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Abstract ─ This paper presents a new configuration of 
a compact wide-band Bandpass Filter (BPF). The filter 
is realized using embedded stub configuration along 
with Defected Ground Structure (DGS) and folded 
stubs. The proposed configuration not only offers a 
compact structure but also shows a wide passband and 
improved out-of-band performance. A prototype model 
is developed and its characteristics are measured. Good 
agreement is obtained between simulation and 
measured results. The results show improved wide-
band behavior, insertion loss lower than 0.6 dB and 
49.16 % of size reduction.
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I. INTRODUCTION 
The microwave filters play a very important role in 

wireless and satellite communication transceiver 
systems. It is an important passive component in the 
communication system that rejects unwanted signals in 
the specified band of interest. Planar microwave 
wideband BPF’s have received greater attention due to 
several advantages, such as low cost, small size and 
ease of fabrication. The performance of the filter highly 
depends on its passband and out-of-band performances. 
In the past, several techniques have been developed to 
analyze these filters with improved passband and out-
of-band characteristics. In [1] a microstrip wideband 
BPF with increased fractional bandwidth is reported. 
Using a ring-resonator a higher filter bandwidth is 
achieved [2] and Ultra Wideband (UWB) characteristic 
is realized by combining low pass filter with high pass
filter [3]. With the help of Multiple-Mode Resonator 
(MMR), various wideband and UWB BPF are 
developed [4-10]. A wideband filter with an extended 

out-of-band has been constituted by internally installing 
an Electromagnetic Bandgap (EBG) transmission line 
into a traditional highpass filter with short-circuited 
stubs [11]. Wideband microstrip BPF is also reported 
using Sierpinski fractal stub-based resonator where a 
greater fractional bandwidth is achieved [12]. Further, a 
compact wideband BPF using modified non-
bianisotropic split-ring resonators is developed [13] and 
a dual-wideband filter design is implemented with the 
stepped-impedance resonators using different concepts, 
such as frequency mapping approach and defected 
stepped impedance resonator [14-15]. With the 
application of coupling mechanism, miniaturized 
wideband BPF’s are also reported [16-17]. Using the 
aperture-coupled technique, a three-layer UWB BPF is 
studied in [18], which involves a complicated design 
procedure. In [19], a technique deploying an EBG 
structure is proposed and wide-stopband behavior is 
reported with increased circuit size. Several other triple-
mode UWB filters have been reported based on varied 
MMR’s, such as stub-loaded MMR [20], one open stub 
and one short stub loaded MMR [21]. In fact, with the 
help of MMR in fiber grating, other kinds of filters in 
optical-electrical fields have been used to realize optical 
switching because of its high nonlinearity and low 
insertion loss [22-25]. A novel miniaturized parallel
coupled-line BPF with suppression of second, third and 
fourth harmonic frequencies are realized in [26]. A
microstrip BPF based on Folded Tri-Section Stepped 
Impedance Resonator (FTSIR) and DGS is reported in 
[27]. A compact microstrip BPF with bandwidth 
control is developed by employing DGS resonators 
[28]. In [29], a novel compact LPF and BPF based on 
DGS using two Complementary Split Ring Resonators 
(CSRR) are presented. A compact UWB bandpass 
filter with two controllable highly selective notched 
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bands are reported in [30]. An embedded stub is 
proposed to implement microwave bandstop filter with 
narrow bandwidth and sharp rejection rate [31].

In this paper a new compact wideband filter is 
proposed using DGS along with embedded stubs and 
folded stub configuration to improve the out-of-band 
performance of the filter. 

II. BAND PASS FILTER 
IMPLEMENTATION AND SIMULATION 

RESULTS 
Conventional BPF configuration employs 

cascaded short circuited stubs of electrical length θC at 
some specified frequency fC, separated by connecting 
lines (unit elements) of electrical length 2θC [11] as 
shown in Fig. 1. The electrical length θC can be 
determined from: 
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Fig. 1. General circuit model for the conventional 
wideband BPF. 

