 

By defining the neighbours of the (k,l) node with the 

Taylor Series expansion, the expression obtained is as 

follows: 

 𝑞𝑘±1,𝑙 = 𝑞𝑘,𝑙 ±
∆𝑥

1!

𝜕𝑞

𝜕𝑥
+

∆𝑥2

2!

𝜕2𝑞

𝜕𝑥2 ± R, (6a) 

 𝑞𝑘,𝑙±1 = 𝑞𝑘,𝑙 ±
∆𝑦

1!

𝜕𝑞

𝜕𝑦
+

∆𝑦2

2!

𝜕2𝑞

𝜕𝑦2 ± R, (6b) 

where R represents truncation. The order of the truncation 

here is O(h2) since it comes after the second-order 

derivative. 

Applying 𝐻(𝑥, 𝑦, 𝑡) = ℎ(𝑥, 𝑦)𝑒−𝑖𝜔𝑡 transformation 

to Eq. (4), Eq. (7a) is obtained. Equation (7a) is rearranged 

according to the values given in Table 1 by the method 

of central finite differences and thus Eq. (7b) is obtained. 

Relevant equations are as the following forms: 

 𝐷𝑥 [
𝜕2ℎ(𝑥,𝑦)

𝜕𝑥2
] + 𝐷𝑦 [

𝜕2ℎ(𝑥,𝑦)

𝜕𝑦2
] + 𝜔2ℎ(𝑥, 𝑦) = 0,  (7a) 

 𝐷𝑥 [
𝑞𝑘−1,𝑙−2𝑞𝑘,𝑙+𝑞𝑘+1,𝑙

∆𝑥2
] + 𝐷𝑦 [

𝑞𝑘,𝑙−1−2𝑞𝑘,𝑙+𝑞𝑘,𝑙+1

∆𝑦2
] + 𝜔2𝑞𝑘,𝑙 = 0. 

  (7b) 

Boundary conditions need to be determined to solve 

Eq. (7b). There is no electromagnetic interaction in the 

frame parts of the 2-D plate, which is seen in Fig. 4  

and consists of 4 nodes. The nodes of this plate that 

interact with each other are (1,1), (2,1), (1,2), and (k,l), 

respectively. Using these nodes, an eigenvector M(ω) is 

obtained to determine the frequency values by solving 

Eq. (7b). For the plate with four nodes starting from the 

node (1,1) to (2,2), the eigenvector M(ω) obtained by 

arranging Eq. (7b) according to the values k:2 and l:2 is 

as follows: 

 𝑀(𝜔) = ||

[
 
 
 
𝑝(𝜔) 𝑠 𝑧 0

𝑠 𝑝(𝜔) 𝑧 0
𝑧 0 𝑝(𝜔) 𝑠

0 𝑧 𝑠 𝑝(𝜔)]
 
 
 

||

𝑘×𝑙

= 0. (8) 

The terms in Eq. 8 are defined as follows: 

 𝑝(𝜔) = −2(
𝐷𝑥

𝛥𝑥2 +
𝐷𝑦

𝛥𝑦2 + 𝜔2), (9a) 

 𝑠 =
𝐷𝑥

𝛥𝑥2, (9b) 

 𝑧 =
𝐷𝑦

𝛥𝑦2. (9c) 

For the plate with four nodes, the distance for each 

adjacent node is defined as 𝛥𝑥 = 𝛥𝑦 =
1

3
.  

The steps of the theoretical analysis are summarized 

in the flowchart,  as also seen from Fig. 3. 

 

Fig. 3. The flowchart summarizing the theoretical 

analysis. 

Electromagnetic wave propagation frequencies, in 

other words, ωmn eigenvalues, are obtained by equating 

the determinant of the eigenvector M(ω) to zero. 

