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Abstract ─ A technique for directivity improvement of 

the microstrip parallel-coupled lines using symmetric-

centered inductors is presented in this paper. The design 

procedure of the symmetric-centered inductors using the 

closed-form equations is given. The proposed technique 

was performed with a design at the operating frequency 

of 0.9 GHz on an FR4 substrate. Validity of the proposed 

technique is verified by simulations and measurements 

in comparisons with conventional parallel-coupled lines. 

The measured results exhibit the isolation of -30.10 dB 

and directivity of 19.28 dB at the operating frequency of 

0.9 GHz. The directivity from the measured results is 

improved by more than 4 dB at 0.9 GHz and more  

than 6 dB at 1.05 GHz compared with the conventional 

parallel-coupled lines. In addition, the proposed technique 

for the microstrip parallel-coupled line can achieve a 

high directivity with the compact size (21.0 mm x 4.70 

mm). The novelty of this paper is by introducing the 

proposed and closed-form design equations for the 

compact symmetric-centered inductors with high 

directivity. 

 

Index Terms ─ Microstrip, parallel-coupled lines, 

directivity, symmetric-centered inductors. 
 

I. INTRODUCTION 
Microstrip parallel-coupled lines are often used as  

a passive element in microwave applications such as 

Wilkinson power dividers, Baluns [1], mixers, phase 

shifters, wideband bandpass filters [2], and feeding 

networks for antennas [3]. However, microstrip parallel-

coupled lines also possess unwanted effects from 

inhomogeneous dielectric substrate due to inequity in  

the phase velocity of the even and odd modes. Various 

compensation techniques have been reported for 

improving the isolation and enhancement of directivity 

for microstrip parallel-coupled lines. The principal 

techniques can be classified into two main categories 

including distributed [4-9] and lumped [10-19] 

compensation approaches. Lumped compensation 

approaches can further be classified into two well-known 

techniques including capacitive techniques [11-14], 

which are used for enhancement of directivity and 

inductive compensation techniques [15-19] presented 

are compensated by inductance for enhancement of high 

directivity microstrip parallel-coupled lines. However, 

the capacitive techniques require placement in a  

narrow spacing of the microstrip parallel-coupled lines. 

Nonetheless, there are drawbacks of parasitic effects  

in the ground connected and difficulty in layout. In 

addition, the compound techniques do not decrease the 

electrical length in the microstrip parallel-coupled lines. 

compensation technique [20] uses inductance and 

capacitance for directivity enhancement. Also, the 

technique requires the large physical size. However, the 

aforementioned. 

The disadvantage of some approaches is the lack of 

closed-form design equations for additional impedances 

and electrical length. Also, it turns out that the design 

process heavily relies on the electromagnetic simulation 

step. This step consumes much computing time. In 

addition, some techniques are often not suitable for some 

standard fabrication tasks or require much space for the 

design devices, thus more cost demand is certainly 

required. Distinct advantage of the lumped compensation 

approach is its easy design process because the design 

equations can be derived [15].        

In this paper, a simple, yet effective lumped 

compensation technique with symmetric-centered 

inductors is proposed. This technique can achieve 

enhancement of directivity, isolation improvement, and 

compact circuit size for microstrip parallel-coupled lines 

using symmetric-centered inductors. The closed-form 

equations for the design of symmetric-centered inductors 

and the equations for electrical length are proposed for 

improving the directivity and the isolation of the 
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microstrip parallel-coupled lines in this paper. In 

addition, the high directivity and isolation improvement 

can be obtained in the wider frequency range. In this 

paper, section II presents the theory for microstrip 

parallel-coupled lines with the proposed technique. The 

design equations for the proposed circuit are also given. 

Section III proposes the concept for the design of the 

symmetric-centered inductors and the simulated results 

for the microstrip parallel-coupled lines. Section IV 

shows the experimental results of the proposed 

technique. Finally, the conclusions are presented in 

Section V. 

 

II. THE PROPOSED TECHNIQUE WITH 

SYMMETRIC-CENTERED INDUCTORS  
The schematic of the proposed microstrip parallel-

coupled lines is shown in Fig. 1 (a), in which the 

component has an input port (port 1), a coupled port (port 

2), an isolated port (port 3) and a through port (port 4). 

The symmetric-centered inductors shown in Fig. 1 (b) 

are face to face configuration, consisting of microstrip 

parallel-coupled lines and symmetric-centered inductors

( )sdL .  

 

 
(a) 

 
(b) 

 

Fig. 1. Schematics of the proposed microstrip parallel-

coupled lines with (a) the proposed technique and (b) 

face to face configuration. 
 

 
 

Fig. 2. Electrical schematic of the symmetric-centered 

inductors for microstrip parallel-coupled lines. 

 

Figure 2 shows the electrical schematic of the 

symmetric-centered inductors for the microstrip parallel-

coupled lines. This schematic was used for analysis  

of the various coefficients with the network theory. 