For fC = 1.4 GHz and fH = 5.4 GHz, the electrical 
length, θC = 0.647 radians or 370. Next, the filter 
parameters are obtained for n = 3 (three short circuited 
stubs) and 0.1 dB ripple, as y1 = y3 = 0.40, y1,2 = y2,3 
= 1.05 and y2 = 0.48, where yi, yi,j and yj,i are the 
element values of optimum distributed high pass filter, 
where i = j = 1,2,3. The corresponding impedances are 
calculated as Z1 = Z3 = 124.68 Ω, Z1,2 = Z2,3 = 47.45
Ω and Z2 = 103.53 Ω [11]. All the vias dimensions are 
0.5 mm in diameter. The overall electrical length of the 
conventional filter is 4θC, where the unit elements have 
electrical length = 2θC.

The lengths of the input and output transmission 
lines are selected depending on the length of the short 
circuited stub. Since the proposed configuration
employs the shorted stubs embedded in the 
transmission lines, the length of the input and output 
transmission lines are selected as λg/8.

Table 1: Dimensions of the filter 
Filter elements Impedance 

(-)
Length 
(mm)

Width 
(mm)

Microstrip line
side stubs,
Z1= Z3

124.68 15.82 0.82

Microstrip line
centre stub, Z2

103.53 15.70 1.30

Unit element
(UE), Z12= Z23

47.45 30.28 5.22

The filter is designed on a RT/duroid 5880 
substrate with a dielectric constant of 2.2, thickness h = 
1.57 mm and loss tangent 0.0009. The Method of 
Moments based IE3D simulation software tool from 
Zealand, USA, is used for the purpose of simulation. 
The conventional BPF is shown in Fig. 2 and the 
dimensions are specified as shown in Table 1. The 
characteristics of the filters are obtained in terms of S-
parameters, as shown in Fig. 3. 

Fig. 2. Conventional BPF with Z12 = Z23 = 47.45 -.

The impedance of the unit elements Z12 = Z23 = 
47.45 Ω of conventional BPF is replaced with the 

impedance of 50 Ω, to maintain uniformity. This does 
not alter the characteristics of the filter significantly as 
shown in Fig. 3. It is observed that the out-of-band 
characteristic needs improvement. Next, the 
conventional BPF is analyzed with DGS configuration, 
with an intention to improve the out-of-band 
characteristic and also to reduce the total length of the 
filter  

A parametric study is carried out to determine the 
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proper dimension of the lattice (DGS) [32- 33] for 
generating the attenuation pole at the desired location 
over the out-of-band. Following the procedure as in 
[32-33] for the location of attenuation pole at 8.9 GHz, 
the lattice dimension is obtained as x = 4 mm, y = 2 
mm and g = 0.5 mm. The incorporation of DGS helps 
in two ways. First, it generates an attenuation pole at the 
desired location, thus offering an improved out-of-band 
characteristic. Secondly, it also miniaturizes the length 
of the filter, as the length of the unit elements are now 
half of the original length. Hence, a unit element of 
electrical length 2θC of conventional BPF is now 
replaced by the unit element of electrical length θC after 
incorporating a DGS, as shown in Fig. 4. 
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Fig. 3. Simulated result for S-parameters. 

The filter configuration is further modified by 
folding the central shorted stub in L-shape 
configuration and embedding the two shorted side stubs 
in 50 ohm transmission lines, thus offering a compact 
configuration, as shown in Fig. 5 (a); where W1 = 1.42 
mm, W2 = 0.58 mm and W3 = 0.56 mm.

Fig. 4. Wide BPF with DGS. 

(a) 

(b)

Fig. 5. (a) Proposed compact embedded filter and (b)
equivalent circuit of proposed compact embedded filter. 

The equivalent circuit representation of the 
proposed compact embedded filter is shown in Fig. 5 
(b), where the DGS and DMS configurations are 
represented as a parallel combination of L and C, 
connected in series with 50 ohm microstrip line and the 
shorted stub is represented as parallel L and C, 
connected in shunt. 

A. Effect of slot/gap parameters (W1, W2)
Four set of values of slot W1 and gap W2 are 

selected as follows: (I) W2 = 0.38 mm and W1 = 1.62
mm; (II) W2 = 0.58 mm and W1 = 1.42 mm; (III) W2 
= 0.78 mm and W1 = 1.22 mm; (IV) W2 = 0.98 mm 
and W1 = 1.02 mm. 