Besides, the phase velocities, vphase and group 

velocities, vgroup regarding the electromagnetic wave 

propagation occurring in the plate are calculated with the 

following formulas: 

 𝑣𝑝ℎ𝑎𝑠𝑒 =
𝜔𝑚𝑛

𝛽𝑛
, (10a) 

BASMACI: ELECTROMAGNETIC WAVE PROPAGATION IN PHOTONIC CRYSTALS 634



 𝑣𝑔𝑟𝑜𝑢𝑝 =
𝜕𝜔𝑚𝑛

𝜕𝛽𝑛
. (10b) 

The behaviour of electromagnetic wave propagation 

occurring in a two-dimensional plate can be defined 

using Eqs. (7b) and (8). Accordingly, electromagnetic 

wave propagation frequencies are obtained for six 

different cases where the plate has a defect from various 

parts, whether it has not. Figure 4 shows the first case 

(Case 1) where the plate has not any defect.   

                                   

 

Fig. 4. A plate which has not any defect – Case 1. 

 

In all other cases except the first case, plates have a 

defect in their various parts. Figure 5 shows the second 

case (Case 2), where the plate has an unsymmetrical  

O-shaped defect. In this case, there are two nodes with a 

defect. Nodes with the defect are (3,2) and (3,3) nodes, 

respectively.                                  

 

Fig. 5. A plate with an unsymmetrical O-shaped defect – 

Case 2. 

Figure 6 shows the third case (Case 3), where the 

plate has a symmetrical O-shaped defect. In this case, 

there are four nodes with a defect. Nodes with the defect 

are (2,2), (2,3), (3,2) and (3,3) nodes, respectively.                                              

 

Fig. 6. A plate with a symmetrical O-shaped defect – 

Case 3. 

Figure 7 shows the fourth case (Case 4), where the 

plate has an unsymmetrical C-shaped defect. In this case, 

there are four nodes with a defect. Nodes with the defect 

are (3,2), (3,3), (4,2) and (4,3) nodes, respectively. 

 

 

Fig. 7. A plate with a C-shaped defect – Case 4. 

Figure 8 shows the fifth case (Case 5), where the 

plate has a L-shaped defect. In this case, there are four 

nodes with a defect. Nodes with the defect are (3,3), 

(4,3), (3,4) and (4,4) nodes, respectively.               

 

Fig. 8. A plate with a L-shaped defect – Case 5. 

Figure 9 shows the sixth case (Case 6), where the 

plate has a symmetrical t-shape and corner defects. In this 

case, there are four nodes with a defect. Nodes with the 

defect are (1,1), (1,4), (4,1) and (4,4) nodes, respectively. 

 

Fig. 9. A t-shaped plate with corner defects– Case 6. 

The frequencies of the electromagnetic wave 

propagation occurring in the 2-D plate, which has the 

defect in its various regions, are analyzed using the 

method of central finite differences for multiple cases, 

defined according to the nodes where the defect has been 

placed in the plate. In this analysis made with the method 

of central finite differences, the material property 

parameters (ε, µ) of the nodes with the defect are defined 

as zero.   
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III. RESULTS AND DISCUSSIONS 
The frequencies related to the electromagnetic wave 

propagation occurring in the defect-free plate defined as 

Case 1 are examined for various (m, n) modes. This 

analysis is carried out using both the exact solution and  

the finite differences method. As shown in Fig. 10 and Fig. 

11, the electromagnetic wave propagation frequencies 

obtained from the exact solution are relatively close to the 

values of the frequencies obtained by the finite difference 

method. Additionally, Fig. 10 shows that the frequencies 

of electromagnetic wave propagation increase linearly as 

the wavenumber increases. 

 

Fig. 10. Dispersion relation (β-ω) of the electromagnetic 

wave for Case 1. 

 

 

Fig. 11. Comparison of the frequencies obtained by the 

exact solution and finite differences method for Case 1.  

Table 2: The frequency investigation of five different 

cases (Cases 2-6) of the plate 

 

 

Case 

No 
Mode – (m,n) 

Frequency 

(Hz) 

D 

E 

F 

E 

C 

T 

- 

F 

R 

E 

E 

1 

(1,0) 0.492 

(2,0) 0.984 

(0,1) 0.492 

(0,2) 0.984 

(1,1) - Fundamental 

Mode for 2-D Plate 
0.696 

(1,2) 1.100 

(2,1) 1.100 

(2,2) 1.391 
  

 

 

 

 

 

 
I 

N 

T 

E 

R 

N 

A 

L 

 