Generally, the symmetric-centered inductors can be 

represented in terms of their corresponding two-port 

network. The equations are expressed by [15,16]: 

 144133122
'
1111 ZIZIZIZIV +++= , (1) 

 244233
'
2222112 ZIZIZIZIV +++= , (2) 

 3443333223113 ZIZIZIZIV +++= , (3)

 
 4444334224114 ZIZIZIZIV +++= , (4) 

where the LsdZZZ += 11
'
11  and LsdZZZ += 22

'
22  in 

these equations (1-4) have impedance parameters as 

follows [21]: 
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and the oe ZZ 00 ,  are the even and odd mode characteristic 

impedances and oe  ,  are even and odd mode electrical 

lengths, respectively. The even and odd mode electrical 

lengths are: 
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where effoeffe  ,  are the even and odd mode effective 

relative dielectric constants. The phase velocities of the 

even and odd modes are different in microstrip parallel-

coupled lines. Let the symmetric-centered inductors for 

the microstrip parallel-coupled lines become equal. The 

impedance parameters (Z) are in the equations (11-14) 

[21]: 

   

44332211 ZZZZ === , (11) 
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42312413 ZZZZ === , (13) 

   41322314 ZZZZ === . (14) 

Let the isolation coefficient ( )31S  reach zero

( )031 →S  for perfect isolation performance. The coupling 

coefficient ( )21S , isolation coefficient ( )31S  and the 

directivity can be derived and shown in the equations 

(15-17):  
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The symmetric-centered inductors are connected at 

the center of the microstrip parallel-coupled lines. The 

equations (1-17) are used to determine the isolation 

coefficients in terms of coupler electrical parameters, 

which can be derived as the mentioned symmetric-

centered inductors. Furthermore, the directivity can  

be improved at the operating frequency ( )of  as soon  

as the isolation coefficient is null. The impedance of 

symmetric-centered inductors is obtained in the function 

of Z-impedance in equation (18) as: 
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then the symmetric-centered inductors are as the 

equation (19):  
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where oe  coshcosh −=  and 0Z  is the characteristic 

impedance of the coupled lines, 4 =e  is the even 

mode electrical length, and ( )ko 4 =  is the odd  

mode electrical length of the coupled lines when  

effeeffok = . The equation (19) proposes a closed-

form expression to design the symmetric-centered 

inductors for high directivity at the desired frequency. 

For  

the microstrip parallel-coupled lines with symmetric-

centered inductors, the isolation coefficient can reach 

zero if the new electrical length ( )sdL  is as follows: 
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III. DESIGN AND SIMULATED RESULTS OF 

THE SYMMETRIC-CENTERED INDUCTORS 
To validate the performance of the proposed 

technique, a 10-dB conventional parallel-coupled line 

and the proposed parallel-coupled line operating at  

the operating frequency of 0.9 GHz are designed and 

simulated. An FR4 substrate (h=1.6 mm, 55.4=r , and 

𝑡𝑎𝑛 𝛿 = 0.02) is used for both parallel-coupled lines. 

The symmetric-centered inductors are designed and 

determined from the equations (18-19). The calculation 

of the symmetric-centered inductors from equation  

(19) and the electrical length ( )sdL  from equation (20) 

are 3.3 nH and 0.22𝜋 rad, respectively. These physical 

parameters of the symmetric-centered inductors and the 

conventional parallel-coupled lines are shown in Table 

1. The topologies of the conventional parallel-coupled 

lines and the proposed parallel-coupled lines are shown 

in Figs. 3 (a) and 3 (b), respectively.  
 

Table 1: Parameters of the conventional parallel-coupled 

lines and the proposed parallel-coupled lines 

Technique Components )(rad
 

W,S,L 

(mm) 

Conventional 

coupled lines 
- 0.25𝜋

 

2.25, 

0.2, 

23.4 

Symmetric-

centered 

inductors 

Lsd  = 3.3 nH 

Transmission 

line (W,L) 

= 0.4, 1.3 mm 

0.22𝜋

 

2.25, 

0.2, 

21 

 

 
 

(a) 

 
(b) 

 

Fig. 3. Schematics of the parallel-coupled lines: (a) 

conventional parallel-coupled lines, and (b) the proposed 

parallel-coupled lines. 
 

 
 

Fig. 4. Simulated results of return loss for the 

conventional coupled lines and the proposed parallel-

coupled lines. 
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In Figs. 4, 5, 6, and 7, the EM simulated results [22] 

of the conventional microstrip parallel-coupled lines, 

and the proposed parallel-coupled lines are shown, 

including return loss, coupling factor, isolation, and 

directivity. The simulated results of the return loss are 

less than -20 dB at the operating frequency of 0.9 GHz 

and the second harmonic frequency of 1.8 GHz, as seen 

in Fig. 4. In addition, the coupling factor is 10 dB at the 

operating frequency of 0.9 GHz for both coupled lines, 

as shown in Fig. 5. The isolation performance at the 

operating frequency of 0.9 GHz is less than -23.9 dB for 

both parallel-coupled lines, as shown in Fig. 6. In Fig. 7, 

the directivity of the proposed parallel-coupled lines  

at the operating frequency of 0.9 GHz is 14.8 dB. The 

proposed design achieves an improvement of 1.4 dB 

compared with the conventional parallel-coupled lines. 