The simulated results of the variation of the slot 
W1 and gap W2 are shown in Fig. 6. 

For the (I) data set, improved performance in the 
passband is observed. However, due to the limitations 
in our PCB fabrication facility, the (II) data set is 
considered as the existing fabrication facility does not 
support the strip/slot dimensions less than 0.5 mm. 

DGS

50 Ω line
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Fig. 6. Simulated result of S-parameters for different 
W1 and W2. 

B. Effect of gap parameters (W3)
For constant W2 = 0.58 mm, three set of values of 

gap W3 are taken; as (I) W3 = 0.36 mm, (II) W3 = 0.56 
mm and (III) W3 = 0.76 mm. It is seen that the results 
do not show any significant change with respect to W3, 
as shown in Fig. 7. Therefore, W3 is chosen as 0.56 
mm. The characteristics of the two configurations, Figs.
4 and 5 (a) are compared in Fig. 8. 
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Fig. 7. Simulated result of S-parameters for gap W3. 

It is evident from Fig. 8, that employing the DGS 
improves the out-of-band characteristics. However, a 
reduction in the bandwidth of the filter in the passband 
is observed when the stubs are outside. This may be 
attributed to the larger electrical length offered in case 
of DGS, which in turn limits the passband [26-27]. 

However, this problem of bandwidth reduction is 
overcome when the stubs are embedded in I/P and O/P 
transmission lines (Fig. 5 (a)), as depicted in Fig. 8. The 
reason behind this improvement is reduction in 
effective electrical length in case of embedded stubs. A 
passband of more than 2.5 GHz and a very wide 
rejection bandwidth is obtained in the out-of-band 
region. Size reduction of approximately 49.16% is 
achieved in the proposed compact filter. Figure 9 shows 
the filter response in terms of group delay, which shows 
almost a constant group delay in the passband as 
desired. 
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Fig. 8. Simulated result of the filter with DGS; with and 
without embedded stub. 
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Fig. 9. Simulated result of the proposed compact 
embedded BPF. 

227 ACES JOURNAL, Vol. 29, No. 3, MARCH 2014



III. EXPERIMENTAL RESULTS 
The prototype filter is fabricated and the 

photograph of the top and bottom view of the filter is 
shown in Figs. 10 (a) and 10 (b). 

(a) Top view 

(b) Bottom view 

Fig. 10. Prototype of the proposed compact embedded 
structure. 

Finally, the response of the fabricated filter is measured 
using PNA series Vector Network Analyzer and the 

response is compared with the simulated result, as
shown in Fig. 11. 

A comparison of the simulated response with the 
measured response, shows a good agreement. The 
performance of the filter in passband and out-of-band 
for three configurations under investigation, is tabulated 
in Table 2. 
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Fig. 11. Experimental and simulated result of the 
proposed compact embedded filter.

IV. CONCLUSION 
A compact wideband filter is implemented based 

on the concept of embedded stub and DGS. The 
proposed structure is realized in two steps. First, the 
conventional wideband filter is miniaturized in terms of 
the length of unit element by the application of DGS, 
then further reduction is obtained by embedding the 
shorting side stubs in the microstrip line and folding the 
central shorted stub in L-shape. The proposed compact 
embedded bandpass filter structure shows a size 
reduction of 49.16 % along with a good passband and 
improved out-of-band rejection bandwidth. 

Table 2: Performance of filters
Configuration 10 dB passband 

(GHz)
10 dB rejection bandwidth 
in out-of-band (GHz)

Area occupied 
(length!width) in mm2

Conventional BPF (length 
of 50 Ω line = λg/8) 1.3 to 5.8 = 4.5 6.2 to 7.6 = 1.4 102.54!20.85 = 2137.96

Conventional BPF (length
of 50 Ω line = λg/16) 1.3 to 5.8 = 4.5 6.2 to 7.6 = 1.4 83.03!20.85 = 1731.17

Proposed BPF (without 
embedding) 2.28 to 3.75 = 1.47 5.2 to 10 = 4.8 102.54!20.85 = 2137.96

Proposed compact 
embedded BPF 1.6 to 4.1 = 2.5 4.88 to 10 = 5.12 102.54!10.54 = 1086.77
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