D 

E 

F 

E 

C 

T 

E 

D 

 

2 

(1,0) 0.492 

(2,0) 0.984 

(0,1) 0.492 

(0,2) 0.984 

(1,1) 0.911 

(1,2) 1.260 

(2,1) 1.428 

(2,2) 1.821 
 

3 

(1,0) 0.492 

(2,0) 0.984 

(0,1) 0.492 

(0,2) 0.984 

(1,1) 1.125 

(1,2) 1.485 

(2,1) 1.485 

(2,2) 2.251 
 

4 

(1,0) 0.492 

(2,0) 0.984 

(0,1) 0.492 

(0,2) 0.984 

(1,1) 0.912 

(1,2) 1.260 

(2,1) 1.432 

(2,2) 1.824 
  

 
C 

O 

R 

N 

E 

R 

 

D 

E 

F 

E 

C 

T 

E 

D 

5 

(1,0) 0.492 

(2,0) 0.984 

(0,1) 0.492 

(0,2) 0.984 

(1,1) 0.846 

(1,2) 1.245 

(2,1) 1.245 

(2,2) 1.695 
 

6 

(1,0) 0.492 

(2,0) 0.984 

(0,1) 0.492 

(0,2) 0.984 

(1,1) 1.198 

(1,2) 2.009 

(2,1) 2.009 

(2,2) 2.397 
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In this study, plates can be grouped into three 

different classes in terms of the shape of the defects they 

have. These classes include plates without defects, plates 

with internal defects, and plates with corner defects, 

respectively. Case 1 represents the class of plates without 

defects. Case 2, Case 3, and Case 4 represent the class of 

plates with internal defects. Case 5 and Case 6 represent 

the class of plates with corner defects. As can be seen 

from Table 2, the frequency values of electromagnetic 

wave propagation occurring in the plates for all these 

cases are calculated in the lower modes with the finite 

differences method. 

Figure 12 depicts the dispersion relation of the 

electromagnetic wave for all cases. Among these six 

cases, the lowest electromagnetic wave propagation 

frequencies are obtained for Case 1, while the highest 

wave propagation frequencies are obtained for Case 6.  

In addition, the second highest electromagnetic wave 

propagation frequencies are obtained for Case 3. 

 

 

Fig. 12. Dispersion relation of the electromagnetic wave 

in the lower modes for all cases. 

Figure 13 shows the dispersion relation of the 

electromagnetic wave in the higher modes. In Fig.  

12, curves related to the dispersion relation of the 

electromagnetic wave obtained for Case 2 and Case 4 in 

the lower modes are almost coincident, whereas, in  

Fig. 13, the difference between these curves can be 

clearly seen in the higher modes. The frequencies of 

electromagnetic wave propagation obtained for Case 2, 

Case 3, and Case 4 reach a peak value and then their 

values decrease to zero. It should also be noted that  

the frequency values of the electromagnetic wave 

propagation obtained for Case 2, Case 3, and Case  

4 decrease towards zero in (1.27), (1.23), and (1.28) 

modes, respectively. The electromagnetic wave 

propagation frequency values obtained for Case 1 

increase linearly with the increase in the mode values, 

whereas the electromagnetic wave propagation frequency 

values obtained for Case 5 and Case 6 increase 

exponentially. 

 

Fig. 13. Dispersion relation of the electromagnetic wave  

in the higher modes for all cases. 

The phase and group velocity values in Figs. 14-17 

are obtained by means of Eqs. (10a) and (10b). Figure 14 

shows the phase velocity values obtained in the lower 

modes. All phase velocity values obtained in the lower 

modes decrease with the increase of the mode values. It 

should be noted that the highest phase velocity value is 

obtained for Case 6, whereas the lowest phase velocity 

value is obtained for Case 1. 

 

Fig. 14. Phase velocities in the lower modes for all cases. 

As can be seen from Fig. 15, values of the phase 

velocities obtained for Case 2, Case 3, and Case 4 in the 

higher modes decrease towards zero after reaching a 

certain peak. The peak values of the phase velocities 

obtained for Case 2, Case 3, and Case 4 are 9.6 m/s,  
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6.5 m/s, and 12.4 m/s, respectively. 