 

 
 

Fig. 5. Simulated results of coupling factor for the 

conventional coupled lines and the proposed parallel-

coupled lines. 

 

 
 

Fig. 6. Simulated results of isolation for the conventional 

coupled lines and the proposed parallel-coupled lines. 
 

 
 

Fig. 7. Simulated results of directivity for the 

conventional coupled lines and the proposed parallel-

coupled lines. 
 

IV. EXPERIMENTAL RESULTS 
Measurements are performed to validate the 

directivity of the proposed parallel-coupled lines. The 

results are compared with the results of conventional 

parallel-coupled lines. The prototypes are designed and 

fabricated on the FR4 substrate. PCB photographs of the 

conventional and proposed circuits are shown in Fig. 8. 

In addition, the electrical length (θ) is reduced from 

0.25𝜋 to 0.22𝜋 as in Table 1. 

Measurements are performed using the E5071C 

network analyzer calibrated from 0.1 to 3.0 GHz. Figure 

9 shows measured return loss of the proposed parallel-

coupled lines compared with the conventional parallel-

coupled lines in the frequency range of 0.1 to 3.0 GHz. 

At the operating frequency of 0.9 GHz, the return losses 

of both parallel-coupled lines are lower than -20 dB. It is 

confirmed that the reflected power is low at the operating 

frequency. The coupling coefficients are about -10 dB at 

the operating frequency for both parallel-coupled lines 

as design. The measured results are shown in Fig. 10. 

The measured isolation performance obtained from the 

proposed parallel-coupled lines is -30.10 dB. It is about 

2.17 dB, which is better than that of the conventional 

parallel-coupled lines from 0.1 to 3.0 GHz as shown in 

Fig. 11. In Fig. 12, the measured directivity at the operating 

frequency of the proposed and conventional parallel-

coupled lines are 19.28 dB and 15.00 dB, respectively. It 

shows that the proposed technique provides directivity 

performance about 4.28 dB, which is better than that  

of the conventional technique. However, the highest 

directivity performance obtained from the proposed 

technique is 19.8 dB at the frequency of 1.05 GHz. At the 

frequency of 1.05 GHz, the proposed technique obtained 

a 6.05 dB improvement in directivity performance.  

Tables 2, 3 and 4 summarize the performances of the 

previous and proposed techniques. It is observed that the 
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electrical length equation and closed-form equation for 

the symmetric-centered inductors can be achieved. The 

proposed structure is easily fabricated. The frequency 

range of the proposed technique with higher directivity 

compared to the conventional techniques is wider than 

those of previous techniques. In addition, the proposed 

technique requires compact circuit size compared to the 

sizes of the previous techniques.   

 

 
 (a) 

     
 (b) 

 

Fig. 8. Photographs of fabricated circuits: (a) conventional 

coupled lines and (b) proposed coupled lines. 

 

 
 

Fig. 9. Measured results for return loss of both parallel-

coupled lines. 

Table 2: Fabrication and electrical length equation 

comparison of inductive compensation for parallel-

coupled lines 
Ref. Operating 

Frequency 

(GHz) 

Electrical 

Length 

Equation 

Fabrication 

[17] 0.9 No Complicated 

[18] 2.4 No Complicated 

[20] 1.6 No Complicated 

This work 0.9 Yes Easy 

 

 
 

Fig. 10. Measured results for the coupling factors of both 

parallel-coupled lines. 

 

Table 3: Frequency range with higher directivity 

comparison of inductive compensation for parallel-

coupled lines 
Ref. Operating 

Frequency 

(GHz) 

Frequency Ranges with Higher 

Directivity (Compared to 

Conventional Technique) (GHz) 

[17] 0.9 0.1-2.0 

[18] 2.4 2.0-2.8 

[20] 1.6 1.2-2.0 

This work 0.9 0.1-3.0 (wider) 

 

Table 4: Size comparison of inductive compensation for 

parallel-coupled lines 
Ref. Operating Frequency 

(GHz) 

Size (mm x mm) 

[17] 0.9 53.40 x 23.13 

[18] 2.4 18.39 x 18.31 

[20] 1.6 19.90 x 18.60 

This work 0.9 21.00 x  4.70 

 

V. CONCLUSIONS 
A technique using the symmetric-centered inductors 

has been proposed to enhance the directivity performance 

of microstrip parallel-coupled lines in this paper. The 
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design of the symmetric-centered inductors is simplified 

using the closed-form equations. The electrical length  

is also given. The simulated and measured results are 

used to validate the proposed technique. Since there are 

many microwave communication circuits whose circuits 

consist of microstrip parallel-coupled lines, it is believed 

that the proposed technique can be easily modified for 

use in modern wireless communications such as 

microwave resonators, couplers, and filters with compact 

size requirements. 

 

 
 

Fig. 11. Measured results for isolation performance of 

both parallel-coupled lines. 

 

 
 

Fig. 12. Measured results for directivity performance of 

both parallel-coupled lines. 
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