 

Fig. 15. Phase velocities in the higher modes for all cases. 

Figure 16 depicts the group velocities in the lower 

modes for all cases. In the lowest modes, while the mode 

value increases from (1.0) to (1.1), the group velocities 

obtained for Case 3 and Case 6 decrease negatively 

exponentially, the group velocities obtained for Case 2 

and Case 4 decrease linearly, the group velocities 

obtained for Case 5 increase linearly at the low slope, 

and the group velocities obtained for Case 1 increase 

logarithmically. In addition, in all other modes greater 

than (1.1), the group velocities increase with the increase 

of the modes for all cases. 

 

Fig. 16. Group velocities in the lower modes for all cases. 

 

As shown in Fig. 17, the values of the group 

velocities obtained for Case 2, Case 3, and Case 4 in the 

higher modes decrease towards zero after reaching a 

certain peak. Peak values of the group velocities 

obtained for Case 2, Case 3, and Case 4 are 33.1 m/s, 

17.9 m/s, and 25.6 m/s, respectively. 

 

Fig. 17. Group velocities in the higher modes for all cases. 

In Figs. 18-22, electromagnetic field distribution 

and material property parameters (ε, µ) distribution maps 

of five different cases (Cases 2-6) of the plate with  

the defect are depicted. The electromagnetic field and 

material property parameters (ε, µ) distribution maps in 

the (1,1) mode, the fundamental frequency mode for  

2-D plates, are obtained using the ANSYS package 

program based on finite differences time-domain 

method. It should be noted that the data obtained from 

electromagnetic field distribution maps show a very 

good agreement with the data obtained from material 

property parameters (ε, µ) distribution maps. 

 

Fig. 18. Distribution maps of (a) electromagnetic field, 

and (b) material property parameters (ε, µ) for Case 2. 
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Fig. 19. Distribution maps of (a) electromagnetic field, 

and (b) material property parameters (ε, µ) for Case 3. 

 

 

Fig. 20. Distribution maps of (a) electromagnetic field, 

and (b) material property parameters (ε, µ) for Case 4. 

 

 

Fig. 21. Distribution maps of (a) electromagnetic field, 

and (b) material property parameters (ε, µ) for Case 5. 

 

 

Fig. 22. Distribution maps of (a) electromagnetic field, 

and (b) material property parameters (ε, µ) for Case 6. 

 

VI. CONCLUSION 
In this study, the behaviors of electromagnetic wave 

propagation occurring in the two-dimensional plates 

having defects in their different parts are investigated. 

The behavior of electromagnetic wave propagation in the 

two-dimensional plate which has not any defect is also 

examined. For this purpose, the electromagnetic wave 

propagation frequencies are obtained in the fundamental 

mode for a total of six different cases, including the five 

different cases of defects in different parts of the plate 

and the condition of being defect-free. For the five cases 

where the plate has a defect, the effects of the defect's 

region and its size on the fundamental frequencies of 

electromagnetic wave propagation are discussed. The 

electromagnetic wave propagation frequencies obtained 

for six different cases are compared. As the material 

property parameters (ε, µ) of some nodes on the plate 

take zero value, in other words, with the increase in  

the size of the defected part of the plate, the obtained 

electromagnetic wave propagation frequency values also 

increase. The highest electromagnetic wave propagation 

frequency values are obtained for the corner-defected, t-

shaped plate, while the electromagnetic wave propagation 

frequency values obtained for the O-shaped plate are 

second in the ranking. When the frequencies of the 

electromagnetic wave propagation are examined in the 

higher modes, it also allows making comments about the 

characteristics of the phase and group velocities. In the 

higher modes, the frequency values of the electromagnetic 

wave propagation occurring in the internal-defected plates 

become zero after a certain mode value. In addition, the 

increase in the frequencies of the electromagnetic wave 

propagation that occur in the corner-defected plates in 

the higher modes is exponential and continuous with the 

increase in the mode values. The lowest electromagnetic 

wave propagation frequency values are obtained when 

the plate does not have a defect. The electromagnetic 

wave propagation frequencies obtained in this case 

increase linearly with the increase in the mode values. 

In this study, the preferred numerical solution method 

is the central finite differences method. Choosing the 

central finite differences method as the solution method 

enables adjusting the material properties parameters  

of any point of the structure whose electromagnetic  

wave propagation frequencies are examined. Thus, the 

electromagnetic wave propagation behavior for any 

complex structure can be easily determined. 

In future studies, it is also possible to apply the 

analysis to three-dimensional structures and determine 

the acoustic wave propagation behavior in complex 

phononic structures by taking advantage of the central 

finite differences method. 

 

REFERENCES 
[1] K. H. Chung, T. Kato, S. Mito, H. Takagi, and  

M. Inoue, “Fabrication and characteristics of one-

dimensional magnetophotonic crystals for magneto-

optic spatial light phase modulators,” Journal of 

Applied Physics, vol. 107, pp. 09A930, Apr. 2010. 

[2] E. A. Kadomina, E. A. Bezus, and L. L. 

Doskolovich, “Generation of interference patterns 

of evanescent electromagnetic waves at Fabry-

ACES JOURNAL, Vol. 36, No. 6, June 2021639



Perot resonances of 1D photonic crystal modes,”  

in 3rd. International Conference “Information 

Technology and Nanotechnology,” (ITNT-2017), 

Samara, pp. 42-47, 2017. 

[3] A. M. Singer, A. M. Heikal, H. El-Mikati, S. S. A. 

Obayya, and M. F. O. Hameed, “Ultra-low loss  

and flat dispersion circular porous core photonic 

crystal fiber for terahertz waveguiding,” Applied 

Computational Electromagnetics Society Journal, 

vol. 35, no. 6, pp. 709-717, June 2020. 

[4] Y. Zhang, Z. Cao, G. Lu, D. Zeng, M. Li, and  

R. Wang, “Reconfigurable array designed for 

directional EM propagation using energy band 

theory of photonic crytals,” Applied Computational 

Electromagnetics Society Journal, vol. 33, no. 11, 

pp. 1209-1216, Nov. 2018. 

[5] S. Jahani and Z. Jacob, “All-dielectric meta-

materials,” Nature Nanotechnology, vol. 11, pp. 

23-36, Jan. 2016. 

[6] S.-Y. Sung, A. Sharma, A. Block, K. Keuhn,  

and B. J. H. Stadler, “Magneto-optical garnet 

waveguides on semiconductor platforms: Magnetics, 

mechanics, and photonics,” Journal of Applied 

Physics, vol. 109, pp. 07B738, Mar. 2011. 

[7] H. Sun, S. Huang, Q. Wang, S. Wang, and W. 

Zhao, “Improvement of unidirectional focusing 

periodic permanent magnet shear-horizontal wave 

electromagnetic acoustic transducer by oblique 

bias magnetic field,” Sensors and Actuators A: 

Physical, vol. 290, pp. 36-47, May 2019. 

[8] A. Ayman, S. Prasad, and V. Singh, “Tuning the 

band structures and electromagnetic density of 

modes in fused Silica slab by acoustic waves,” 

Optik – International Journal for Light and 

Electron Optics, vol. 204, 164105, Feb. 2020. 

[9] A. Rostami, H. Kaatuzian, and B. Rostami-

Dogolsara, “Acoustic 1 x 2 demultiplexer based  

on fluid-fluid phononic crystal ring resonators,” 

Journal of Molecular Liquids, vol. 308, 113144, 

Apr. 2020. 

[10] A. Rostami, H. Kaatuzian, and B. Rostami-

Dogolsara, “Design and analysis of tunable acoustic 

channel drop filter based on fluid-fluid phononic 

crystal ring resonators,” Wave Motion, vol. 101, 

102700, Mar. 2021. 

[11] A. Trzaskowska, P. Hakonen, M. Wiesner,, and  

S. Mielcarek, “Generation of a mode in phononic 

crystal based on 1D/2D structures,” Ultrasonics, 

vol. 106, 106146, Aug. 2020. 

[12] A. Madani and S. R. Entezar, “Tunable enhanced 

Goos-Hanchen shift in one-dimensional photonic 

crystals containing graphene monolayers,” Super-

lattices and Microstructures, vol. 86, pp. 105-110, 

Oct. 2015. 

[13] A. Aghajamali, T. Alamfard, and C. Nayak, 

“Investigation of reflectance properties in a 

symmetric defective annular semiconductor-

superconductor photonic crystal with a radial 

defect layer,” Physica B: Physics of Condensed 

Matter, 412770, Mar. 2021. 

[14] T. Jalali, A. Gharaati, and M. Rastegar, “Enhanced 

of Faraday rotation in defect modes of one-

dimensional magnetophotonic crystals,” Materials 

Science-Poland, vol. 37, no. 3, pp. 446-453, Oct. 

2019. 

[15] O. V. Shramkova and Y. A. Olkhovskiy, “Electro-

magnetic wave transmission and reflection by a 

quasi-periodic layered semiconductor structure,” 

Physica B: Physics of Condensed Matter, vol. 406, 

no. 8, pp. 1415-1419, Apr. 2011. 

[16] A. N. Basmaci, “Characteristics of electromagnetic 

wave propagation in a segmented photonic 

waveguide,” Journal of Optoelectronics and 

Advanced Materials, vol. 22, no. 9-10, pp. 452-

460, Sep.-Oct. 2020. 

[17] H. Wang, Y. Chen, and C. Huang, “The 

electromagnetic waves propagation characteristics 

of inhomogeneous dusty plasma,” Optik – 

International Journal for Light and Electron 

Optics, vol. 196, 163148, Nov. 2019. 

[18] F. Meng, L. Du, A. Yang, and X. Yuan, “Low  

loss surface electromagnetic waves on a metal-

dielectric waveguide working at short wavelength 

and aqueous environment,” Optics Communications, 

vol. 433, pp. 10-13, Feb. 2019. 

[19] A. B. Khanikaev, S. H. Mousavi, C. Wu, N. 

Dabidian, K. B. Alici, and G. Shvets, “Electro-

magnetically induced polarization conversion,” 

Optics Communications, vol. 285, pp. 3423-3427, 

July 2012. 

[20] M. Askari, D. Hutchins, P. J. Thomas, L. Astolfi, 

R. L. Watson, M. Abdi, M. Ricci, S. Laureti, L. 

Nie, S. Freear, R. Wildman, C. Tuck, M. Clarke, E. 

Woods, and A. T. Clare, “Additive manufacturing 

of metamaterials: A review,” Additive Manu-

facturing, vol. 36, 101562, Dec. 2020. 

[21] K. Bi, Q. Wang, J. Xu, L. Chen, C. Lan, and  

M. Lei, “All-dielectric metamaterial fabrication 

techniques,” Advanced Optical Materials, vol. 9, 

2001474, Nov. 2021. 

[22] T. Gao, H. Sun, Y. Hong, and X. Qing, “Hidden 

corrosion detection using laser ultrasonic guided 

waves with multi-frequency local wavenumber 

estimation,” Ultrasonics, vol. 108, 106182, Dec. 

2020. 

[23] T. F. Khalkhali and A. Bananej, “Effect of shape of 

scatterers and plasma frequency on the complete 

photonic band gap properties of two-dimensional 

dielectric-plasma photonic crystals,” Physics Letters 

A, vol. 380, pp. 4092-4099, Dec. 2016. 

[24] B. Zamir, R. Ali, and M. Bashir, “Electromagnetic 

wave propagation in a superconducting parallel-

BASMACI: ELECTROMAGNETIC WAVE PROPAGATION IN PHOTONIC CRYSTALS 640



plate waveguide filled with an indefinite medium,” 

Results in Physics, vol. 13, 102312, June 2019. 

[25] K. S. Kunz and R. J. Luebbers, The Finite 

Difference Time Domain Method for Electro-

magnetics. CRC Press, London, 1993. 

[26] S. Caorsi and G. Cevini, “Assessment of the 

performances of first- and second-order time-

domain ABC’s for the truncation of finite element 

grids,” Microwave Optical Technology Letters, 

vol. 38, no. 1, pp. 11-16, May 2003. 

[27] J. Li and Z. Zhang, “Unified analysis of time 

domain mixed finite element methods for Maxwell’s 

equations in dispersive media,” Journal of 

Computational Mathematics, vol. 28, no. 5, pp. 

693-710, Sep. 2010. 

[28] L. Li, B. Wei, Q. Yang, and D. Ge, “Piecewise 

linear recursive convolution finite element time 

domain method for electromagnetic analysis of 

dispersive media,” Optik – International Journal 

for Light and Electron Optics, vol. 198, 163196, 

Dec. 2019. 

[29] S. Elshahat, I. Abood, Z. Liang, J. Pei, and Z. 

Ouyang, “Dispersive engineering of W2 steeple-

house-defect waveguide photonic crystals,” Results 

in Physics, vol. 19, 103547, Dec. 2020. 

[30] J.-Y. Lee, J.-H. Lee, and H.-K. Jung, “Linear 

lumped loads in the FDTD method using piecewise 

linear recursive convolution method,” IEEE 

Microwave and Wireless Componenets Letters, 

vol. 16, no. 4, Apr. 2006. 

[31] S. S. Neoh and F. Ismail, “Time-explicit numerical 

methods for Maxwell’s equation in second-order 

form,” Applied Mathematics and Computation, 

vol. 392, 125669, Mar. 2021. 

[32] X. Jia, Q. Meng, X. Wang, and Z. Zhou, 

“Numerical study of a quasi-zero-index photonic 

metamaterials,” Optics Communications, vol. 364, 

pp. 158-164, Apr. 2016. 

[33] F. Kaburcuk and A. Z. Elsherbeni, “A speeding up 

technique for lossy anisotropic algorithm in FDTD 

method,” Applied Computational Electromagnetics 

Society Journal, vol. 31, no. 12, pp. 1377-1381, 

Dec. 2016. 

[34] B. Meng, L. Wang, W. Huang, X. Li, X. Zhai, and 

H. Zhang, “Wideband and low dispersion slow-

light waveguide based on a photonic crystal with 

crescent-shaped air holes,” Applied Optics, vol. 51, 

no. 23, pp. 5735-5742, Aug. 2012. 

[35] C. Shi, J. Yuan, X. Luo, S. Shi, S. Lu, P. Yuan,  

W. Xu, Z. Chen, and H. Yu, “Transmission 

characteristics of multi-structure bandgap for 

lithium niobate integrated photonic crystal and 

waveguide,” Optics Communications, vol. 461, 

125222, Apr. 2020.  

[36] C. Shi, J. Yuan, X. Luo, S. Shi, S. Lu, P. Yuan, W. 

Xu, Z. Chen, and H. Yu, “Multi-channel slow light 

coupled-resonant waveguides based on photonic 

crystal with rectangular microcavities,” Optics 

Communications, vol. 341, pp. 257-262, Apr. 

2015.  

[37] V. Varmazyari, H. Habibiyan, and H. Ghafoorifard, 

“Slow light in ellipse-hole photonic crystal line-

defect waveguide with high normalized delay 

bandwidth product,” Journal of the Optical Society 

of America B, vol. 31, pp. 771-779, Mar. 2014.  

[38] D. M. Pozar, Microwave Engineering. 4th Edition, 

John Wiley & Sons, Inc., Amherst, Massachusetts, 

2012. 

[39] J. H. Mathews and K. D. Fink, Numerical Methods 

using Matlab. Prince Hall, New Jersey, 1999. 

[40] M. Moitra, B. A. Slovick, Z. G. Yu, S. 

Krishnamurthy, and J. Valentine, “Experimental 

demonstration of a broadband all-dielectric 

metamaterial perfect reflector,” Applied Physics 

Letters, vol. 104, 171102, Apr. 2014. 

[41] J. C. Ginn and I. Brener, “Realizing optical 

magnetism from dielectric metamaterials,” Physical 

Review Letters, vol. 108, 097402, Feb. 2012. 

 

 

 

Ayse Nihan Basmaci received her 

B.Sc., M.Sc. and Ph.D. degrees in 

Electrical Electronics Engineering 

from Pamukkale University in 

2008, 2011 and 2017, respectively. 

Between 2008 and 2012, she 

worked as an Engineer at Turk 

Telekom Company. She also has 

been an Assistant Professor at Tekirdag Namik Kemal 

University, Vocational School of Technical Sciences,  

in the last 2 years. Her research interests include 

electromagnetic wave propagation, photonics, advanced 

materials, computational electromagnetics, electro-

magnetic fields, electromagnetic waves, and microwave 

filter design.  

 

ACES JOURNAL, Vol. 36, No. 6, June 2021641



 
 
    
   HistoryItem_V1
   AddNumbers
        
     Range: all odd numbered pages
     Font: Times-Roman (unembedded) 8.0 point
     Origin: top right
     Offset: horizontal 43.20 points, vertical 26.64 points
     Prefix text: ''
     Suffix text: ''
     Colour: Default (black)
     Add text every 0 pages
      

        
     D:20210723150535
      

        
     1
     1
     
     TR
     
     1
     1
     1
     0
     0
     610
     TR
     1
     0
     0
     320
     177
     0
     1
     R0
     8.0000
            
                
         Odd
         7
         AllDoc
         174
              

       CurrentAVDoc
          

     [Sys:ComputerName]
     43.2000
     26.6400
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0m
     Quite Imposing Plus 4
     1
      

        
     0
     214
     212
     e1ff76cc-c4d9-4c57-a04c-02b5eeb2360d
     107
      

   1
  

    
   HistoryItem_V1
   AddNumbers
        
     Range: all even numbered pages
     Font: Times-Roman (unembedded) 8.0 point
     Origin: top left
     Offset: horizontal 43.20 points, vertical 26.64 points
     Prefix text: ''
     Suffix text: ''
     Colour: Default (black)
     Add text every 0 pages
      

        
     D:20210723150542
      

        
     1
     1
     
     TL
     
     1
     1
     1
     0
     0
     610
     TR
     1
     0
     0
     320
     177
     0
     1
     R0
     8.0000
            
                
         Even
         7
         AllDoc
         174
              

       CurrentAVDoc
          

     [Sys:ComputerName]
     43.2000
     26.6400
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0m
     Quite Imposing Plus 4
     1
      

        
     0
     214
     213
     828e65ea-717b-466d-8776-14b6308eea3a
     107
      

   1
  

    
   HistoryItem_V1
   AddNumbers
        
     Range: From page 138 to page 214; only odd numbered pages
     Font: Times-Roman (unembedded) 8.0 point
     Origin: top right
     Offset: horizontal 43.20 points, vertical 26.64 points
     Prefix text: ''
     Suffix text: ''
     Colour: Default (black)
     Add text every 0 pages
      

        
     D:20210723160607
      

        
     1
     1
     
     TR
     
     1
     1
     1
     0
     0
     747
     TR
     1
     0
     0
     101
     71
     0
     1
     R0
     8.0000
            
                
         Odd
         138
         SubDoc
         214
              

       CurrentAVDoc
          

     [Sys:ComputerName]
     43.2000
     26.6400
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0m
     Quite Imposing Plus 4
     1
      

        
     137
     214
     212
     c935725d-b923-474b-a5c4-ce36bf11c539
     38
      

   1
  

    
   HistoryItem_V1
   AddNumbers
        
     Range: From page 138 to page 214; only even numbered pages
     Font: Times-Roman (unembedded) 8.0 point
     Origin: top left
     Offset: horizontal 43.20 points, vertical 26.64 points
     Prefix text: ''
     Suffix text: ''
     Colour: Default (black)
     Add text every 0 pages
      

        
     D:20210723160613
      

        
     1
     1
     
     TL
     
     1
     1
     1
     0
     0
     747
     TR
     1
     0
     0
     101
     71
    
     0
     1
     R0
     8.0000
            
                
         Even
         138
         SubDoc
         214
              

       CurrentAVDoc
          

     [Sys:ComputerName]
     43.2000
     26.6400
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0m
     Quite Imposing Plus 4
     1
      

        
     137
     214
     213
     8bdc5eba-28db-4d35-b188-8d048733425c
     39
      

   1
  

 HistoryList_V1
 qi2base





